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The ground-state quadrupole moments of '*'Eu, '%Eu, Tb, 1Dy, '9Er, '"’Hf, °Hf, ''Ir, and
199]r were determined by measuring the quadrupole hyperfine-splitting energies of muonic M x rays.
The results are Q =0.903(10) e b for 'Eu, Q =2.412(21) e b for 'S Eu, Q =1.432(8) e b for '*Tb,
0=2.648(21) eb for 'Dy, @=3.565(29)eb for '“Br, @=3.365(29)eb for !"Hf,
0 =3.793(33) eb for "Hf, Q =0.816(9) e b for “'Ir, and Q =0.751(9) e b for *Ir. The present
quadrupole moments, compared with values obtained from electronic-atom hyperfine measure-
ments, show that the Sternheimer correction factors used in the rare-earth electronic-atom analysis
are unreliable. Systematics of deformation parameters 3, calculated from the present quadrupole
moments for odd-4 nuclei, and from B (E2) values of Coulomb excitation measurements for even-4
nuclei, also indicate that the largest deformation change so far known exists between ''Eu and
153Eu, Except at the onset of nuclear deformation, the deformation parameters of the odd-4 nuclei

are quite consistent with those of the even-4 neighbors.

I. INTRODUCTION

Precise measurements of nuclear quadrupole moments
have been hindered by the fact that no external electrostat-
ic field gradient is strong enough to produce observable
hyperfine energy splittings. One must therefore rely on
the electrostatic field gradient of the atomic environment
of the nucleus. The field gradient produced by electrons is
difficult to compute precisely in a multielectron system,
and hence electronic-atom hyperfine experiments, al-
though very precise with respect to energy splittings, often
yield unreliable values for extracted nuclear quadrupole
moments.

In muonic atoms, on the other hand, the electrostatic
field gradient at the nucleus is produced by a single muon
(the electronic contribution is negligibly small) and can be
precisely calculated. Furthermore, muonic 3d orbits in
heavy atoms are close enough to the nucleus to produce
large hyperfine splittings, yet far enough from the nucleus
to avoid any serious model dependence caused by the fi-
nite size of the nuclear charge distribution.!~’

(LJ5F | Hyy | I3F) = —eX— 1 A0
where I and j specify nuclear and muonic states, respec-
tively, and F denotes the total angular momentum of the
coupled muon-nuclear states. The last factor in Eq. (1) is
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Ground-state quadrupole moments deduced from the
muonic M x-ray analysis can be used in combination with
electronic-atom measurements to calibrate the electronic
field gradient at the nucleus. Once the electronic field
gradient is known for a particular element, electronic-
atom experiments can yield accurate quadrupole-moment
values for a wide range of isotopes of the same Z. The
implication of the present work toward understanding the
electrostatic field gradient in rare-earth atoms, including
extraction of experimental values for the Sternheimer fac-
tor, was the subject of a previous publication.® The
present paper presents the details of the experiments, the
method of extracting the quadrupole moments, and a dis-
cussion of the systematics of nuclear quadrupole deforma-
tion in the rare-earth region, with emphasis on odd-4 nu-
clei.

II. THE QUADRUPOLE HYPERFINE INTERACTION
IN MUONIC ATOMS

The matrix elements of the electric quadrupole hyper-
fine interaction are given’ by

j F .
2 ]u'%zou%wﬂ v, 1)

I
the radial integral of the quadrupole interaction,

Wiili= f P VES(rridr 2
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FIG. 1. Muon generated quadrupole potentials Vz,(r) and the
corresponding  point  nucleus  potentials ar?  with
a=(j"|1/r}|j) of Eq. (6). A quadrupole transition charge
density in arbitrary units is also displayed by the dotted curve.

which describes the overlap of the nuclear quadrupole
charge density

pea)= [ p(r,6,)Y2(6,4)d02 (3)

with the muon-generated quadrupole potential
2
r
Vid(n= [ —(G;G;+F;F)dr, . (4)
rs
Here G; and F; are radial wave functions of a muon in the
angular momentum state j, and r, (r_) takes the larger
(smaller) of the muon and nuclear coordinates 7, and .
The quadrupole charge density of Eq. (3) can be derived
from a deformed Fermi distribution:
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FIG. 2. Change of deduced E2 matrix elements caused by a
10% change of the quadrupole charge radius Rgy of the transi-
tion charge density pg(7).
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FIG. 3. The muonic M x-ray spectrum of !*'Eu. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
0(£%)=0.903(10) e b.

p(r,0,¢)=po/ 1+4-exp

with

R(6,6)=Rgp[1+4B,Y5(6,4)] . (5b)

In this approximation the quadrupole charge density is
peaked near the nuclear surface as shown in Fig. 1, and
the radial position of the peak is approximately given by
the value of Ry. _

If the muon is sufficiently far away from the nucleus,
one can assume that the probability is negligible of finding
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FIG. 4. The muonic M x-ray spectrum of !®Eu. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
0(3%=241221) eb.




1832 TANAKA, STEFFEN, SHERA, REUTER, HOEHN, AND ZUMBRO 29
1500 1200 167,
n B "
E 1000 — 800
pd
8 2
3 3
500 400
. " unlthl
R T _ “. i Jlll ,
570 580 530 600 610 620 630 640 650 660 670

ENERGY (keV)

FIG. 5. The muonic M x-ray spectrum of ®Tb. The solid
curve represents. the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
Q(3%)=1.4328) eb.

the muon inside the nucleus. The muon-generated quad-
rupole potential then reduces to

Vi =r(j |

r3

j) ©
u

(see Fig. 1). The quadrupole radial integral of Eq. (2) is
then simply given by

Wé‘{"f=<1'nr2nuz>(j' j> . )
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FIG. 6. The muonic M x-ray spectrum of '®*Dy. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
Q(37)=2.648221) eb.
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FIG. 7. The muonic M x-ray spectrum of '’Er. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
Q(37)=3.565(29) e b.

In this idealized situation, the nuclear quadrupole matrix
element (I'||[r*Y,||I) can be extracted from the
hyperfine-splitting energies in a manner that is entirely in-
dependent of the shape of the nuclear quadrupole charge
density.

However, muonic states that show large E2 hyperfine
splittings still have appreciable amplitudes inside the nu-
clear volume. Hence the point nucleus approximation of
Egs. (6) and (7) must be modified to include the effect of
the finite size of the charge distribution. We cast Eq. (2)
in a form similar to that of Eq. (7),

‘[llljdiill'I ] l”ll “ll
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FIG. 8. The muonic M x-ray spectrum of '"7Hf. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
Q(37)=3.365(29) e b.
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FIG. 9. The muonic M x-ray spectrum of "Hf. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
0(£7)=3.793(33) eb.

f pEA I VEL (r)rdr

I'j'Ij ' 2
Wer "= {TIrallD [ oE5rrtr

where the last factor includes the reduction of the interac-
tion strength due to the finite nuclear charge distribution.
If the true charge distribution pg,(r) is used, Eq. (8) be-
comes identical to Eq. (2). However, the true charge den-
sity pg,(r) is not known and must be approximated, e.g.,
by Egs. (3), (5a), and (5b), thus introducing a model error
in the value of (I'||r?Y,||I) deduced from the observed
splitting WE{.
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FIG. 10. The muonic M x-ray spectrum of °!Ir. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
0(31)=0.81609) e b.
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FIG. 11. The muonic M x-ray spectrum of *’Ir. The solid
curve represents the best-fit spectrum computed from theory.
The vertical lines show the calculated transition energies and in-
tensities. The deduced ground-state quadrupole moment is
0(3)=0.75109) e®.

The dominant influence on the extracted value of
(I'||F2Y,||I) is the radial position of the peak of p&a(r).
In order to examine this influence quantitatively, we com-
puted, for various muonic orbitals as a function of Z, the
relative change of the extracted (I’||r2Y,||I) caused by a
10% variation of the quadrupole charge radius Ry of Eq.
(5b). The results, shown in Fig. 2, indicate that for a 10%
uncertainty in Ry, the approximation involved in Eq. (8)
introduces a model error in {I'||r2Y,||I) of less than 1%
for a muon in a 2p orbit if Z <20, for a muon in a 3d or-
bit if Z <80, and for a muon in a 4f orbit if Z <100.
The model error is small if the radial dependence of
VE¥(r) is close to r2. This condition is satisfied for all
muonic orbits of low Z nuclei and for the outer orbits of
high Z nuclei.

It is thus clear that for nuclei in the rare-earth region,
quadrupole moments,

V16w

= Y1), 9
0r m(IIZOHI)(IHr Y,||I) ©)

can be determined precisely and nearly model indepen-
dently from analysis of the hyperfine splittings of muonic
4f—3d transitions (M x rays).

III. MEASUREMENTS AND ANALYSES OF
MUONIC X-RAY SPECTRA

A. Measurements

The muonic x-ray spectra of the stable isotopes '*!Eu,
1Ry, 19Tp, 18py, 67Er, 7HE, °HF, °'Ir, and ’Ir
were measured at the Los Alamos Meson Physics Facility
(LAMPF). The target arrangement, Ge(Li) spectrometer,
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TABLE 1. Isotopic compositions of targets.

Chemical Mass Isotopic
Target form (g) composition (%)
151 153
Bigy Eu,0; 9.67 96.83 3.17
133Ey Eu,0; 9.88 1.24 98.76
159
159Tb Tb,0; 17.38 99.99
162 163 164
183py Dy,0; 18.60 2.67 92.98 3.57
166 167 168
167Er Er,0; 17.90 2.93 91.54 5.14
176 177 178 179 180
1TTHf HfO, 3.97 1.20 86.49 7.47 1.71 3.11
19Hf HfO, 2.99 0.18 1.03 3.26 86.98 8.55
191 193
vy Ir 9.63 98.17 1.83
1931y Ir 9.95 0.55 99.45

and data-acquisition system have been described in detail
in previous papers.'®!! The y rays from 2*Na, ®Au, and
160 (Refs. 12 and 13) and the muonic x rays from 2°¢Pb
(Refs. 14 and 15) were recorded simultaneously with the
data for energy calibration. The energy calibration was
based on interpolation of the energies of the ¥ and x rays
of these sources. In separate runs the v rays from 24Na,
%Co, 119Ag, 13Cs, 1#2Ta, and '%0 were measured to deter-
mine the nonlinearity of the data-acquisition system.

The masses, chemical forms, and isotopic compositions
of the targets are listed in Table I. We also measured the
muonic x rays of the even-A isotopes Dy, 163Er, 7°Hf,
178Hf, and "®°Hf in order to correct for the isotopic impur-
ities in the odd-A targets.

B. Computation of spectra

The nuclear monopole and quadrupole charge densities
were constructed from a deformed Fermi charge distribu-
tion. The muonic-atom binding energies and eigenfunc-
tions were computed numerically for the various isotopes
with the computer program MUON2,'® which is based on a
program written by Rinker.!” The binding energies were
corrected, following Ref. 18, for vacuum-polarization ef-
fects, self-energy effects (Lamb shift), electron screening,
and relativistic recoil. The corrections also included the
effects of the quadrupole vacuum polarization.!’

With the muonic wave functions so obtained, the ma-
trix elements of the interaction Hamiltonian

H,=H(E2)+H(E4)+H(M1)

that describe the electric quadrupole, hexadecapole, and
magnetic dipole interactions with the relevant nuclear

states were computed. The effects of the muonic states
that were not included in the model space were taken into
account by nuclear polarization corrections. The nuclear
polarization energies are small for the muonic 3d and
higher states, and the errors of the deduced quadrupole
moments due to the uncertainties of these correction ener-
gies are negligibly small.

C. Analysis of spectra

The muonic x-ray spectra of odd-4 deformed nuclei are
complex and involve a number of unresolved low-intensity
(less than 1%) lines. For this reason, the experimental
spectra were directly fitted”® by theoretical spectra that
were constructed by convoluting a theoretical x-ray energy
and intensity pattern with the known Ge(Li) detector
response function. The detector response was represented
by a Gaussian-convoluted Lorentzian with exponential
tails. The Lorentzian widths were held fixed at values
computed from the natural line widths of the transitions.
The exponential tail parameters were determined by fit-
ting the L, M, and N x-ray spectra of 2%Pb. Cascade cal-
culations involved in the fitting procedure start from the
muonic 5g states with the statistical ratio of 8 to 10 for
the population of the 5g;,, and 5go,, orbits. For each
coupled 5g muon-nuclear state | Ij;F), we assumed a sta-
tistical population proportional to (2F +1).

Figures 3—11 show the muonic M x-ray spectra ob-
served in the present measurements. The solid curve in
each figure is the spectrum calculated by the direct
spectrum-fitting method described above.?’ The calculat-
ed transition energies and intensities are shown by vertical
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lines in each figure.

The raw spectra from those targets that contained sig-
nificant isotopic impurities were corrected by subtracting
appropriate fractions of the spectra of the impurity iso-
topes. Double escape L x-ray lines lie close to the M x-ray
lines for muonic atoms with 62 <Z < 65. However, these
lines are quite weak and can be neglected in the present
analysis. Noncircular transitions in this energy region
were investigated with the muonic-atom cascade program
of Akylas and Vogel,?! and it was found that the contribu-
tion of these lines was also negligible. The quality of the
fits, shown in Figs. 3—11, indicates the adequacy of our
theoretical representation of the experimental spectra. It
also appears that, except for *Eu, statistical population
of the 5g hyperfine levels is a good assumption.

D. Intensity anomaly of the
hyperfine components in >*Eu

In the '33Eu spectrum, Fig. 4, the observed intensities of
the 565- and 563-keV  peaks (which involve
| £%%3d3,;3*) and | £ % 3d;,5;2%), respectively, as
final states) are 10.0(3)% and 9.7(4)%, respectively, while
the calculation predicts 11.8% and 8.3%. Also, the ob-
served intensities of the 553-keV peak (which involves
| £%%3ds/5;3%) and | %+><3d5,2;4+) as final states)
and of the 549-keV peak (which involves the
| -§-+><3d5/2;F), F=07%, 1%, 2%, and 5% states) are
23.9(5)% and 36.2(10)%, while the calculation predicts
25.6% and 34.0%, respectively. The origin of these inten-
sity anomalies in !>3Eu is not clear.

The presence of impurity peak(s) of unknown origin
embedded in the '**Eu spectrum is unlikely to be respon-
sible for the anomaly, because the experimental ratio of
the strengths of the individually summed 3d;/, and 3ds,
fine structure peaks is quite consistent with the calcula-
tion. Inclusion of a simple quadratic term, i.e.,
(2F +1)+€(2F +1)%, in the statistical population of the
5g levels is not able to explain the data. An arbitrary non-
statistical population of the initial F states, adjusted to fit
the observed spectrum, resulted in a quadrupole moment
value different by only 0.014 eb. This uncertainty has
been added to the statistical error of our listed quadrupole
moment for 1*>Eu. It should perhaps be mentioned that if
the same anomaly were to exist in the spectrum of *!Eu,
it would add an additional uncertainty of 0.02 e b to the
?g?tistical error of our listed quadrupole moment for

Eu.

IV. QUADRUPOLE MOMENTS
AND THEIR UNCERTAINTIES

Table II lists the ground-state quadrupole moments
determined in the present experiment, together with the
values previously measured’ for 1*>!3’Gd. The quoted er-
rors in the deduced quadrupole moments include statisti-
cal errors, model errors, uncertainties in the effects of
low-lying excited nuclear states, and uncertainties of the
effects caused by the magnetic and hexadecapole moments
of the ground state. (The present analysis is different
from that of Ref. 7 for 1*>!>’Gd. For the gadolinium iso-
topes, the fitted peak energies were compared with the

TABLE II. Measured ground-state quadrupole moments of
deformed nuclei.

Present Electronic-atom

work experiment
Nucleus I™ Q; (eb) Q; (eb)
S oM 3t 0.903(10) 1.53(5
1S3y i 2.412(21) 3.92(12)
155Gd = 1.302) 1.59(16)°
51Gd 37 1.36(2) 1.34(7)°
159Th 3+ 1.432(8) 1.34(11)¢
19Dy - 2.648(21) 2.51(30)f
167Er 1+ 3.565(29) 2.827(12)
TTHE - 3.365(29) 4.5(5)"
I9Hf 3% 3.793(33) 5.1(5)
gy 3* 0.816(9) 0.81(21)'
1937 3+ 0.751(9) 0.73(19)!

*Reference 25. Not corrected for the Sternheimer effect.
YReference 7.

°P. J. Unsworth, J. Phys. B 2, 122 (1969). Not corrected for the
Sternheimer effect.

9H.-P. Clieves et al., Z. Phys. A 289, 361 (1979).

°W. J. Childs, Phys. Rev. A 2, 316 (1970).

fW. J. Childs, Phys. Rev. A 2, 1692 (1970).

¢K. F. Smith et al., Proc. Phys. Soc. London 86, 1249 (1965).
Not corrected for the Sternheimer effect.

hS. Buttgenbach et al., Z. Phys. 260, 157 (1973).

iS. Buttgenbach ez al., Z. Phys. A 286, 333 (1978).

theoretically predicted transition energies, whereas in the
present work the entire hyperfine spectrum was fitted
directly to the computed spectrum, as discussed earlier.
The direct spectrum-fitting method employed here
reduces the statistical error from 0.9% to 0.3% for experi-
mental data of comparable quality.)

The model error involved in the present M x-ray results
was estimated from the effect of a 10% radial displace-
ment of the quadrupole charge radius Ry of Eq. (5b) with
respect to the monopole charge radius, as discussed in Sec.
II. The basis of this estimate can be checked by compar-
ing the quadrupole moments deduced from the muonic M
x-ray analysis with the quadrupole moments deduced
from an analysis of the muonic K and L x rays. In order
to extract consistent quadrupole moments from the K and
L x-ray analysis, the quadrupole charge radii Ry had to be
reduced by only a few percent from the best fit monopole
charge radii (except in !Eu, where a reduction of almost
10% was necessary). Thus, the model error estimated by
the 10% radius change is believed to be generally conser-
vative.

The first and the second excited states of the ground-
state rotational band were included in the present analysis.
However, the quadrupole moments of these excited states
and the B(E2) values between these states and the ground
state are not well known for the odd-4 nuclei considered
here. Hence the E2 matrix elements were fixed at the ro-
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tational model values calculated (by iteration) from the
ground-state quadrupole moments obtained in the present
experiment, and an uncertainty of 10% has been assigned
to the values of these reduced E2 matrix elements. The
unknown magnetization distribution in the ground state
adds another uncertainty to the deduced quadrupole mo-
ment. An error of 10% was assumed for the magnetic hy-
perfine energy in the muonic 3d states. For nuclei with
ground-state spins larger than -;—, a possible hexadecapole
moment of the ground state adds an additional uncertain-
ty to the deduced quadrupole moment. A hexadecapole
moment corresponding to a static deformation of
B4=0.010.1 was assumed in the calculation. The effects
of all these uncertainties are summarized in Table III.
The total errors of Q; are less than 1% for most of the
nuclei.

In most cases the present data disagree seriously with
the electronic-atom results (see Table II). Such disagree-
ment is perhaps not surprising in view of the difficulty of
calculating the electrostatic gradient produced at the nu-
cleus in a multielectron environment, a quantity which is
needed to interpret the electronic-atom data. The ex-
istence of a nuclear quadrupole moment causes a non-
spherical distribution of the core electrons (the Sternhei-
mer effect),?2* which in turn affects the valence electron-
ic wave functions. The calculational difficulties are espe-
cially pronounced for rare-earth atoms, where the valence
electronic wave functions involve a considerable amount
of configuration mixing.

In a separate publication® we have made a detailed com-
parison of the present quadrupole-moment values with
electronic-atom results. This comparison provides experi-
mental values of the Sternheimer factors for the 4f, 5d,
and 6p electronic states of the rare-earth atoms considered
here. The experimental Sternheimer factors are found to

vary considerably for different elements and generally are
not in agreement with theoretical calculations of the
Sternheimer effect. Clearly the theory of the Sternheimer
effect needs to be refined before electronic-atom hyperfine
experiments can independently give reliable values of nu-
clear quadrupole moments.

On the other hand, if the appropriate muonic-atom data
are available for empirical calibration of the electric field
gradient at the nucleus, the electronic-atom measurements
can furnish absolute measurements of the quadrupole mo-
ments of a wide range of isotopes of the same Z, including
very rare or radioactive isotopes.

V. DEFORMATION SYSTEMATICS
FOR RARE-EARTH NUCLEI

We have used the present quadrupole moments and
those previously determined by the same method,>~” to-
gether with published B(E2) values from Coulomb exci-
tation experiments on even-4 nuclei (Table II of Ref. 24),
to investigate the systematics of the quadrupole deforma-
tion in rare-earth nuclei. The deformation parameters 3,
were calculated by using the rotational model relationship:

V57 (I+1)2I +3)

B ==
27 3ZR2 3K2_I(I +1)

QI > (10)

with Ro=1.254'"% fm. Figure 12 shows the systematics
of the nuclear deformation parameters 3, for these nuclei.

We first notice the large change of deformation between
51Ey and '®Eu. For this pair of nuclei the change of de-
formation is larger by more than 50% than for any other
pair of nuclei in this region. This observation is consistent
with the fact that the largest known isotope shift,
A{r?)=0.577(25) fm%% is observed between the same

TABLE III. Uncertainties involved in the deduced ground-state quadrupole moments.

Statistical Model® Dynamic® Total

error error E2 hfs M1 hfs® E4 hfs¢ error

Nucleus (eb) (eb) (eb) (eb) (eb) (e b)
BiEy 0.009 0.004 0.002 0.002 0.002 0.010
I53Eu 0.017 0.009 0.007 0.001 0.004 0.021
19Tb 0.005 0.006 0.001 0.000 0.008
163py 0.010 0.013 0.012 0.001 0.004 0.021
167Ey 0.011 0.019 0.019 0.000 0.000 0.029
1TTHf 0.009 0.023 0.015 0.000 0.005 0.029
1Hf 0.011 0.026 0.013 0.000 0.011 0.033
91 0.005 0.007 0.002 0.000 0.009
1931p 0.005 0.007 0.002 0.000 0.009

aModel error caused by a 10% change of the quadrupole charge radius Rg of the transition charge den-

sity pga(r) (see Fig. 2).
®An uncertainty of 10% was assigned to the reduced E2 matrix elements between the low-lying nuclear

states.

°An uncertainty of 10% was assigned to the magnetic hyperfine energy of the muonic 3d states.
9An uncertainty due to the hexadecapole moment corresponding to a static deformation 5;,=0.0£0.1.
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FIG. 12. Systematics of nuclear deformation 3, for the rare-
earth nuclear region. Data are taken from this work, Refs. 2—7,
and Table II of Ref. 24.

pair of nuclei. It is well known that in this region the
89th and 90th neutrons trigger a rather sudden nuclear de-
formation. In addition, the 63rd proton also seems to
have an important role in the change of the nuclear shape,
since the deformation difference between !—!3Eu is
much larger than those of *°~!52Sm and 2~ !5%Gd, and
since '*Eu (Z=63, N=90) exhibits the largest deforma-
tion among the N=90 isotones.

Except for the nuclei discussed above (which occur at
the onset of deformation), the deformation parameters of
the odd-4 nuclei are entirely consistent in comparison to
their adjacent even-4 neighbors. In contrast to the results
of previous experiments (Fig. 13), both even-4 and odd-4
nuclei in the mass region 4=150—190 are now seen to ex-
hibit a very smooth variation of deformation with mass
number. In view of the fact that the nuclear deformation
is a collective phenomenon,?®?” it is not surprising that
the odd-A valence nucleon plays only a minor role in nu-
clear deformation.

It has been suggeste that the odd-even staggering
of root-mean-square nuclear charge radii’>*! may be attri-
buted to a staggering in nuclear deformation between odd
and even isotopes. This hypothesis is fairly well support-
ed in the case of gadolinium nuclei,*? where the change of
nuclear deformation between neighboring isotopes is pro-
portional (though with a large uncertainty) to the odd-
even staggering of the isotope shifts between these nuclei.
However, the odd-even staggering observed in the hafni-
um nuclei*"* is not well explained simply by the change
of nuclear deformation.

Because of the difficulty of incorporating an unpaired
particle into the theory, odd-4 nuclei have not been the
subject of Hartree-Fock calculations. Nevertheless, we
hope that the availability of precise quadrupole moment
values for odd-4 nuclei, as presented in this work, will en-
courage further theoretical work in this field.

d28,29

VI. SUMMARY

The ground-state quadrupole moments of *'Eu, **Eu,
1597Tp, 193py, 167Ey, 177HS, 1°Hf, °!Ir, and °*Ir have been
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FIG. 13. Systematics of nuclear deformation B, for the rare-
earth nuclear region based on the latest electronic-atom data as
given in the 4th column of Table II. The other data are taken
from Refs. 2—7 and Table II of Ref. 24.

determined with an error of about 1% by measuring the
quadrupole hyperfine-splitting energies of muonic 4f—3d
transitions. The model error due to the finite size of the
nuclear charge distribution was estimated to be less than
0.4% for nuclei with 4~150 and less than 0.9% for nu-
clei with 4~190.

Comparison® of the present quadrupole-moment values
with electronic-atom results has shown that the theoretical
Sternheimer correction factors used in rare-earth
electronic-atom analysis are unreliable. However, the
present values of nuclear quadrupole moments provide
empirical calibration points for electronic-atom experi-
ments, which in turn can yield accurate values for quadru-
pole moments of a wide range of isotopes of the same ele-
ment.

Systematics of the deformation parameter 3, calculated
from the present quadrupole moments for odd-4 nuclei
and from B(E2) values of Coulomb excitation measure-
ments for even-4 nuclei indicate that the largest deforma-
tion change so far known is found between *!Eu and
39Eu. Except for '*'!3Eu, the deformation parameters
of the other odd-4 nuclei show a very smooth variation of
deformations with respect to the adjacent even-A nuclei.

It has been suggested that the odd-even staggering of
isotope shifts is due to a staggering of nuclear deforma-
tion between odd and even isotopes. However, the present
quadrupole-moment values indicate, though with a large
uncertainty, that the odd-even staggering phenomenon is
not satisfactorily explained by the deformation effect
alone.
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