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Relativistic and nonrelativistic models of the nuclear optical potential
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Recently it has been shown that the standard nonrelativistic theory of the nuclear optical poten-
tial is unable to explain the spin-dependent observables for proton-nucleus scattering for projectile
energies from about 400 MeV to 1 GeV if one uses the impulse approximation to calculate the po-
tential. On the other hand, a relativistic impulse approximation leads to a (relativistic) optical po-
tential for use in the Dirac equation; the relativistic model is able to provide good fits to the spin ob-
servables in the energy range noted above. We discuss the relationship between the nonrelativistic
and relativistic models of the optical potential and show that the nonrelativistic potential may, to a
first approximation, be identified with one of two terms in an expression for the relativistic optical
potential. This identification is not precise since the density matrices of the target are different in
the relativistic and nonrelativistic theories. The second term in our expression for the relativistic
optical potential is associated with projectile propagation in negative-energy states. It may be seen
that this term and the corrections arising from the use of a relativistic density matrix for the target
are responsible for the success of the relativistic model.

INTRODUCTION

There have been several studies of nucleon-nucleus
scattering which have shown the utility of a relativistic
model of the nuclear optical potential. ' Recently, a rela-
tivistic impulse approximation has been used to construct
an optical potential which is then inserted in the Dirac
equation. If one compares the fits obtained for the po-
larization and spin-rotation parameter it is clear that the
relativistic theory is able to account for the data, while the
nonrelativistic analysis fails. This is most clearly seen
when the impulse approximation is used to construct the
optical potential for energies above 300 MeV. However,
studies of the optical potential for projectile energies from
0 to 200 MeV, where medium corrections are quite impor-
tant, have also shown that the relativistic approach is su-
perior to the nonrelativistic analysis.

We have several goals in this work. First we wish to
show how a covariant model for the calculation of the re-
lativistic optical potential may be formulated. We organ-
ize the model so that we may provide a satisfactory treat-
ment of recoil effects and also isolate the specific features
which are absent in the nonrelativistic models and which
are responsible for the success of the relativistic formula-
tion. In particular, we show that the relativistic optical
potential may be organized into two terms. The first of
these may be (approximately) identified with the nonrela-
tivistic optical potential. (This identification is not exact
since the density matrix of the target has a different struc-
ture in the relativistic and nonrelativistic theories. Also
there are some minor propagator ambiguities which we
comment upon at a later point. ) The second term in the
relativistic optical potential is associated with projectile
propagation in negative-energy states. Two effects are
therefore responsible for the success of the relativistic
description. These include the use of a relativistic density

matrix of the target and the inclusion of the term describ-
ing projective propagation in negative-energy states. (We
note that it is possible for us to isolate the relativistic ef-
fects and relate them to specific diagrammatic elements
since our organization of the relativistic calculation differs
from that appearing in the literature. '

)
We now turn to a discussion of the significance of vari-

ous aspects of our analysis. First let us consider the
matter of a proper treatment of recoil. We have recently
presented an anaysis of the general form of the relativistic
optical potential which is to be used in the Dirac equa-
tion. In that work we have shown that, in general, there
are eight scalar invariants that determine the form of the
potential. Three of these are nonzero in nuclear matter,
that is, if one neglects "recoil effects. " Almost all discus-
sion of the relativistic optical potential has been limited to
only two terms, often denoted as a Lorentz scalar, Us(r),
and a Lorentz vector, y Uv(r). ' If we are to make con-
tact between a theoretical analysis of the potential and the
phenomenological studies we need to study the "recoil
terms" referred to above since we must assess their size
before comparing theoretical results with phenomenologi-
cal values of the parameters of the relativistic optical po-
tential. In light of these remarks one can appreciate the
importance of a proper treatment of translational invari-
ance.

We now turn to another motivation for this work.
There has been some criticism of the use of the Dirac
equation to describe nucleon propagation. ' The argu-
ment rests upon the fact that the nucleon is not pointlike
but is a composite particle with an underlying quark
structure. Therefore propagation in negative energy states
should be strongly suppressed, and the Dirac equation
should not be used. One of our goals here has been to
show that the empirical evidence strongly supports the use
of the Dirac equation and that specific features of the re-
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lativistic description are responsible for its success; indeed,

just those features whose use has been questioned. From
our point of view, the success of the relativistic analysis in

the study of nuclear structure physics and in the study of
nucleon-nucleus scattering' leads to the conclusion that
a Dirac propagator theory is appropriate to describe the
motion of the nucleon in spite of its composite nature. To
our knowledge there has been little work on demonstrating
that Feynman propagators may be used to describe the
motion of strongly interacting composite particles. (There
is little objection to using such a description for nonin-

teracting particles. ) These are interesting questions which
deserve further study.

The plan of our work is as follows. In Sec. II we write
the Dirac equation in momentum space in terms of a self-

energy operator, X(W). [The structure of X(W) has been

discussed in great detail in a previous publication. ] We
then introduce a decomposition of the propagator into two
parts, corresponding to propagation in positive and nega-
tive energy states. This allows us to construct an equation
[Eq. (2.20)] which eliminates explicit reference to negative
energy states uia the introduction of an effective potential
U++( W)—see Eq. (2.19). In Sec. III we discuss the cal-
culation of U++ and X( W} making use of the impulse ap-
proximation. We also contrast the full relativistic calcula-
tion of these quantities with nonrelativistic approxima-
tions. Some discussion of the relativistic corrections is
given in Sec. IV. Previous work concerning the optical
potential for nuclear matter and for finite nuclei is re-
called and estimates of the size of the relativistic correc-
tion terms are indicated. Finally, in Sec. V we provide a
short summary.

II. THE RELATIVISTIC OPTICAL POTENTIAL

[W E~(—p} ap—y'm—N]& p If'k+,'&=y' f dp'&p IX(W)
l

0'&&p'I 0'-,+,'&

Here y X( W} plays the role of a generalized optical potential. We consider the integral equation corresponding to Eq.
(2.1),

(2.1)

We consider a nucleon of momentum k incident on a nucleus of mass Mq and momentum —k. The total energy is

W=EN(k)+Ez(k), where EN(k)=[k +mN]' and E„(k)=[k +M&]' . We have shown in Appendix A that we
may write the following equation for the optical-model wave function:
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Further, with the definition (see Appendix A)
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It is useful to note that

W Ez(k ") a—k" ymN—+—ie

(2.3)

(2.4)

0 y mN u(k, s)u(k, s) w(k, s)w(k, s)
E —a k ymN+i E— ~ EN(k) E — E(Nk)+ie E+. EN(k)

(2.5)

where u ( k, s) and w ( k,s):—U ( —k, —s) are spinor solutions of the Dirac equation without interaction. "
With the definitions
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(2.7)

we can write Eq. (1.4) as
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with 8'-„„=8' —Eg(k ").
The following definitions are useful for further work:
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Thus Eq. (2.8) may be written as

T= V+ Vgo+'T,

where T, V, and g~o+ ~ are 4 X4 Dirac matrices. Equation (2.15) is equivalent to the following two equations:

T= U+Ug+ T,
U= V+ V(go+' —g+)U= V+ Vg U .

From these equations one may obtain (see Appendix B)

T++ U+++ U++ T++

where

l

(g )

Equation (2.18) may be written as

(2.9)

(2.10)

(2.1 1)
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8'„„—EN(k ")=Eg(k)+EN(k) —Eg(k ")—EN(k ")

k k"
2pzz 2p
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(2.22)

where

Equation (2.20) is not of the standard Lippmann-
Schwinger form because of the structure of the propaga. -

tor. This equation can be put into a standard form (see
Appendix C) or may be used as it stands to fit nucie»-
nucleus scattering data. We may remark, however, that if
we consider massive targets such that
values of

I
k "

I
« m N, we have

1 NA
(2.23)

III. THE IMPULSE APPROXIMATION

We may write Eq. (2.19) as

is the usual effective mass parameter.
In Eq. (2.20) there is no explicit reference to negative-

energy states of the projectile. The effects arising from
such negative-energy states have been isolated in the
second term of Eq. (2.19). In the next section we discuss
the calculation of U++ making use of the impulse ap-
proximation.
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where a and P denote spinor indices.
We turn to a consideration of the first term,

1/2 1/2
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The self-energy, X( W), may be calculated in the impulse approximation,

(k'
i
X(W)

i
k) = f dp(k', p+k —k'

i
t

i
k, p)p(p;p+k —k '), (3.3)

where p is the (relativistic) density matrix of the target and t is a (medium-modified) nucleon-nucleon scattering ampli-
tude which is a 4X4 Dirac matrix with respect to both the projectile and target nucleon coordinates. ' If we make a
simple (relativistic) shell-model description of the target we would have

N

g y(t)( )y (I)( (3.4)

Here the P" denote the target wave functions and the a and P are spinor indices. Except for the differences between the
density matrices of the relativistic and nonrelativistic theories, it is clear that the approximation given in Eq. (3.3) can be
identified with the "tp" approximation of the nonrelativistic scattering theories. ' More precisely, if we make the fur-
ther approximation that the density matrix only has matrix elements in the space spanned by the positive-energy spinor
states, we would have

(k', s'
i
X++(W)

i
ks) = g f dp u(k', s')u(p+k —k ',s")(k', p+k —k '

i
t

i k, p)
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k,s;p,s'")p, ~, (p;p+k —k'), (3.6)

which may readily be identified with the form of the non-
relativistic "tp" approximation. ' If one has a satisfactory
model for the (relativistic) density matrix of the target,
one can assess the differences of a calculation of X++ us-

ing Eqs. (3.3) and (3.4) or Eqs. (3.5) and (3.6). Some cal-
culations of these relativistic combinations have been
made in the case of nuclear matter. ' These results are
noted in the next section.

Fig. 1. Here the heavy lines represent the (self-consistent)
spinor wave function of a nucleon in nuclear matter,
f(p, s). This wave function may be written in terms of
the spinor solutions of the free Dirac equation, u (p,s) and
w(p s),"

IV. RELATIVISTIC CORRECTIONS
TO THE NONRELATIVISTIC MODEL

The formalism presented here allows one to isolate the
relativistic correction terms and assess their magnitude.
To some degree this has been done for finite nuclei in Ref.
7, making use of estimates obtained from the study of nu-
clear matter. In Ref. 7 we limited our considerations to
low-energy projectiles. The range of projectile energies
from 0 to 200 MeV has been considered in Refs. 6 and 8.

We consider the analog of U++ in nuclear matter.
This quantity may be represented diagrammatically as in

FIG. 1. The quantity U++ in nuclear matter. Here the wavy
line is a reaction matrix and the heavy circles denote particles in
occupied orbits which are described by {self-consistent) relativis-
tic wave functions. The heavy double line represents particle
propagation in a negative-energy state. (Only direct terms are
shown for simplicity. ) Part {a) corresponds to a relativistic "tp"
approximation, while part (b) describes the correction due to
particle propagation in negative-energy states {Refs.7 and 8).
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f(p, )= (p) (p, )+&(p)g( '~ p ~
) (p, '),

S
(4.1)

(4.2)

(a) (b)

This expansion allows for a further diagrammatic repre-
sentation of the process shown in Fig. 1(a), which is
presented in Fig. 2. If one sets a(p)=0, only Fig. 2(a) is
nonzero. The process shown in Fig. 2(a) may be associat-
ed with the nonrelativistic "tp" approximation. [Note
that in Fig. 1(b) we indicate the term analogous to the
second term in Eq. (2.19).]

It should be clear that the terms indicated in Figs. 1(b),
2(b), 2(c), and 2(d) represent corrections to the nonrela-
tivistic theory. [The relativistic correction arising from
Fig. 2(d) is estimated to be quite small. ] First, we may
consider these correction terms as they affect the real part
of U++. One may refer to Fig. 10 of Ref. 6, where it is
seen that these relativistic corrections are repulsive and
contribute about + 20 MeV to the real part of U++ (at
nuclear matter densities) for projectile energies in the
range of 0—200 MeV. It can be seen that this additional
repulsion leads to agreement between theory and experi-
ment for the magnitude of the real part of the central part
of the nuclear optical potential. ' These terms also give
rise to a strong density dependence of the optical potential
which corresponds to the density dependence found in
empirical studies. Second, the relativistic correction
terms enhance the spin-orbit part of the nuclear optical
potential. This enhancement is of the order of 30 per-
cent, ' and is clearly a very important effect. The impor-
tance of these various relativistic corrections for optical
model studies is clearly demonstrated in Refs. 2—5. The
importance of relativistic effects for understanding other
aspects of nuclear structure physics is discussed in Refs. 6
and 8.

V. SUMMARY AND CONCLUSIONS

The formalism presented here has various advantages.
First, it is rather general and may be used for the nonlocal
potentials which would arise if one were to calculate the
optical potential using a general many-body theory.
Second, our formalism isolates the relativistic correction
in such a manner as to identify it with projectile propaga-
tion in negative-energy states and with effects arising
from the use of a relativistic density matrix for the target.

The physical interpretation is less clear in the usual
analysis which is presented for the local optical models
which have been studied extensively, ' For example, if one
writes

X(r)=A(r)+y B(r),
one can write a Schrodinger equation whose solution
determines the upper two components of the relativistic
(spinor) solution of the Dirac equation. The effective cen-
tral potential then has the form

U„„,(r) =A (r)+ B(r)+ + . (5.1)
E A (r) —B (r)

mN 2mN

[In Eq. (5.1) we have not written some complicated
derivative terms which appear in the effective potential. ']
While it is clear that the use of the Dirac equation to
describe nucleon-nucleon scattering leads to the quadratic
terms in Eq. (5.1), the physical interpretation of these
terms is not easily expressed. On the other hand, our ap-
proach involves the expansion of wave functions and
operators in terms of positive- and negative-energy solu-
tions of the Dirac equation without interactions. In our
case the physical interpretation is readily made and, if
desired, a diagrammatic analysis may be developed such
as that given in Refs. 7 and 8 and in Figs. 1 and 2 of this
work.

As a final remark, we again state that the success of the
relativistic theory in the description of nuclear structure
and scattering provide support for the use of a relativistic
propagator description of nucleon motion.

APPENDIX A

(c)

FIG. 2. Diagrammatic representation resulting from the ex-
pansion of the density matrix associated with the relativistic
"tp" approximation —see Fig. 1(a). Here a thin line denotes a
particle in a positive energy state, u(p, s). A light double line
denotes a particle in a negative-energy state, w(p, s). The
u (p, s) and w(p, s) are solutions of the free Dirac equation.

In this appendix we develop some relativistic equations
which may be used in the description of nucleon-nucleon
scattering. (These ideas have already been applied in the
construction of a relativistic scattering theory for the
description of pion-nucleus scattering. '

) We use a propa-
gator formalism to describe the motion of the target and
projectile. Since the massive target is placed on mass shell
throughout, the use of a relativistic formalism for the tar-
get plays only a very minor role. One advantage of these
techniques, however, lies in our ability to include target-
recoil effects. In addition, the formalism is covariant so
that the transformation properties of the various quanti-
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ties which appear in the analysis are manifest.
%'e consider a Bethe-Salpeter equation describing

nucleon-nucleus scattering:

(Al)

Here GF is a propagator for the projectile and the ground
state of the nucleus. Therefore all reference to the excited
states of the target is implicit in the quantity E, which

plays the role of a relativistic optical potential. We can
write Gz as

in the center-of-mass frame.
It is useful to reduce Eq. (Al) to a three-dimensional

equation. This can be accomplished by writing

(A3)

(A4)

where g 0+' is a propagator with the same right-hand cut
as GF. We choose a form for g 0+' which places the mas-
sive nucleus on its mass shell,

Gp(P, P) = l 1 1
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where P is the four-momentum of the nucleon and P is the
four-momentum of the target of mass Mq. We also write
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Thus Eq. (A3) may be written as
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Let us define a wave function g'+' such that
k, s

M(8')
I
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I
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Equation (Al 1) may be written
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APPENDIX B

We may use Eq. (2.17) and write

U++ y+++ p'+ —
g U

—+

U' —+ y' —+ + p' —— U' —+

From the last equation we have

(g U +)=g V ++g V (g U +),
from which we obtain

(81)

(82)

U++ y+++ y+ — p —+1

(g )'—V

From Eq. (2.16) we then have

T++ U+++ U++g T++

with U++ given by Eq. (85).

APPENDIX C

(85)

(86)

U
—+ p' —+

( )
—i V

——
Here we consider Eq. (2.20) and note that the equation

is equivalent to the following equation:

S k 8'
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and kw is defined Uia
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k ',s'
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To see this one writes

W Eg(k ")—E—~(k ")= 8' —8"'

(k —k" )
R (8;k"),
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where

R (W;k")=
(Mg —m ~)

( W+ 8"') 1—
(C5)

R (W, k")~
Ex(k w)&~(kw)~~
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With the definition

Note that if 8"'=8; k "~k w and

one then obtains Eq. (Cl). We see that in the nonrelativis-
tic limit where

I
kw

I «m~, R(W, kw) —+1. In that
case, VLs( 8') = U++( W). In the relativistic limit

I
kw

I
)m~, the potential to be used in the Lippmann-

Schwinger equation differs from that to be used in Eq.
(2.20) by the kinematic factors noted above. These factors
are only needed if one insists upon using the Lippmann-
Schwinger equation in a kinematic domain in which
another question would be more appropriate, Eq. (2.20),
for example.

We close this appendix by noting that our experience
with relativistic models of pion-nucleus scattering' has
indicated that the ambiguities that arise from the possibil-
ity of choosing various propagators in the reduction of the
8ethe-Salpeter equation to a three-dimensional form do
not appear to be numerically significant. Only quite small
changes in the observables are noted if the same optical
potential is inserted into three-dimensional equations, such
as Eqs. (2.20) and (Cl), which have different propagators.
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