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The ground-state quadrupole moments of "'Eu, '"Eu, "Tb, ' 'Dy, ' Er, ' Hf, ' Hf, '9'Ir, and
Ir were determined by measuring the quadrupole hyperfine-splitting energies of muonic M x rays.

The results are Q =0.903(10) e b for "'Eu, Q =2.412(21) e b for '"Eu, Q=1.432(8) eh for '"Tb,
Q=2.648(21) eb for ' Dy, Q=3.565(29) eh for ' Er, Q=3.365(29) eb for ' Hf,
Q=3.793(33) e b for ' Hf, Q=0.816(9) e b for ' 'Ir, and Q=0.751(9) e b for ' Ir. The present
quadrupole moments, compared with values obtained from electronic-atom hyperfine measure-

ments, show that the Sternheimer correction factors used in the rare-earth electronic-atom analysis
are unreliable. Systematics of deformation parameters Pz calculated from the present quadrupole
moments for odd-A nuclei, and from 8 (E2) values of Coulomb excitation measurements for even-A

nuclei, also indicate that the largest deformation change so far known exists between ' 'Eu and
Eu. Except at the onset of nuclear deformation, the deformation parameters of the odd-A nuclei

are quite consistent with those of the even-A neighbors.

I. INTRODUCTION

Precise measurements of nuclear quadrupole moments
have been hindered by the fact that no external electrostat-
ic field gradient is strong enough to produce observable
hyperfine energy splittings. One must therefore rely on
the electrostatic field gradient of the atomic environment
of the nucleus. The field gradient produced by electrons is
difficult to compute precisely in a multielectron system,
and hence electronic-atom hyperfine experiments, al-
though very precise with respect to energy splittings, often
yield unreliable values for extracted nuclear quadrupole
moments.

In muonic atoms, on the other hand, the electrostatic
field gradient at the nucleus is produced by a single muon
(the electronic contribution is negligibly small) and can be
precisely calculated. Furthermore, muonic 3d orbits in
heavy atoms are close enough to the nucleus to produce
large hyperfine splittings, yet far enough from the nucleus
to avoid any serious model dependence caused by the fi-
nite size of the nuclear charge distribution. '

Ground-state quadrupole moments deduced from the
muonic M x-ray analysis can be used in combination with
electronic-atom measurements to calibrate the electronic
field gradient at the nucleus. Once the electronic field
gradient is known for a particular element, electronic-
atom experiments can yield accurate quadrupole-moment
values for a wide range of isotopes of the same Z. The
implication of the present work toward understanding the
electrostatic field gradient in rare-earth atoms, including
extraction of experimental values for the Sternheimer fac-
tor, was the subject of a previous publication. The
present paper presents the details of the experiments, the
method of extracting the quadrupole moments, and a dis-
cussion of the systematics of nuclear quadrupole deforma-
tion in the rare-earth region, with emphasis on odd-A nu-
clei.

II. THE QUADRUPOLE HYPERFINE INTERACTION
IN MUONIC ATOMS

The matrix elements of the electric quadrupole hyper-
fine interaction are given by

F
(IJ;P

~
aE,

~
IJ;F ) = e( —1) +" — I 2

'(j' —»I&-) IVE&
I+.+Fv'4ir(2J'+1) . I, ., i . i I 'Ij

J

where I and j specify nuclear and muonic states, respec-
tively, and I' denotes the total angular momentum of the
coupled muon-nuclear states. The last factor in Eq. (1) is

f

the radial integral of the quadrupole interaction,

IVE) = J pEz(r)V)2(r)r dr,

Oc1984 The American Physical Society



3000

2000—
V)

E3

Ia. .&Ital Il
I I 1(s) ~ ff &. + ~ a II ~

r (fm)

Uadrup01c potcntlals VE2 r) and thePIG 1. Muon generated qua ru0 4

8 OtCntla 81 0,'P' with
d Upolc transltlo g

Oint Quc CU

Q char ca=(J'~1/r„~j) . ) A na r n c~ of Eq. (6). A qua r
C.dcnslty ln aI"bltrary units ls also dlsp ayc

ENERGY (keV)

of "'Eu, The solidM x-I'ay spectrum oPIG. 3. The muonlc M - y
uted from theory,8 thc best-flit spectrum coIDputc I'curve I'cpI'cscnts t c 8-

the calcu ate ra
0

The vertical lmes show nsltlon cnerglcs and in-
c Uadrupolc moment 18Th dcduccd gI'ound-state qua rupten sltles. e

Q( 2 )=0.903(10) e b.

pz I
uaBru olc potentialwith the muon-generate qua

r
Vpf(r) = I, (GJ'GJ +FJFJ dr„.

I' ~

radial wave functions of a muon in theHei'e G~ and FJ are la 1a
angular mome
(smaller) of the muon and nuc ear

from a deiorme cf FcrI111 Qistribution:

of the nuclear quadrupolewhich describes the overlap o e
charge density

(3)(r)= p(r, 8,$)Y20(8,$ dQ

r —R (8,$)1+exp

(5b)R (8,$)=Rg[l+Pi Y20(8,$ ] .

ation the quadrupole charge density is
shown in Fig. 1, and

the ra la p
d' I osition of the peak is appro

'

the value of R&.
0

1cntl ar a%'ayie f from the nucleus,If the muon is sufficie y
hat the probability is neg 1gi eOne Can assume t a

60
PROTON NUMBER

Uced E2, matrix elements causscd b aPIG. 2. Change of deduce
dru ole cbaI'gc radius g 010% change of the quadrupo

tion charge density pE2 e .(r).

. . i. ll . .
I

545
I

555 565

ENERGY (keV)
x-la spcctruID of 5 Eu. Thc solidPIG. 4. Thc muonic M x-lay spectrum 0

thc best-fit spectrum compute romcurve represents t c s-
u the calculate transi itlon cncrglcs and ln-The vertical hnes show

UadI'U olc moment 18tcnsltlcs. c cTh deduced gI OUQd-state qua I'Upo

Q( z )=2.412(21) eb.



TANAKA, STEFFEN, SHERA, REUTER, HOEHN,HN, AND ZUMBRO

500—

L I .f. a.otic» r I 4
II i Itt P

I I

580 590 600

ENERGY (keV)

j.rrlh. ..
l rlj g fir l

400—
-~- ~ ~ ~ lilt)& II(s1

~ I
(IPSE

III, I I,. i l I I

I l I

640 650 660

ENERGY (keV)

FIG. 5. T e solidT e muonic M x-ray spectrum of '5 Tb. Th
curve represents, the best-fit spectrum computed from theory.
The vertical lines show the calculat d ta e rans1t1on energies and in-

tcnsltlcs. T bc dcdduccd ground-state quadr Upolc moment 1S

Q( z )=1.432(8) e b.

PIG. 7. The mmuonic M x-ray spectrum of ' Er
curve repI'esents the best-fit

m o Ef. Thc solid

The vert1cal hnes show th 1

s e est- it spectrum computed from

tensiti Th
w e ca culated tran

' '
w l transition energies and in-

Q(
7+

1cs. c dcdUccd foun

T ) =3.565(29) e b.
g d-state quadrupole mom tmCQ 1S

the muon Instde the nucleus Thc muon-gen«ated quad-
rupole potential then reduces to

VII(lr) r'(j —,=jl'
Ij'@

(see Fig. 1). The u'g. . quadrupole radial integral of E . (2)
'

then simply given by
q. Is

In this idealized s'ituation, the nuclear quadrupole matrix
element I'I ~rzFI

~
[I) can be extracted from the

hgpc Itic-spll'ttiIlg c11cI'glcs In a manner 'tllat ls
de endent of t

a Is entIre y in-

density.
p n o he shape of the nuclear quadru 1 hnlpo e c alge

However, muonic states that show large E2 h f
s littin sp

' '
g still have appreciable amplitudes inside the nu-

e yper Ine

Es. 6
clear volume. Hence the poInt nucleus approxIIIIRtloI1 of

qs. (6) and (7) must be modified to include h ff
the finitee size of the charge distribution. We cast Eq. 2
in a form similar to that of Eq. (7),

2400—

500-

c uuiIR IIL
'III IIII I

1II „
1

605

l, i

i6$625
I III .I, I I I

7% nO 7~
I. . .

I l

740 750

ENERGY (keV) ENERGY (keV)

FIG. 6. TThe muonic M x-ray spectrum of '~ D . Th
cufvc re fcpresents the best-fit spectrum computed from theory.
The vertical lines show the calcul t d tu a e ransit&on energies and in-

tensities. The deduced
5

gfound-state quadrupole moment 1s

Q( 2 ) =2.648(21) e b.

FIG. 8. The mmuonic M x-ray spectrum of ' Hf. The so i
curve represents the best-fit s ee es - 1t spectrum computed from theory.

e vertical lines show the calculated tu a e ransltion energies and in-

)=3.365(29) e b.
cn 1S



SYSTEMATICS OF GROUND-STATE QUADRUPOLE MOMENTS OF. . . 1833

700 710 720 750 740

ENERGY (keV)
750 810

s {I ii Jab)a
(

'0 I )%1Pf I

820 830 840 850

ENERGY (keV)

mh. s, I g g,ah, J
I I ~pf f$ /~I

FIG. 9. The Inuoniuonic M x-ray spectrum of ' 9Hf. Th
curve repI'esents the b t f

c solid

The vertical lines show th 1 1

cs - 1t spectrum computed from ht cory.

tcnsitlcs. Thc dcduccd ro
e ca cu ated transitiontion energies and in-

~(T )=3.793(33) eb.
e educed ground-state quadrupole mom tOIQCnt 1S

FIG. 11. The muon'uonic M x-ray spectrum of ' 3Ir. The s
curve represents the best-fit

c so11d

The vertical lines show th 1 1

es - it spectrum computed fromm theory.

tensities. The deduced round-s
w e ca cu ated transitionition energies and in-

c e uced ground-state quadrupole moment

T ——0.751(9) e b.
cn 1s

where the last factor includes the reduction o

comes identical to E . (2 .
sity pzz(r) is not known and must be a roxim
by Eqs. (3), (5a) and (Sb)

' '
a

in the value of (I' r F I, an, thus introduein ag a model error'

sp itting 8'E
r I I deduced from the observ derve

The dominant influence onnce on the extracted value of
~Ir I I~ is the radial position of the eak of

In order to examine thi
'

fl
' '

we
pllted, fol' varlolls IIluolllc

is m uence quantitativel wey, vre com-
muonic or ita s as a function of Z th

relative change of the extracted (I' rid I cP iiI) dby

alii y 111 g, tile Rppi'oxllllatloll illvolved 111 E . 8
introduces a model error in (I'~

~

Fn r I I of less than 1 o
or a muon in a 2p orbit if Z & 20 foOr R I &, Ol' a 11111011111 a 3d Ol-

Th
, and for a ma muon in a 4f orbit if Z &100.

e model error is small if ta i t e radial dependence of

It is thus clear that for nuclei in the rare-
quadrupole moments,

ei in e rare-earth region,

&16m,= &5(2I
(II20 III)(I

200—

h

I

820 850

i@isa llllltaLl JE Ill
Pl

.&. ~ I4-.ji & I )) l I
'i" "' ~+ ')

860 870

can be determined reciselp ey and nearly model indepen-

y nalysis of the hyperfine 1 tt
4f—+3d transitions (M x rays

III. MEASUREMENTS AND ANALYSES OF
MUONIC X-RAY SPECTRA

ENERGY (keV)

FIG. 10. The mmuonic M I-ray spectrum of ' 'Ir.
curve represents the best-fit s ectrum

ve ica Ines show the calculated tran
' '

tensities. Th
c tI'ans1t1on cncrg1cs and 1Q-

g( 3 +
c dcduccd round-

2
——0.816(9) e b.

g -state quadxupole momenten 1s

A. Measurements

e muomc x-ray spectra of the stable isotopes ' 'Eu

e target arrangement, Ge{Li) spectrometer,



1834 TANAKA, STEFFEN, SHERA, REUTER, HOEHN, AND ZUMBRO 29

TABLE I. Isotopic compositions of targets.

Target
Chemical

form
Mass

4g)

Isotopic
composition (%)

151E

153Eu
Eu203
Eu203

9.67
9.88

151

96.83
1.24

153

3.17
98.76

159

159Tb Tb203 17.38 99.99

162 163

163Dy Dy203 18.60 2.67 92.98 3.57

167Er Er,O3 17.90

166

2.93

167

91.54

168

5.14

176 177 178 179 180

'"Hf
179Hf

Hf02
HfO,

3.97
2.99

1.20
0.18

86.49
1.03

7.47
3.26

1.71
86.98

3.11
8.55

191Ir

193Ir
9.63
9.95

191

98.17
0.55

193

1.83
99.45

and data-acquisition system have been described in detail
in previous papers. ' '" The y rays from Na, ' Au, and
' 0 (Refs. 12 and 13) and the muonic x rays from Pb
(Refs. 14 and 15) were recorded simultaneously with the
data for energy calibration. The energy calibration was
based on interpolation of the energies of the y and x rays
of these sources. In separate runs the y rays from Na,
56Co, "OAg, '37Cs, ' Ta, and ' 0 were measured to deter-
mine the nonlinearity of the data-acquisition system.

The masses, chemical forms, and isotopic compositions
of the targets are listed in Table I. We also measured the
muonic x rays of the even-A isotopes '6 Dy, ' Er, ' Hf,

Hf, and ' Hf in order to correct for the isotopic impur-
ities in the odd-A targets.

B. Computation of spectra

The nuclear monopole and quadrupole charge densities
were constructed from a deformed Fermi charge distribu-
tion. The muonic-atom binding energies and eigenfunc-
tions were computed numerically for the various isotopes
with the computer program MUoN2, which is based on a
program written by Rinker. ' The binding energies were
corrected, following Ref. 18, for vacuum-polarization ef-
fects, self-energy effects (Lamb shift), electron screening,
and relativistic recoil. The corrections also included the
effects of the quadrupole vacuum polarization. '

With the muonic wave functions so obtained, the ma-
trix elements of the interaction Hamiltonian

H„N H(E2)+H(E4)+H—(M 1)

that describe the electric quadrupole, hexadecapole, and
magnetic dipole interactions with the relevant nuclear

states were computed. The effects of the muonic states
that were not included in the model space were taken into
account by nuclear polarization corrections. The nuclear
polarization energies are small for the muonic 3d and
higher states, and the errors of the deduced quadrupole
moments due to the uncertainties of these correction ener-
gies are negligibly small.

C. Analysis of spectra

The muonic x-ray spectra of odd-A deformed nuclei are
complex and involve a number of unresolved low-intensity
(less than 1%) lines. For this reason, the experimental
spectra were directly fitted by theoretical spectra that
were constructed by convoluting a theoretical x-ray energy
and intensity pattern with the known Ge(Li) detector
response function. The detector response was represented

by a Gaussian-convoluted Lorentzian with exponential
tails. The Lorentzian widths were held fixed at values

computed from the natural line widths of the transitions.
The exponential tail parameters were determined by fit-
ting the L, M, and N x-ray spectra of Pb. Cascade cal-
culations involved in the fitting procedure start from the
muonic 5g states with the statistical ratio of 8 to 10 for
the population of the 5g7~2 and 5g9/2 orbits. For each
coupled 5g muon-nuclear state

~
Ij;I' ), we assumed a sta-

tistical population proportional to (2F+ 1).
Figures 3—11 show the muonic M x-ray spectra ob-

served in the present measurements. The solid curve in
each figure is the spectrum calculated by the direct
spectrum-fitting method described above. The calculat-
ed transition energies and intensities are shown by vertical
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lines in each figure.
The raw spectra from those targets that contained sig-

nificant isotopic impurities were corrected by subtracting
appropriate fractions of the spectra of the impurity iso-
topes. Double escape L, x-ray lines lie close to the M x-ray
lines for muonic atoms with 62 &Z & 65. However, these
lines are quite weak and can be neglected in the present
analysis. Noncircular transitions in this energy region
were investigated with the muonic-atom cascade program
of Akylas and Vogel, ' and it was found that the contribu-
tion of these lines was also negligible. The quality of the
fits, shown in Figs. 3—11, indicates the adequacy of our
theoretical representation of the experimental spectra. It
also appears that, except for ' Eu, statistical population
of the 5g hyperfine levels is a good assumption.

D. Intensity anomaly of the
hyper6ne components in '53Eu

In thc ' Eu spectrum, Fig. 4, the observed intensities of
the 565- and 563-keV peaks (which involve

X3d3n 3+) and
I 2 X3d3/2»+) respectively as

final states) are 10.0(3)% and 9."1(4)%, respectively, while
the calculation predicts 11.8% and 8.3%. Also, the ob-
served intensities of the 553-keV peak (which involves

X3dggg, 3+) and
~

—,
'

X3dgg2, 4+) as final states)
and of the 549-keV peak (which involves the

X3dqqi, 'E), I'=0+, 1+, 2+, and 5+ states) are
23.9(5)% and 36.2(10)%, while the calculation predicts
25.6% and 34.0%, respectively. The origin of these inten-
sity anomalies in ' Eu is not clear.

The presence of impurity peak(s) of unknown origin
embedded in the ' Eu spectrum is unlikely to be respon-
sible for the anomaly, because the experimental ratio of
the strengths of the individually summed 3d3&2 and 3d5&2
fine structure peaks is quite consistent with the calcula-
tion. Inclusion of a simple quadratic term, i.e.,
(2F+ I)+e(2F+ I), in the statistical population of the
5g levels is not able to explain the data. An arbitrary non-
statistical population of the initial I' states, adjusted to fit
the observed spectrum, resulted in a quadrupole moment
value different by only 0.014 eb. This uncertainty has
been added to the statistical error of our listed quadrupole
moment for ' Eu. It should perhaps be mentioned that if
the same anomaly were to exist in the spectrum of ' 'Eu,
it would add an additional uncertainty of 0.02 e b to the
statistical error of our listed quadrupole moment for
151Eu

Table II lists the ground-state quadrupole moments
determined in the present experiment, together with the
values previously measured for ' ' Gd. The quoted er-
rors in the deduced quadrupole moments include statisti-
cal errors, model errors, uncertainties in the effects of
low-lying excited nuclear states, and uncertainties of the
effects caused by the magnetic and hexadecapole moments
of the ground state. (The present analysis is different
from that of Ref. 7 for ' ' Gd. For the gadolinium iso-
topes, the fitted peak energies were compared with the

TABLE II. Measured ground-state quadrupole moments of
deformed nuclei.

Nucleus

151pu

153E

1556,d

1576,d

1630y

167Fr

193Ir

7
2

9 +
2
3+
2
3+
2

Present
work

Qg (eb)

0.903(10)

2.412(21)

1.30(2)"

1.36(2)b

1.432(8)

2.648(21)

3.565{29)

3.365(29)

3.793(33)

0.816(9)

0,751(9)

Electronic-atom
experiment

Qs (eb)

1.53(5)'

3;92(12)'

1.59(16)'

1.34(7)d

1.34(11)'

2.51(30)'

2.827(12)~

4.5(5)"

5.1(5)"

0 81(21)'

0.73(19)'

'Reference 25. Not corrected for the Sternheimer effect.
"Reference 7.
'P. J. Unsmorth, J. Phys. 8 2, 122 (1969). Not corrected for the
Sternheimer effect.
dH. -P. Clieves et aI., Z. Phys. A 289, 361 (1979).
'W. J. Childs, Phys. Rev. A 2, 316 (1970).
~W. J. Childs, Phys. Rev. A 2, 1692 (1970).
gK. F. Smith et a/. , Proc. Phys. Soc. London 86, 1249 (1965).
Not corrected for the Sternheimer effect.
"S.Buttgenbach et al., Z. Phys. 260, 157 (1973).
'S. Buttgenbach et al. , Z. Phys. A 286, 333 (1978).

theorctically predicted tI'ansition energies, whcI'cas in thc
present work the entire hyperfine spectrum was fitted
directly to thc COIDputcd spectrum, as discussed earlier.
The direct spectrum-fitting method employed here
reduces the statistical error from 0.9% to 0.3% for experi-
mental data of comparable quality. )

The model error involved in the present M x-ray results
was estimated from the effect of a 10% radial displace-
ment of the quadrupole charge radius R~ of Eq. (5b) with
respect to the monopole charge radius, as discussed in Sec.
II. The basis of this estimate can be checked by compar-
ing the quadrupole moments deduced from the muonic M
x-ray analysis with the quadrupole moments deduced
from an analysis of the muonic Eand 1. x rays. In'order
to extract consistent quadrupole moments from the X and
L, x-ray analysis, the quadrupole charge radii R@ had to be
reduced by only a few percent from the best fit monopole
charge radii (except in ' 'Eu, where a reduction of almost
10% was necessary). Thus, the model error estimated by
the 10% radius change is believed to be generally conser-
vatlvc.

The first and the second excited states of the ground-
state rotational band were included in the present analysis.
However, the quadrupole moments of these excited states
and the 8{E2)values between these states and the ground
state are not well known for the odd-A nuclei considered
here. Hence the E2 matrix elements were fixed at the ro-
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tational model values calculated (by iteration) from the
ground-state quadrupole moments obtained in the present
experiment, and an uncertainty of 10% has been assigned
to the values of these reduced E2 matrix elements. The
unknown magnetization distribution in the ground state
adds another uncertainty to the deduced quadrupole mo-
ment. An error of 10% was assumed for the magnetic hy-
perfine energy in the muonic 3d states. For nuclei with
ground-state spins larger than —,', a possible hexadecapole
moment of the ground state adds an additional uncertain-

ty to the deduced quadrupole moment. A hexadecapole
moment corresponding to a static deformation of
P4,

——0.0+0.1 was assumed in the calculation. The effects
of all these uncertainties are summarized in Table III.
The total errors of Ql are less than 1% for most of the
nuclei.

In most cases the present data disagree seriously with
the electronic-atom results (see Table II). Such disagree-
ment is perhaps not surprising in view of the difficulty of
calculating the electrostatic gradient produced at the nu-

cleus in a multielectron environment, a quantity which is
needed to interpret the electronic-atom data. The ex-

istence of a nuclear quadrupole moment causes a non-

spherical distribution of the core electrons (the Sternhei-
mer effect), ' which in turn affects the valence electron-
ic wave functions. The calculational difficulties are espe-
cially pronounced for rare-earth atoms, where the valence
electronic wave functions involve a considerable amount
of configuration mixing.

In a separate publication we have made a detailed corn-
parison of the present quadrupole-moment values with
electronic-atom results. This comparison provides experi-
mental values of the Sternheimer factors for the 4f, 51,
and 6p electronic states of the rare-earth atoms considered
here. The experimental Sternheimer factors are found to

vary considerably for different elements and generally are
not in agreement with theoretical calculations of the
Sternheimer effect. Clearly the theory of the Sternheimer
effect needs to be refined before electronic-atom hyperfine
experiments can independently give reliable values of nu-
clear quadrupole moments.

On the other hand, if the appropriate muonic-atom data
are available for empirical calibration of the electric field
gradient at the nucleus, the electronic-atom measurements
can furnish absolute measurements of the quadrupole mo-
ments of a wide range of isotopes of the same Z, including
very rare or radioactive isotopes.

V. DEFORMATION SYSTEMATICS
FOR RARE-EARTH NUCLEI

%e have used the present quadrupole moments and
those previously determined by the same method, to-
gether with published 8(E2) values from Coulomb exci-
tation experiments on even-A nuclei (Table II of Ref. 24),
to investigate the systematics of the quadrupole deforma-
tion in rare-earth nuclei. The deformation parameters P2
were calculated by using the rotational model relationship:

~5m (I+1)(2I+3)
3ZRo 3E I(I~ I)— (10)

with Re=1.252'~3 fm. Figure 12 shows the systematics
of the nuclear deformation parameters P2 for these nuclei.

We first notice the large change of deformation between
' 'Eu and ' Eu. For this pair of nuclei the change of de-
formation is larger by more than 50% than for any other
pair of nuclei in this region. This observation is consistent
with the fact that the largest known isotope shift,
b, (r ) =0.577(25) fm, is observed between the same

TABLE III. Uncertainties involved in the deduced ground-state quadrupole moments.

Nucleus

151E

153Eu

159Tb
1630
167Er

179Hf

191Ir

193Ir

Statistical
error
(e b)

0.009
0.017
0.005
0.010
0.011
0.009
0.011
0.005
0.005

Model'
error
(e b)

0.004
0.009
0.006
0.013
0.019
0.023
0.026
0.007
0.007

Dynamic"
E2 hfs

(e b)

0.002
0.007
0.001
0.012
0.019
0.015
0.013
0.002
0.002

M1 hfs'
(e b)

0.002
0.001
0.000
0.001
0.000
0.000
0.000
0.000
0.000

E4 hfs~

(e b)

0.002
0.004

0.004
0.000
0.005
0.011

Total
error
(e b)

0.010
0.021
0.008
0.021
0.029
0.029
0.033
0.009
0.009

'Model error caused by a 10%%uo change of the quadrupole charge radius R~ of the transition charge den-

sity pz2(r) (see Fig. 2).
"An uncertainty of 10% was assigned to the reduced E2 matrix elements between the low-lying nuclear

states.
'An uncertainty of 10% was assigned to the magnetic hyperfine energy of the muonic 3d states.
"An uncertainty due to the hexadecapole moment corresponding to a static deformation Pq ——0.0+O. 1.
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FIG. 12. Systematics of nuclear deformation pq for the rare-

earth nuclear region. Data are taken from this work, Refs. 2—7,
and Table II of Ref. 24.

pair of nuclei. It is well known that in this region the
89th and 90th neutrons trigger a rather sudden nuclear de-
formation. In addition, the 63rd proton also seems to
have an important role in the change of the nuclear shape,
since the deformation difference between ' ' ' Eu is
much larger than those of ' ' Sm and ' ' Gd, and
since ' Eu (Z=63, %=90) exhibits the largest deforma-
tion among the %=90 isotones.

Except for the nuclei discussed above (which occur at
the onset of deformation), the deformation parameters of
the odd-A nuclei are entirely consistent in comparison to
their adjacent even-A neighbors. In contrast to the results
of previous experiments (Fig. 13), both even-A and odd-A
nuclei in the mass region A =150—190 are now seen to ex-
hibit a very smooth variation of deformation with mass
number. In view of the fact that the nuclear deformation
is a collective phenomenon, ' it is not surprising that
the odd-A valence nucleon plays only a minor role in nu-
clear deformation.

It has been suggested ' that the odd-even staggering
of root-mean-square nuclear charge radii ' ' may be attri-
buted to a staggering in nuclear deformation between odd
and even isotopes. This hypothesis is fairly well support-
ed in the case of gadolinium nuclei, where the change of
nuclear deformation between neighboring isotopes is pro-
portional (though with a large uncertainty) to the odd-
even staggering of the isotope shifts between these nuclei.
However, the odd-even staggering observed in the hafni-
urn nuclei ' is not well explained simply by the change
of nuclear deformation.

Because of the difficulty of incorporating an unpaired
particle into the theory, odd-A nuclei have not been the
subject of Hartree-Fock calculations. Nevertheless, we
hope that the availability of precise quadrupole moment
values for odd-A nuclei, as presented in this work, will en-
courage further theoretical work in this field.

VI. SUMMARY

The ground-state quadrupole moments of ' 'Eu, ' Eu,
Tb, ' Dy ' Er ' Hf ' Hf ' 'Ir, and ' 3Ir have been

FIG. 13. Systematics of nuclear deformation Pq for the rare-
earth nuclear region based on the latest electronic-atom data as
given in the 4th column of Table II. The other data are taken
from Refs. 2—7 and Table II of Ref. 24.

determined with an error of about 1% by measuring the
quadrupole hyperfine-splitting energies of muonic 4f~3d
transitions. The model error due to the finite size of the
nuclear charge distribution was estimated to be less than
0.4% for nuclei with A=150 and less than 0.9%%uo for nu-
clei with A =190.

Comparison of the present quadrupole-moment values
with electronic-atom results has shown that the theoretical
Sternheimer correction factors used in rare-earth
electronic-atom analysis are unreliable. However, the
present values of nuclear quadrupole moments provide
empirical calibration points for electronic-atom experi-
ments, which in turn can yield accurate values for quadru-
pole moments of a wide range of isotopes of the same ele-
ment.

Systematics of the deformation parameter P2 calculated
from the present quadrupole moments for odd-A nuclei
and from B(E2) values of Coulomb excitation measure-
ments for even-A nuclei indicate that the largest deforma-
tion change so far known is found between ' 'Eu and

Eu. Except for ' " Eu, the deformation parameters
of the other odd-A nuclei show a very smooth variation of
deformations with respect to the adjacent even-A nuclei.

It has been suggested that the odd-even staggering of
isotope shifts is due to a staggering of nuclear deforma-
tion between odd and even isotopes. However, the present
quadrupole-moment values indicate, though with a large
uncertainty, that the odd-even staggering phenomenon is
not satisfactorily explained by the deformation effect
alone.
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