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We investigate the spectrum of antinucleon-nucleon resonances, using an optical potential we de-
rived recently. An effective method to compute the S-matrix poles is presented. The corresponding
phase shifts do not behave as ordinary resonances in the Argand diagram. We show, however, that
the poles can be located by extrapolating the phase shifts with the aid of polynomial fits. The an-
nihilation part of our potential is state and energy dependent and of short range. It yields a richer
spectrum than that given by a longer ranged annihilation model.

I. INTRODUCTION

The existence of an exotic class of mesons with a strong
coupling to the NN system has been discussed during the
last few years. A number of candidates have been pro-
posed by experimentalists. They are not, however, con-
firmed by more recent experiments.! Progress and clarifi-
cation are expected, very soon, from the low energy an-
tiproton ring (LEAR) facility.?

The description of these mesons in terms of quarks
with a possible 2¢27 structure has been considered by
various authors.® They can also be viewed as bound states
or resonances produced by an optical potential. This pic-
ture is called the quasinuclear model.* We do not know
how to reconcile these different approaches, but it seems
plausible that those states which lie in the vicinity of the
NN threshold will contain a large NN admixture in their
wave functions. The situation is reminiscent of that of
the scalar 0 mesons S(980), 8(980), and €(1300). Re-
cent studies tend to indicate that they are actually closer
to resonant combinations of two mesons than to ¢ or
2927 bags.’ In any event, it appears quite important to
have definite predictions from the quasinuclear model.

The quasinuclear model is based on the fact that the
real part of the NN optical potential due to meson ex-
changes is much more attractive than the corresponding
NN potential, giving rise to a rich spectrum of discrete
states. The imaginary part of the potential, due to annihi-
lation, gives widths to these states. Predictions on the
widths vary with the assumed potential. For instance, the
Argand diagrams for the Bryan-Phillips potential do not
show any resonance effect in the usual sense.® Later
work, on the contrary, indicates that the NN S matrix
could possess poles close to the real axis.”8

Recently, we constructed a NN optical potential, the
long and medium range parts of which are the G-parity
transform of the Paris NN potential. The annihilation
part is energy and state dependent, and of short range as
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suggested qualitatively by a calculation of simple annihi-
lation box diagrams. This potential,” which will be re-
ferred to, hereafter, as the Paris NN potential, yields a
very good fit to the existing low energy pp scattering data.
The main purpose of the present work is to study the
spectrum of resonances predicted by this model.

We proceed as follows. In Sec. II, we describe the pro-
cedure to search for the S-matrix poles. We first derive a
direct method to calculate the complex zeros of the Jost
function. Then, we show that these results can be
recovered by using suitable polynomial approximations of
the inverse S matrix over the physical domain. This pro-
vides a link between the scattering data and the poles. In
Sec. III, we apply these methods to the Paris NN potential
and, in order to get some insight into the dependence on
the model, especially the properties of the annihilation
part, to the Dover-Richard potential.'® The latter has a
local and central annihilation part of somewhat longer
range. The spectrum from the Paris potential displays
more resonant structure than the latter. Relevant formu-
lae to calculate the Jost function are collected in the Ap-
pendix.

II. SEARCH PROCEDURE FOR
THE S-MATRIX POLES

A. Direct method: Zeros of the Jost function
in the complex momentum plane

Let us recall that, in potential scattering, for a particu-
lar partial wave, the S matrix can be written in terms of
the Jost function as!!

_ F(=k)
S(k)—————F(k) , 2.1)
with
T,
k?=Em = '"ZL : 2.2)
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m is the nucleon mass, E is the c.m. relative energy, and
T, is the laboratory kinetic energy.

If the potential consists of a superposition of Yukawa
terms, as here, then F(k) is analytic in the complex k
plane with a cut along the imaginary axis. This cut, for
NN or NN scattering, corresponds to — oo <Imk
<—(m,/2), where m, is the pion mass (m,
~0.7 fm~!). Resonances correspond to the zeros of F (k)
in the domain Imk <0, Rek >0. The usual way to com-
pute F(k) is to form the Wronskian of the regular solu-
tion of the Schrodinger equation with the outgoing free
solution at large enough r. It turns out, unfortunately,
that the limit »— o does not exist if Imk < —(m,/2).
The reason for this appears in a transparent way from the
equivalent integral formula (A5). In order to explore the
domain Imk < —(m,/2), one has to perform an analytic
continuation, the effect of which is discussed in the next
section.

B. Zeros of S~ extrapolated
to the complex momentum plane

In the vicinity of a pole, located at k(, Eq. (2.1) can be
written as

_F(=k) F(—k)
St = F(k)  alk—Reky—ilmk,) ’ @3
with
_ | dF (k)
dk  |k=k,

This corresponds to a linear approximation to S ~!(k) for
k around k, leading to the Breit-Wigner formula. Fits
by higher order polynomials provide better approxima-
tions. The roots of these polynomials can then be ob-
tained by standard numerical techniques. The extrapola-
tion to complex values of k could be limited by the pres-
ence of poles of S !, which are unknown. However, this
does not seem to occur with the resonances we consider.
In order to approximate S !, we choose the Lagrange
interpolating polynomial of degree N over a set of N +1
Chebychev mesh points, taken from the real domain
(Reky+Imky,Reky—Imkgy). This choice of interpolating
points can be shown to provide a nearly optimal approxi-
mation.!> It is then very important to vary N, since
knowing only one polynomial, even if it is a good approxi-
mation, does not tell us which of its N roots to pick.
Varying N, say from 1 to 10, we find that the physically
interesting roots are those which converge towards fixed
values. For instance, in Ref. 8, the procedure adopted is
equivalent to a third degree polynomial approximation.
There it is concluded that there are three nearby poles.
We think that only one of these is physically significant.

III. RESULTS

We now apply these methods to the Paris NN potential.
We need to use this potential outside of the physical
scattering domain. In searching for resonances, one has
to continue to the second sheet in the energy plane. This
is quite safe as long as we do not stray too far from the

real axis. The situation is different for the bound states.
They lie rather far from the scattering region, where the
parameters of the potential are adjusted. Moreover, their
energies are sensitive to the energy dependence of the
imaginary part of the potential. Thus, predictions con-
cerning bound states might not be reliable, and in this
work, we consider only resonances. Since only relatively
narrow resonances could give rise to observable effects, we
restrict ourselves to the complex momentum domain:
—m, <Imk <0.

Let us first illustrate the effect of the analytic continua-
tion needed for the calculation of the Jost function. In
Fig. 1, we plot the coordinates of the pole position for the
33D, partial wave in the complex energy plane, as a func-
tion of R, the maximum radius in the integration of the
Schrédinger equation. Without analytic continuation, the
pole position oscillates and does not converge to any de-
finite value as R increases.

We now consider the case where the imaginary part of
the potential is set to zero. Many resonances are found;
their complex energies are listed in Table I. Very narrow
states, with low as well as high spin, appear. For instance,
the widths of the *P, and 3G, states are 2.4 and 3.2
MeV, respectively. The picture with the complete poten-
tial is quite different. These states become wider, many of
them now have Imk < —m,. The complex energies and
momenta of the poles are also displayed in Table I. With
J <4, six states remain, and their width increases with J.
The first state, with J=0, has I’'=11 MeV, and the last
one, with J =4, has ' =346 MeV. Most of these widths
are comparable to those of ordinary mesons.

When Im Vg =0, a pole corresponds to a resonance in
the usual sense. That is, it represents a metastable state
with a lifetime 7=1/I". If we increase Im Vg from zero
to its final value, it is easy to follow the displacement of
the pole in the complex plane. Since it is the same pole
which moves to larger T, it still seems natural to interpret
it as a resonance, with a shorter lifetime than before.

In order to illustrate the dependence of the NN spec-
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FIG. 1. Behavior of the zero of the Jost function of the ¥*D,
partial wave as a function of R, the distance to which we in-
tegrate the Schrodinger equation. The solid and dashed curves
are the results with, and without analytic continuation, respec-
tively.
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TABLE II. Positions of the S-matrix poles obtained with the real part of the Dover-Richard poten-
tial. Using the complete potential, only one state survives, Bp,, with ReE=—19 MeV and
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|ImE | =T'/2=5.1 MeV.

21+128+1LJ 13P0 33P0 lZ«XP1 ISDZ III;v3 33F3 13(F_H)4 33(F__H)4
ReE oo —45 66 125 19 288 304 258 254
rn2 Yo 43 96 0.1 70 143 117 52

are listed in Table II. They are less numerous, and in gen-
eral, wider than those shown in the first line of Table I.
This is due to a very attractive core which favors bound
states over resonances. It is interesting to note that here, a
13p, state lies very close to threshold. It is the only state
which survives with the complete potential. Its complex
energy is E=—1.9—i5.1 MeV, a value close to the Paris
potential result, E=—0.2—i5.3 MeV. The other states
have on the average Imkg~ —2m,,.

Let us now consider the behavior of the phase shift in
the vicinity of a pole. In Figs. 2 and 3, we have drawn the
Argand diagrams of the 1*P; and the 3G, states of Table
1. They have the smallest Imk, and therefore have the
largest chance to influence the scattering. Neither of
them shows a loop. Indeed, from Eq. (2.3)

Imk()
k '—Reko )
(3.1)

ArgS(k)=26=—Arga+ArgF(—k)+tan™!

Without annihilation, one has

F(—k)=F*(k) (3.2)
and

mko

—_ = — = -l
ArgF(—k) ArgF(k)=tan %k _Rekg '

(3.3)
Then, as k goes through Rek, § increases by an amount
close to 7. With a strong annihilation, relation (3.2) no
longer holds, and we only expect an increase of about /2.
Do we still have a resonance in the usual sense? We be-
lieve the answer is yes. Actually, what is really needed for

a narrow resonance is just a sharp increase of the phase
shift.!! Such a sharp increase is present for both the 1P,
and 3G, waves, as can be clearly seen in the Argand dia-
grams of Figs. 2 and 3. This is also true for the 1P, state
of the Dover-Richard model, also shown in Fig. 2. In
contrast, the 3G, wave in the latter model has no pole in
the region —m, <Imk <0, and the behavior of its Ar-
gand diagram is different (Fig. 3).

We also checked that, with our second method, we re-
cover all of the preceding poles. This is illustrated in
Table III for the 3P, and the 3G, partial waves of the
Paris potential. A pole appears already in the linear ap-
proximation. Going to polynomials of fourth or fifth de-
gree, one obtains a value within 10% of the exact one.
Higher order is, however, required for a more accurate
determination.

IV. CONCLUSION

In the present work, we have studied the spectrum of
NN resonances produced by the Paris optical potential.
The poles of the S matrix in the complex momentum
plane which lie reasonably close to the real axis were
found by two different procedures. The masses and
widths of these states are listed in Table IV. Two of the
six predicted resonances, the 3Py(1880) and 33G,(2175),
are expected to give rise to observable effects in NN
scattering, even though there is no loop in the Argand dia-
grams. We find no states which are very narrow (I" < 10
MeV, say). The spectrum appears to depend sensitively
on the range of the imaginary part of the NN optical po-
tential. For example, with a longer ranged annihilation,
the Dover-Richard potential produces a sparser spectrum,

TABLE III. Comparison of the pole positions obtained from approximations of S~! by polynomials
of degree N, as a function of N, with the “exact” values obtained by the direct method from the Jost

function.
13P0 33G4
N Rek (fm™1) Imk (fm™!) Re k (fm™?) Im k (fm™")
1 0.0083 —0.1531 1.924 —0.1611
2 0.1398 —0.3502 2.409 —0.3915
3 0.2152 —0.2401 2.567 —0.3869
4 0.2456 —0.2993 2.644 —0.3773
5 0.2475 —0.2596 2.690 —0.3715
6 0.2479 —0.2674 2.721 —0.3680
7 0.2492 —0.2624 2.744 —0.3670
8 0.2513 —0.2559 2.762 —0.3667
Exact 0.2507 —0.2565 2.803 —0.4393
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TABLE IV. Summary of the properties of the NN resonances predicted by the Paris NN potential.

21+IZS+1LJ 131)0 311)1 33D2 33},73 33(F—H)4 33G4
Mass (MeV) 1880 1880 1899 2008 2202 2175
Width (MeV) 11 62 114 174 346 204
|Imk | (MeV) 57 122 138 111 138 85

with only one resonance (13P,).

To our knowledge, this calculation of the NN resonance
spectrum is the first one performed with a full optical po-
tential. Earlier calculations®'* employed only real poten-
tials. It is hard to compare the results of those calcula-
tions with ours since changes due to the effects of the im-
aginary potential are important, as we already mentioned.
Concerning a comparison with experimental data, if the
existence of the so-called S meson!® with a mass of 1936
MeV and a narrow width (I' <4 MeV) is confirmed,'® it
cannot be described by the present model. One could,
however, conjecturally regard it as a 2¢g2g system. It is
therefore of great importance that this question be settled
by future experiments at LEAR.
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APPENDIX

In the following, we give the formulae used to calculate
the Jost function in the domain —m, <Imk <0. For an
angular momentum L, the integral formula for the Jost
function Fy (k) is!!

Fu=1+ [ drhf G V0@, er), (A
where kit (kr) is the Riccati-Hankel function, V(r) is the
potentlal and P;(k,r) is the regular solution of the
Schrédinger equation. Let R be the maximum value of
the radius up to which we integrate. We can split the in-
tegral (A1) in two pieces. Defining

Ff(k):l+%foRdrhE”(kr)V(r)CDL(k,r), (A2)
we have
Fp(k)=Ff(k)+— f dr hi (kr)V(r)®L(k,r) . (A3)

For R sufﬁciently large, R >>m !, and if r >R, V(r) is
given by the one-pion-exchange potential Vpg(r).
Neglecting the piece proportional to 4; (kr) which is ex-
ponentially decreasing since Imk <0, the asymptotic wave
function is!!

dJL(k,r)z—%FL(—k)th(kr) . (A4)

Then, from Eq. (A3)
F,Jk):Ff(k)—é.FL(—k) .7 drlh (k)P ops(r)

(A5)

The computation of F;(—k) does not cause any trouble
since the imaginary part of —k is positive. To give a
meaning to the integral in (AS5) for Imk < —(m,/2), one
has to perform an analytic continuation. In the following,
we provide a simple way to do this. Our results can be ex-
pressed in terms of the integrals:

(Ztk —m_)r

Ro= [ dr—; =R13_1EN(Z), (A6)
with
2= —Qik—m,)R (A7)

and where Ey(z) is the exponential integral.'® In order to
give a meaning to the integral (A6) in the domain
Imk < —(m,/2) we first define

dIj (k) _ope”
d(—Imk) z

g1(Imk)= (A8)

Then for any Imk <0, I} can be evaluated from the iden-
tity

1 —Imk 1
I (k)= fo g1(s)ds +I4(Imk =0) , (A9)

where I} (Imk =0) can be computed from (A6), and goes
to zero exponentially as a function of R. It will therefore
be neglected in the following. Now for N > 1, from the
relation

dIR (k) Nt
A —Imk) TR,

one gets I} by successive integration. From this, one can
deduce the following expression:

~Im [2(—Imk —s)]V !
o= [ =N o)

where we have neglected terms which are exponentially
small for large R. These expressions are well defined and
easy to evaluate numerically. The second term on the
right-hand side of Eq. (A5) can now be computed and
one can see from Fig. 1 that its addition to F§ results in a
convergmg value for the zeros of Fy(k) as soon as
R>m7L

(A10)

gl( ds, (All
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