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Electromagnetically induced nuclear beta decay in electric-field gauge
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The theory of the electromagnetic enhancement of nuclear beta decay, previously carried out in

Coulomb gauge, is reformulated in electric-field gauge. Final results for the transition probability
are identical in the two gauges, but significant differences appear in the two formulations. Whereas
field interactions in Coulomb gauge arise from an intimate mixing of nuclear and decay-electron
contributions, the entire effect is associated with the beta particle in electric-field gauge. This has
the advantage that it is not necessary to assign field-interacting nuclear wave functions in electric-
field gauge. The results are a demonstration that physical interpretations can be gauge dependent,
even though measurable predictions are gauge invariant.

I. INTRODUCTION

P= —r.E(t, r),
A= —(k/co)[r E(t, r)], (2)

where the electric field vector E is a function of cot —k r,
k is the propagation vector for the field of circular fre-
quency co (i.e.,

~
k

~
=co), and c is taken to be unity here

(as is also A' in subsequent work). When the vector poten-
tial is neglected and E is taken to be a function of time
only [i.e., E(t, r)~E(t)j, then Eqs. (1) and (2) reduce to
the familiar E r gauge. As written, Eqs. (1) and (2) are
complete Lorentz potentials which define monochromatic
plane-wave electric and magnetic fields without approxi-
mations.

When electromagnetically induced beta decay is ex-
pressed in EF gauge, it is shown that field interaction

The theory of electromagnetically enhanced nuclear
beta decay was given in Refs. 1 and 2 (hereafter referred
to as I and II). When forbidden decays are treated, the ef-
fects of the applied plane-wave field can be substantial as
a result of field-induced angular momentum and/or parity
contributions which serve to overcome forbiddenness in
the decay. As shown in II, these forbiddenness-removing
terms arise from terms transverse in the applied field as
well as longitudinal in the applied field. All work in I and
II is done entirely in Coulomb gauge. The transverse ef-
fects are associated with an intimate mixture of nuclear
and beta particle interactions with the applied field,
whereas the longitudinal effects come entirely from the
interaction of the beta particle with the field.

In this paper, the formalism for electromagnetically
enhanced beta decay will be recast in electric fiel-d (EF)
gauge terms. EF gauge is defined to be the logical com-

pletion of Goppert-Mayer or "E r" gauge when there is
no recourse to long-wavelength approximation nor neglect
of magnetic field effects. Explicitly, the scalar and vector
potentials for a monochromatic plane-wave field in EF
gauge are

with the nucleus can be neglected. The dominant field
contributions all come from field interaction with the beta
particle. The algebraic expression for the transition am-
plitude, however, is identical to the expression found in I
in Coulomb gauge. Predicted transition probabilities are
then precisely the same in the two gauges. This was
remarked upon in II.

An important feature of the identity of the results in
EF and Coulomb gauges is that the momentum-
translation approximation (MTA) employed in Coulomb
gauge no longer appears in EF gauge. One can say that
the approximation inherent in the MTA in Coulomb
gauge is replaced in EF gauge by the approximation of
neglecting altogether the interaction of the field with the
nucleus. A related feature of the comparison between EF
and Coulomb gauges is the significant difference in physi-
cal interpretation appropriate in the two gauges. Nuclear
interaction with the field plays a significant role in
Coulomb gauge, but none at all in EF gauge. There is
precedent for this striking change in physical interpreta-
tion with gauge in other areas in physics. For example,
Bjorken and Drell show that the Compton scattering of a
scalar particle can be computed in a gauge in which the
entire effect appears to be due to the "seagull" diagram,
i.e., to a process confined exclusively to the quadratic
e A term in the interaction Hamiltonian. Another ex-
ample is given by Friar and Fallieros. They show that,
although the atomic magnetic susceptibility is a physically
measurable and gauge invariant quantity, the decomposi-
tion of total susceptibility into diamagnetic and paramag-
netic components is gauge dependent.

The EF-gauge interacting lepton wave functions are
given in Sec. II below. Interacting nuclear wave functions
are examined in Sec. III. This involves an inspection of
the order of magnitude of each of the interaction terms in
the equation of motion. It is found that the EF-gauge in-
teraction terms can be neglected. The transition ampli-
tude for field-enhanced beta decay in EF gauge is stated
in Sec. IV, where it is found to be identical to the
Coulomb gauge result. A physical interpretation of the
results is discussed in Sec. V.
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II. INTERACTING LEPTON WAVE FUNCTIONS

The beta decay electron is described by a wave function
for a free, charged particle in the presence of a plane-wave
electromagnetic field. Coulomb corrections are neglected.
The appropriate wave function is the so-called Volkov
solution. ' The result in Coulomb gauge for an electron
in a monochromatic, linearly polarized field is given in
Eq. (17) of I.

The Volkov solution is normally stated in Coulomb

gauge. One application where it is used in E r gauge is in
a paper by Keldysh, where the Volkov solution is used in
a long-wavelength, nonrelativistic version. The result em-
ployed in the Keldysh paper follows simply by applying
the gauge-transformation factor exp[ie r.A(t)], where e is
a positive number (that is, the charge of the electron is
—e), and A(t) is the Coulomb-gauge vector potential in
the long-wavelength approximation. A simple generaliza-
tion of the same technique will be applied here. The Vol-
kov solution given in Eq. (17) of I is simply multiplied by
the gauge transformation factor

exp[ ie r.A(t, r )],

which carries wave functions from Coulomb gauge to EF
gauge. In Eq. (3), A(t, r) is the full space- and time-
dependent Coulomb-gauge vector potential for the plane-
wave field.

The neutrino wave function does not reflect any in-
teraction with the applied field. The function given in
Eq. (13) of I remains appropriate. Change in gauge of the
overall lepton part of the four-fermion interaction of beta
decay is accomplished with Eq. (3) above.

III. INTERACTING NUCLEAR WAVE FUNCTIONS

The essential angular momentum properties of the nu-
cleus are in terms of internal, i.e., relative coordinates.
The nucleus is therefore separated into interacting ("frag-
ment") and noninteracting ("core") parts, and the state of
the system is expressed in center-of-mass (c.m. ) and rela-
tive coordinates. It is appropriate to treat the nuclear
wave functions as nonrelativistic, and to employ a long-
wavelength approximation for the applied field. The
two-body nonrelativistic Schrodinger equation in the pres-
ence of a long-wavelength plane-wave electromagnetic
field expressed in EF gauge is

ig, @(t,r, R)=I e,E —R eE —r+(1/2m, )[ i V~—+e, (k/co)E R+e.(k/co)E 2]

+(1/2m, )[ i 7'„+e(k/co—)E.R+e, (k/co)E. r] + V(r)I%'(t, r,R), (4)

where r and R are relative and c.m. coordinates, respec-
tively, defined by

R=(m]r]+mprp)/mg, r=r$ —rp,

with the subscript 1 referring to fragment quantities and
the subscript 2 referring to core quantities. The masses
and charges appearing in Eqs. (4) and (5) are defined by'

~

r
~

=O(RD) .

e,ER, (10a)

The magnitude of the c.m. coordinate R will be estimated
after a few other preliminaries.

Six interaction terms in Eq. (4) will be examined. They
are

m, =mi+m2, m, =m &m2/mt,

eg ——e]+ep, e =(e [my —epm ) )/m, ,
2 2 2e, =(e~m &+edam & )/m, .

(6)

e E.r,
--k PzeER—-

t
co 2m,

(lob)

(10c)

As a preliminary to assessing the orders of magnitude
of the various interaction terms that appear in Eq. (4), the
magnitudes of the quantities in Eqs. (5) and (6) will be es-
timated. In Eq. (6), the total mass m, and reduced mass
m, are simply

k pw

2

k PF

co 2mr

(10d)

(10e)

m, =AM, m, =0 (M), (7)

where M is a nucleon mass, and A is the nuclear mass
number. The total charge e„reduced charge e, and effec-
tive charge e, are

e, =Ze, e=O(e), e, =O(e),
where e is the proton charge and Z is the proton number
of the nucleus. The relative coordinate r in Eq. (5) is con-
fined by the nuclear binding forces to be of the order of
the nuclear radius E.0, and so

k Pr
e E r —.

co 2mr

The p~ and p, quantities in Eqs. (10c)—(10f) are the
operators ( —i%'~) and ( —i%'„), respectively. Equation
(4) also contains quadratic interaction terms in addition to
the linear terms in Eq. (10), but these quadratic contribu-
tions can be neglected from the outset.

The magnitude of the electric field will be expressed in
terms of the intensity parameter
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e2(E2)
2 Z

~
E

~
=O{zf neo/e)

&O(10 mco/e) . (12)

To estimate the magnitude of the c.m. coordinate R, it
is presumed that the c.m. of the nucleus moves freely
under the influence of the applied field, and that the
relevant magnitude of R is given by the change in R
which occurs in the course of a "beta decay time. " This
time is given by 1/m from the Heisenberg uncertainty re-
lation htbE=1, with b,z=m. The amplitude of motion
of a charged system (the nucleus) under the influence of
an applied plane-wave field is' "

(
coR ~,„=(2zA )'~ (13}

2where the aiigular bracket on E refers to R tlIIic Rvci'Rgc

over a wave period. The mass m in the denominator of
Eq. (11) is an electron mass. Although it was concluded
in II that values of z/ up to 10 were of interest, the esti-
mRtCS Q18dC hCrC %111 COQSldCI' Zf VRlUCS RS lRI'gC RS 10 .
In other words, wherever E appears, it will be replaced in
mRgmtUdC bg

cleon bound to the rest of the nucleus by a few MeV, in a
potential well of depth 50 MCV or so. This gives

1/2
Pr
2M

I p. l

277l r (2~)'"
1/2

50 MeV
(1

2&10 MCV
(17)

All of the above estimates can be brought together to
assess the interaction terms in Eq. (10). From Eqs. (8),
(12), and (15), the magnitude of Eq. (10a) as compared to
a typical beta-decay transition e~~rgy (AE =m) is

ieER[ 0 (Ze) 10
e

&O(co/m) . (18a)

The corresponding result for Eq. (10b) is, from Eqs. (8),
(12), and (9),

r

(
eE r

( 1
O 102IIIco

PB Pl e

where z~ is the nuclear equivalent of the electron intensi-
ty parameter zf stated in Eq. (11). The only difference is
1Il thC SqQRI'Cd HlRSS, RIld SO

1 2

&O(co/m) . (18b)

zf =3~10-"zf, (14a)

where A is the nuclear mass number, and M/m is the
PrOtOQ-tO-ClCCtI'OI1 mRSS I'RtlO. ThC ImIQCfj. CRl CStlmRtC m
Eq. (14a) follows from taking A =10 for a medium
weight nucleus. VA'th zf & 10 as assumed above, then

(14b)

1 --k Ps
'fn QP 2' g

(18c)

typical of medium-weight nuclei, has been used. To judge
the interaction term in Eq. (10c), the results in Eqs. (18a)
and (16) can be combined to give

The change in R in the fraction of the period of motion
2Ir/co occupied by the beta decay time 1/m is thus

C

/
r0R

/
=0

f
coR

f277/co

which involves the arbitrary restriction zf &10. In like
fashion, Eqs. (18b) and (16) lead to the same result

(18d)

The combination of Eqs. (8), (12), (15), and (17) in Eq.
{10e)yields

The c.m. momentum factors that appear in Eq. {10)can
be estimated from the same solutions for free-body
motion in a plane-wave field that were used to estimate R.
In fact, the result for the maximum

~ pII ~
is given by the

same expression as found in Eq. (13), i.e.,

i pg i /m, &(2z~)'F2=10 zf &10

where the numerical factors in Eq. (16) arise from Eqs.
(14a}and (14b).

To cstlnlatc R value fol' p„, oilc can assume R slllglc Illl-

&0 10-'-
m

Finally, Eq. (10f) becomes

j. k Pr QP—— e,E r —. &0 jo-- mEo
nfl QP 2mr Pl

Important conclusions can be drawn from Eqs.
(18a)—(18f). Although the numerical coefficients in these
results are only rough estimates, the essential fact is that
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all six interaction terms are proportional to co/m. As en-

visioned in I and II, applied fields are best chosen to be of
frequencies less than visible, and so co/m is an extremely
small number. Therefore, it is appropriate to neglect all

field interaction with the nucleus in EF gauge.
The same conclusions do not hold in Coulomb gauge.

Unlike EF gauge, field interaction with the nucleus is im-

portant in Coulomb gauge. Were there only an elec-
tromagnetic field interaction in the problem, or if the field
represented a gamma ray, then the ratio co/I would be of
order unity, and many of the interaction terms in Eq. (18)
would be very important. The major distinction between
EF and Coulomb gauges, as far as the nuclear wave func-
tions are concerned, arises only because essentially all of
the interaction energy is in the weak interaction, not in
the electromagnetic field interaction. If the interaction
were purely electromagnetic, then gauge equivalence
would demand like results in both gauges.

IV. TRANSITION AMPLITUDE IN EF GAUGE

An S matrix was derived in I which describes the beta
decay undergone by a nucleus in the presence of an elec-
tromagnetic field. The asymptotic states include the full
effects of the field, and the weak interaction is treated as a
first-order perturbation. This formalism, in its general ex-
pression, is entirely independent of gauge. The S matrix
1S

Sf;—— i, —d x[+fy„(1—ay )q(;]

X [ill (e)~y( 1 ~5)@(~)] (19)

where 6 is the weak-interaction coupling constant, the y"
and y are Dirac matrices employed with the conventions
of, e.g., Bjorken and Drell, ' a is the ratio of axial-vector
to vector coupling strength, (Ilf and 4; are final and ini-
tial nuclear wave functions in the presence of the field,
and (I(" and )I(( ' are electron and neutrino wave functions
in the presence of the field.

In EF gauge, as concluded above, 0'f and 4; are simply
the ordinary nuclear wave functions with no field present.
In Coulomb gauge, the product 'Pf%';, which appears in
Eq. (19), consists of the ordinary nuclear wave functions
and the further factor

exp[ —ie r A(t, r)]. (21)

as compared to Coulomb gauge. Therefore, the transition
amplitude expressions in the two gauges are identical
apart from the difference between Eqs. (20) and (21).
However, as shown in Eq. (49) of I,

exp[ —i (ef —e; ) r A(t, r ) ] .

In I in Coulomb gauge, the lepton wave functions are
specified by the Dirac Volkov wave function for the elec-
tron, and a free particle solution for the antineutrino. In
EF gauge, the only difference in the lepton functions is
the extra factor contributed by Eq. (3), which means that
the O' ""0' ' combination has the extra factor in EF gauge

core
ef —e; =e

A
=e, (22)

where A is the total mass number and A„„refers to the
number of nucleons in the core alone. The substitution

ef —e;~e was made in I from Eq. (49) on. This means
that the field-enhanced beta decay calculated in Coulomb
gauge in I and II is identical to the result as calculated in
EF gauge.

V. PHYSICAL INTERPRETATION

There is nothing surprising in the fact that a calculation
of electromagnetic-field-enhanced transition probabilities
in nuclear beta decay gives the same results in Coulomb
gauge and in EF gauge. It is reassuring that gauge invari-
ance is confirmed for the physically observable transition
probability. There are several qualitative differences in
the two calculations, however, which are worthy of note.
These differences are the following: the very different
roles of the nuclear interaction with the field in the two

gauges, the consequent ability to avoid the MTA in EF
gauge, and the significant difference in apparent physical
mechanisms that occur in the two gauges.

In Coulomb gauge, a significant portion of the trans-
verse component of the transition amplitude arises from
field interaction with the nucleus. In EF gauge, field in-

teraction with the nucleus can be neglected altogether. It
is important to note that interaction with the electromag-
netic field is only one component of the two-interaction
field-enhanced beta decay transition. The other part —the
weak interaction —is the part which carries with it the
overwhelming proportion of the total transition energy
when low-frequency applied fields are considered. As has
been pointed out by Grynberg and Giacobino' in a dif-
ferent context, comparisons of gauges in multi-interaction
processes can be very misleading unless all of the interac-
tions are considered.

Because the effect of the applied field on the nuclear
wave functions can be entirely neglected in EF gauge
when the field frequency is low (co/m «1), there is no
need to stipulate a field-interacting nuclear wave function
in EF gauge. This circumvents altogether the MTA that
was employed in Coulomb gauge. Although the MTA is
very simple to apply, it is nevertheless advantageous to
avoid entirely any need to specify an approximate field-
interacting nuclear wave function. The approximation of
completely ignoring field-nucleus interaction in EF gauge
is tantamount to the approximation involved in the MTA
in Coulomb gauge. However, it is clearly more straight-
forward to use EF gauge in this problem.

The notion of what physical mechanisms are at work in
field-enhanced beta decay differs in EF gauge from what
it is in Coulomb gauge. With particular reference to
enhancement of forbidden beta decays, the necessary addi-
tional angular momentum and/or parity from the field
arises entirely from interaction with the decay electron in
EF gauge. In Coulomb gauge, the additional angular
momentum and/or change in parity can arise from field
interactions with all charged systems that appear —the nu-
clear fragment as well as the beta particle. There is a cer-
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tain resemblance between this gauge disparity in physical
1nterpretatlon Rnd that which occu1s 1n Compton scatteI'-
ing of a charged pion. Normally, the Compton scatter-
ing process arises (in a Feynman diagram sense) from the
single-vertex A.p interaction. This is certainly true in the
Compton scattering of a charged fermion, and it is largely
true for charged bosons as well. However, there is a
gauge in which the entire transition probability for pion
Compton scattering comes from the double-vertex or
"seagull" diagram which is associated with the A A term.
Clearly, caution is needed in ascribing physical signifi-
cance to A p vis-a-vis 3 interactions. Perhaps even
more striking is the example of atomic magnetic suscepti-
bility. For the case of a single spinless particle in a

spherically symmetric binding potential in interaction
with a uniform static magnetic field, the decomposition of
magnetic susceptibility into diamagnetic and paramagnet-
ic components is strongly gauge dependent. For the ex-
ample cited, there exists one gauge in which the suscepti-
bility is wholly diamagnetic„with zero paramagnetic com-
ponent. Yet there is another gauge in which the diamag-
netic component is twice as large as tile total susceptjbjlj-
ty, with half of that contribution cancelled by a paramag-
Iletlc portion eqllal 111 IIlagllltude to the total susceptibjh-
ty. This radical change in physical" interpretation in
different gauges emphasizes the danger of ascribing a
physical meaning to any quant1ty which 1s not measur-
able.
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