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The variable moment of inertia model has been generalized so as to be applicable to transitional
and vibrational nuclei by requiring that the extended models reduce at low angular momentum, J, to
the polynomial dependence which agrees with the data. This dictates the introduction of at least
three-parameter generalized phenomenological models. Two such models, the generalized variable
moment of inertia model and the variable anharmonic vibrator model, are described and then tested
against known yrast band data. Except for strongly deformed nuclei, these models substantially im-
prove the agreement with the data.

I. INTRODUCTION

In several recent works' we pointed out a long-
standing puzzle associated with the remarkable success of
the variable moment of inertia (VMI) formula for the
yrast band outside its "natural" domain of application,
namely rotational nuclei. We also proposed a generalized
model, of which the VMI is a special case. Our confi-
dence in the physical basis of the new model (see below)
was reinforced by selected applications. The account
which follows results from a full analysis along the new
lines of all existing data.

The previous work' describes as fully as our under-
standing permits the theoretical basis for the new formu-
las. We shall not repeat this argument, which generalizes
those given much earlier ' to "justify" the VMI formula.
Certain physical-mathematical viewpoints cannot be
stressed too much, however.

At low angular momentum, the yrast band of strongly
deformed nuclei can be described by a power series in
J(J+1),where J is the angular momentum. This series
diverges at some higher value of J, within the range of
physical interest, however, and in general before there has
been any band crossing. The problem is to find an ana
lytic continuation which sums this series. The original
VMI work provided such a recipe based on physical in-
tuition, later substantiated by very general arguments. '

How then do we generalize the physics so as to describe
nonrotational nuclei as well? It is now well established ex-
perimentally that we can expect yrast bands in all medi-
um and heavy even nuclei which are not too near closed
shells. In order to fit the excitation energies of the lowest
lying states we must generalize from the variable J(J+1)
to an arbitrary ratio of the terms in J and J, which for
later numerical convenience we choose as the linear com-
bination

E(J)=aJ+bJ(J —2) .

Most flexibly we should view these as the first two terms
of a series in J which converges for sufficiently small J,
but which requires analytical continuation (summation) at
higher Jbelow the first band crossing. Thus, we take it as
a boundary condition on the generalized phenomenology
that it should reduce, as J~0, to Eq. (1). Aside from the

+2 y I:JlA(J) ApMNJ(J) —NJp]—(2)

has five parameters Pip, $2p, +&], K]z=+2&, and %22.
We view P&(J) and Pi(J) as independent generalized scal-
ing variables. Assuming two such functions, the theoreti-
cal arguments. require the harmonic terms of (2) as a
minimal structure. In Eq. (2) P, (J) and P~(J) are varia-
tional parameters for each J,

(3)

However, to fix five parameters in conjunction with (3),
we would have to fit five excitation energies.

In light of these excessive requirements we have chosen
initially not to pursue an analysis based on a formula as
general as (2), though in light of the results described in
this paper, such an analysis may be of future interest. We
have instead studied two special cases, each of which con-
tains three rather than five parameters and satisfies the
boundary condition (1): (i) The generalized VMI (GVMI)
is defined by fixing the ratio of the two scaling functions.

purely empirical basis for this requirement, this equation
summarizes fully the ground band excitation energies of
any limiting symmetry of IBM1, the original version of
the interacting boson model. ' (Naturally then, it also ac-
cords with a suitable version of the Bohr-Mottelson
model. "'

) This boundary condition is not satisfied by
the original VMI except for rotational spectra where
(b/a) is fixed at the value (—,'). We have "explained" in
our previous work' why, nevertheless, the VMI fits so
well outside its natural domain. However, as we shall see,
the formulas proposed below fit even better.

Given the boundary condition (1) at low angular
momentum, the general arguments do not prescribe
whether, in the higher order terms which are to be
summed, one should maintain a fixed ratio between terms
of successive order, i.e., treat (1) as the variable or allow a
more flexible variation. The most general formula pro-
posed by us for the yrast band,

J J(J—2)
Qi(J) $2(J)
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Thus we write

E (J)= + ,
' K—[P(J) P—p]' (4)

P(J)
Since for X fixed at ( —,') this becomes the usual VMI, the
GVMI should generally improve the fit of the VMI. (ii)
We define the variable anharmonic vibrator model
(VAVM) by setting P&(J) to be a constant and only allow-
ing $2(J) to vary. Thus we write

E(J)=aJ+ J(J—2) 2

8(J) + —,C[8(J)—8o] .

In this case, it is easy to see that 8(2)=8p and thus
a =[E(2)/2]. For the near harmonic limit, we expect
(a 8o) (& 1.

Our initial prejudices were certainly in favor of Eq. (4).
We were led to consider Eq. (5) only after encountering
selected difficulties in the choice of parameters in the
analysis based on (4).

After consideration of some elementary properties of
each model in Sec. II, in Secs. III and IV, we give a sum-
mary of the results of our analysis based on the two
models.

II. RANGE OF VALIDITY OF MODELS

This discussion parallels the one carried out in Ref. 3
for the VMI model. First consider the GVMI, Eq. (4).
The variational condition [BE/BP(J)]

~ z
——0 yields

KP (P Pp)=J+X—J(J—2) .

One limit of the theory clearly corresponds to letting
K~ oo. For (6) to be consistent, we must have p(J)0pp
like EC '. This yields the energy formula

J+XJ(J—2)

having set X;„=O. This choice is based on plausibility.
In practice the ratio R(4) seldom dips below the value 2.

Applying exactly the same mode of analysis to Eq. (5)
of the VAVM, we obtain for C—+ m,

E(J)=aJ+J(J —2)/8p,

and for 8p=0,

E(J)=aJ+ —,
' C' [J(J—2)]

(13)

(14)

whereas for the VAVM

2&R(4) & —,
' . (17)

In establishing these limits on the validity of the
models, we avoid the necessity of having to push the orig-
inal VMI beyond its legitimate domain of validity. We
have based our work on the premise that the value R
which defines a critical point of the energy curve, '

represents a natural limit of the model, and that if one en-
counters nuclei beyond this pale, what is required is a re-
vision of the theory. The physics then requires the intro-
duction of a more elaborate or flexible model.

The limits of validity of the models are equally well ex-

200

On physical grounds, we again require the value (11), cor-
responding to (a8o) '(( —,

' ). For the minimum value, we
now have

4a +6C'
2Q

as C~O. Thus for the GVMI

(2)'r'&R(4) &( —", ),

One is tempted to consider K—00 for the other limit.
This is incorrect. The other limit is determined by our
boundary condition (1). This can be reformulated, for our
purposes, by the requirement that P(J) be analytic at
J=O. From (6), with ((}p=(dP/dJ)

~ z p, we have

Kgpgp ——1 —2X .

Assuming that the right-hand side does not vanish
[X=( —,) corresponds to the strongly deformed limit and

probably the largest sensible value of X], Pp~ ao if either

Pp ——0 or K=O. The experience of phenomenological
analysis renders Pp

——0 the relevant condition. With this
value of Pp, we have

y( J)= I [J+XJ(J—2)]/K I
'r

N
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E(J)= , K'r [J+XJ(J—2)] r— (10)

From (7) and (10), respectively, we obtain for the range of
R (4) =[E(4)/E(2)], 50

Z
)OO

R,„(4)=2+4X,„=(—", ),
R;„(4)=(2+4X;„)'r'=(2)'r' = 1.59, (12)

FIG. 1. Even-even nuclides for which yrast bands are known,
represented as points on an X vs Z plot. Magic numbers are in-
dicated by solid lines.
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TABLE I. Relative accuracy of the three models compared in the text, the VMI, VAVM, and
GVMI, for the barium isotopes. DE is the average deviation in energy per energy level tested. n is the
number of levels tested.

Nucleus Z N R4 ——E(4)/E(2)
DE (VMI)

(MeV) DE (VAVM) DE (GVMI)

122B

Ba
'"Ba
128Ba

Ba
132Ba

144Ba

146Ba

66
68
70
72
74
76
88
90

2.893
2.841
2.777
2.687
2.524
2.428
2.660
2.842

0.1031
0.1062
0.1715
0.2439
0.0831
0.0798
0.0567
0.0758

0.0261
0.0164
0.0041
0.0240
0.0004
0.0723
0.0035
0.0433

0.0509
0.0318
0.0182
0.0420
0.0082
0.0601
0.0019
0.0375

pressed in terms of the softness parameter,

GVMI: o i =(4o/0o) =(1—2X)/Kko

VAVM: o'z=(8o/~o) =(—2/C~o)

so that (16) and (17) are equivalent to the conditions

00) io;i)0, i=1,2.

(19)

(20)

In relation to the analysis of the results in the next sec-
tion, we remark that from (7) (the limit o.i~ 00) we have

R4 —2X=
4

From (13), in the corresponding limit o2~ oo,

1

a8p

(21)

We have also carried out calculations for the original
VMI, but shall only report a figure of merit to be com-
pared with corresponding figures of merit for the GVMI
and VAVM.

III. COMPARISON OF MODELS

Extensive calculations were done using the GVMI and
VAVM models. For the former the three parameters X,
E, and Po were determined by the values of E(2), E(4),
and E(6). For the latter the parameter a was fitted to
E(2), whereas E(4) and E(6) determined the values of C

and Oo. A table of the energies obtained from these
models for 150 nuclei has been reported elsewhere, ' to-
gether with the values of the parameters which enter the
analysis. Comparison is made with the data of Ref. 9 and
with calculations made with the original VMI model.

The main aim of the present report is to summarize the
results of the calculations (this section) and to illustrate
and discuss some systematics of the parameters used in
the models (the next section).

In Fig. 1 we show the nuclei studied as points on an N
vs Z plot. Of the 150 nuclei analyzed, 19 are vibrational
(2 & R4 & 2.4), 34 fall in transitional region 1

(2 4 & R4 (2.7), 21 fall in transitional region 2
(2.7(R4(3), and 76 are rotational [3(R&&(—', )]. The
transition region may include strongly anharmonic, gam-
ma unstable, and weakly deformed nuclei.

In discussing the relative merit of the three models, we
chose as a figure of merit the average numerical deviation
in energy between experiment and theory. Of the 150 nu-
clei studied, at least four yrast band energy levels are
known for 127 of them: 16 of these are vibrational, 29 lie
in transitional region 1, 15 lie in transitional region 2, and
67 are rotational. In general terms, the GVMI gives
better results than the original VMI in the rotational and
vibrational regions and overwhelmingly better results in
the two transitional regions. The VAVM gives even
better results than the original VMI in the rotational and
vibrational regions and also overwhelmingly better results
in the two transition regions. Finally, the VAVM gives

TABLE II. Relative accuracy of the three models compared in the text, the VMI, VAVM, and
GVMI, for the erbium isotopes. DE is the average deviation in energy per energy level tested. n is the
number of levels tested.

Nucleus Z R4 ——E(4)/E (2)
DE (VMI)

(Mev) DE (VAVM) DE (GVMI)

156Er

158Er

160Er

162Er

164Er

166Er

168Er

170Er

68 S8
90
92
94
96
98

100
102

2.315
3.101
3.101
3.229
3.277
3.289
3.309
3.310

0.0555
0.0771
0.0219
0.0186
0.0211
0.0551
0.0012
0.0008

0.0150
0.0168
0.0160
0.0126
0.0200
0.0179
0.0043
0.0023

0.0313
0.0392
0.0402
0.0333
0.0247
0.0450
0.0015
0.0060
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FIG. 2. Rs vs R4 for Gd isotopes. Comparison of experi-
ment with VMI and GVMI model calculations, where
R (J)=E(J)/E(2) is the ratio of the indicated excitation ener-
gies.

slightly better results than the GVMI in the rotational re-
gion and transitional region 2, but much better results in
the vibrational region and transitional region 1.

These general conclusions are illustrated for a set of

R4

FIG. 4. Rs vs R4 for Yb isotopes. Comparison of experi-
ment with VMI and VAVM model calculations.

transitional nuclei (Ba isotopes) in Table I and for a set of
largely rotational nuclei (Er isotopes) in Table II. The
quantities DE are the figures of merit alluded to above,
namely, the numerical deviation between experiment and
model per energy level tested. For the barium isotopes the
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FIG. 3. R ~p vs R4 for Gd isotopes. Comparison of experi-

ment with VMI and GVMI model calculations.
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FIG. 5. R~p vs R4 for Yb isotopes. Comparison of experi-

ment with VMI and VAVM model calculations.
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TABLE III. Nuclei for which the parameter X of the GVMI model assumed a best fit for X&0.39,
casting doubt on the GVMI analysis. For every such nucleus there is an acceptable VAVM fit. For
other quantitics in this table, scc Tables I and II.

,",K.r

100pd

102pd

106Pd

108pd

108Cd

116Cd

148Nd

150S

188~
74

76
172'
174~

198pt

2.329
2.143
2.128
2.293
2.402
2.416
2.463
2.536
2.383
2.374
2.511
2.316
3.091
2.662
2.741
2.419

DE (VMI)

0.0666
0.2088
0.4689
0.0960
0.0787

0.0124

0.0286

0.0180

DE (VAVM)

0.0349
0.0546
0.1311
0.0113
0.0518

0.0082

DE (GVMI)

0.0432
0.0688
0.0148
0.0479
0.0606

0.0181

0.0113

0.0042

0.451
0.903
2.262
0.451
0.414
0.475
0.394
0.426
0.401
0.750
0.976
0.607
1.573
0.668
0.429
0.483

VAVM is better than the GVMI, which improves upon
the VMI, all this On the average. For the Er isotopes, the
same assertions hold, except for the best rotators, wlmre

the VMI seems to be optimal.
The same points are illustrated in a different way in

Figs. 2 and 3, where we have plotted 8.8 and R Io, respec-
tively, vs Rq, where RJ [E——(J)/E(2)j for the known Gd
isotopes. Here we compare the experimental results (con-
nected by lines), the VMI results, and the GVMI results.
(We have omitted the VAVM results to avoid confusion. )
These figures again illustrate the general point that the
improvement of the GVMI over the VMI is most substan-
tial in the transition region. Similarly in Figs. 4 and 5, we
have plotted Rs and R~z vs R4 for the Yb isotopes, this
time substituting VAVM results for GVMI results. Qual-
itatively the same remarks apply as for the Gd isotopes.

It emerges from the analysis that the parameter X of
the GVMI remains very close to —,

' for rotational nuclei
(which means that the VMI ls nearly opt1mal 1I1 this re-
gion as remarked) but exhibits gradually lower values in
transitional regions 2 and 1 and the vibrational region,
giving generally better results than the original VMI, as
stated. This means that the J(J+ 1) dependence of the
rotational term is justified only for rotational nuclei and it
is favorable to use the more general form J +XJ(J —2) in
the other regions. This is in agreement with the fact that
the J(J+1) dependence has been justified theoretically
for low J only in the rotational region. The fact that the
VAVM gives in general better results than the GVMI,
especially in the vibrational region and transitional region
I, means that a better description is achieved by allowing
separate scaling variables for J and J(J—2), as is done in
Eq. (2), even in the case where we restrict one of these
scaling variables to be constant, as in the case of the
VAVM. It is thus expected that the five-parameter for-
mula of Eq. (2) can give much more accurate results. A
four-parameter model can also be obtained by allowing
K)2 ——Kg) ——0.

0.50— ~ ~

4

0.20—

100pd
4

4
gO

~ ~

e ~

re+
~ ~

0
~ ~

0 ~

ef

2.0
R4

FIG. 6. The VAVM parameter combination (@80) ' vs R4,
illustrating the remarkable agreement with Eq. (22).

Although the bulk of the solutions followed qualitative
physical expectations, we obtained GVMI solutions for 16
nuclei with X&0.39. The nuclei in question and the X
values are listed in Table III. It should be remarked that
for these nuclei, experimental results up to J=g are
known for only 9 of them. In general, the GVMI gives
results better than the VMI but worse than the VAVM.
Only for ' Pd and ' Os does the GVMI give the best re-
sults. We tend to believe that these solutions are numeri-
cally acceptable, but lack a clear physical significance be-
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FIG. 7. The GVMI parameter X vs R4, illustrating the
rough correlation with Eq. (21).

N

FIG. 8. The VAVM parameter combination (a8O) ', the
GVMI parameter X, and R4 vs 1V for the Yb isotopes, illustrat-
ing similar smooth behavior.

cause they correspond mostly to values outside the accept-
ed domain of validity. Especially for ' Pd, the solution
obtained is of much better quality than the VMI or
VAVM solutions, but has the highest X obtained (2.262).
This may be related to the fact that ' Pd is the only pseu-
domagic nucleus studied here. '

IV. PARAMETER SYSTEMATICS

in the o1~0 limit, namely that X~;„=(R4—2)/4. What
happens is clear: The values of X follow more or less the
value of R4. If good agreement with the experimental re-
sults is obtained for —,

' )X)X;„,a point close to or

I I I I i I I I l I I

Turning now to systematics of the parameter sets, in
Fig. 6 the quantity (1/a80) of the VAVM vs R4 is shown.
There is a remarkable correlation with the limiting
straight line (22), all points lying on or slightly above, giv-
ing 1/(a190)= —, for R4 ———, and 1/(a80)=0 for R4 ——2.
Only ' W gives a value of 1/(a00) significantly larger
than —,

' (0.604), which is not shown in the figure.
A similar graph of the parameter X of the GVMI vs

R4 is given in Fig. 7. Again most points are close to or
slightly above the line X =(R4 —2)/4, given in Eq. (21),
although the correlation is not as good as in Fig. 6. Six-
teen nuclei with X)0.39 fall far from this line and are
not shown (see Table III). Six of them are Pd isotopes.
The remaining ten have the common characteristic of ex-
hibiting a lower R4 than all the neighboring nuclei of the
same element studied here (i.e., for which good results
were obtained). Nine of them fall between X=—,

' (the
standard VMI value) and X=—,'„and the remaining six
exceed this value. Seven of these nuclei are "vibrational"
(80Kr 98Ru IMpd 102pd 108Cd 166Cd and '5 SIII), BIld
seven more lie in transitional region 1 (' Pd, ' Pd, "Pd,
"Pd, ' Nd, ' Os, and ' Pt). Only one is rotational
(' W) and one lies in transitional region 2 (' Os). This
behavior can be explained by using the result found above

&.R4

~O

2 0(0(9 )

Os ISOTOPES

0 I I I I l I I I I I I

96 100 104 108 112 116
N

FIG. 9. The VAVM parameter combination (a80) ', the
GVMI parameter X, and R4 vs Ã for the Os isotopes, illustrat-
ing similar smooth behavior.
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R4. The increase with A4 appears most decisive for rota-
tional nuclei, where the limits C and X~00 encompass
the cases of rigid rotation. This correlation, not quite per-
fect, is illustrated for the parameter C in Fig. 12 for the
W isotopes, A=172—188. The behavior of E is similar.
The sharp change from ' W to ' W may be indicative of
a "phase transition. " The especially low values of ' Nd,

Sm, and "Dy (%=88) may have a similar explanation.
Figure 13 illustrates that the same correlation is not con-
fined to rotational nuclei. The special behavior observed
at %=68, 88, 104, 108, and 142 and the lack of backbend-
ing at X=98 can be attributed to the neutron sublevels of
the shell model completed at %=70, 90, 104, 110, and
142 and N= 100 correspondingly.

V. CONCLUSION

The most important conclusion of this work is that the
J(J+1) dependence in the VMI formula is exactly valid
only in the rotational region. Even with the more general
form J+XJ(J—2) giving improved results, there is evi-
dence that a better description is obtained by allowing dif-
ferent scaling factors for J and J(J—2), as done in the
VAVM. It is also remarkable that with the range of va-
lidity of the original VMI, 2.23 &84 &10/3, the VAVM

describes nuclei with R4 )2, and the GVMI can in princi-
ple describe nuclei with 8.4 ) 1.59.

It is probably of interest to investigate the general form
suggested in Eq. (2), not for predictive purposes, but rath-
er, by accepting the theoretical structure to determine the
J dependence of the scaling functions. Beyond that is the
purely theoretical question of why we need two scaling
functions in general, when one will do in the rotational re-
gion. It is almost certainly of interest to consider the ap-
plication of our suggestions to band crossing outside the
strictly rotational domain.

Finally we wish to emphasize that our work is in no
way intended to diminish the theoretical and practical im-
portance of the VMI model, but is rather intended to re-
fine it outside what we consider its natural domain of va-
lidity. Concerning this point, however, there is a differ-
ence of philosophy between our work and that of Ref. 16,
for example.
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