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Statistical analysis of excitation functions for Si+ Si elastic scattering and reactions
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Angle integrated excitation functions for elastic scattering and reactions of 'Si+ 'Si have been

measured in 100 keV steps over the energy range E~,b ——105—121 MeV. Narrow fluctuations are ob-
served in all channels as well as in the angle-integrated cross section summed over all channels.
These data have been subjected to a detailed statistical analysis. The probability densities of the
summed deviation and cross-correlation functions have been derived from the assumptions of the
statistical model and compared with the experimental results. These statistical tests show that the
observed narrow structures are of nonstatistical character and correspond to long lived states of the
composite system with high angular momenta and excitation energy.

I. INTRODUCTION

Since the first observation of resonance phenomena' in
excitation functions for the ' C+' C system at sub-
Coulomb energies, tremendous effort has been made
to try and gain a clear understanding of this phenomenon,
both experimentally and theoretically. Resonance phe-
nomena in heavy-ion reactions present many interesting
questions which concern not only the mechanisms of
heavy-ion reactions, but also questions of the nuclear
structure of the composite system at high excitation ener-
gies and high angular momenta. One of the earliest
features noted was that the intermediate structure reso-
nances were observed only in systems where the number
of open channels and the level density in the compound
nucleus are small, and at least one of the nuclei in the en-
trance channel was C or O. Most studies have there-
fore been carried out for systems where at least one of the
reaction partners is C or O. It is only recently that the de-
tailed measurements on much heavier systems such as
isSi+2sSi (Refs. 10 and 11) have been reported. Contrary
to earlier beliefs, this system shows' resonance phenome-
na similar to that observed in light systems.

Theoretical discussions of all these data in terms of the
band crossing model, ' the double resonance mechanism, '

the coupled channel model, ' the barrier top model, ' and
the doorway state model, ' have attempted to explain the
origin of these structures. Although some of these models
give a reasonable account of the gross features of the ex-
perimental data, there is still no definitive understanding
of the microscopic nuclear structure underlying the ob-
served narrow structures.

In order to gain a better understanding of the reaction
mechanism and the nature of the structural features of the
intermediate structures, measurement of excitation func-
tions in fine energy steps and for several different exit
channels are necessary. In the energy regime where inter-
mediate structures are observed, however, nonresonant
processes may contribute a large fluctuating background.
The data must therefore be subjected to critical tests in or-
der to distinguish true resonance structures from non-
resonant fluctuations.

Some of the features of Si+ Si interactions have
been recently investigated by Betts et a/. ' '" These mea-
surements' were made using a fairly thick target and in 1

MeV steps. In order to investigate the observed structures
in more detail, these data were remeasured using thin tar-
gets and in much smaller energy steps. The excitation
functions for five different exit channels were measured in
100 keV steps over an energy range of 105—121 MeV.
Since correlations between different channels are the most
sensitive signature for discriminating between true reso-
nance structures and fluctuations, the data have been
analyzed using summed deviation and cross correlation
functions. These two methods are best suited for search-
ing for correlations among different channels. To estab-
lish the nonstatistical character of the observed structures
conclusively, the statistical confidence limits were calcu-
lated using the derived probability densities for the
summed deviation and cross correlation function. The
statistical tests therefore determine whether the excitation
functions are inconsistent with the statistical model and
thus locate nonstatistical structures.

These data and a preliminary version of the results of
the statistical analysis have been reported in Ref. 17. This
paper contains an expanded discussion of the experimen-
tal measurements and a detailed presentation of the sta-
tistical analysis. The experimental measurements and the
results are described in Sec. II and the statistical analysis
is presented in Sec. III. Section IV contains a discussion
of the results of the analysis and the conclusions.

II. EXPERIMENTAL METHOD AND RESULTS

A Si beam from the Brookhaven National Laboratory
MP tandem was used to bombard a target consisting of 7
pg/cm Si metal evaporated on a 20 pg/cm2 C backing.
The target was mounted with the Si toward the beam
and corresponded to a beam energy loss of -70 keV (lab)
over the energy range of the experiment. The elastic and
inelastic events were detected using a kinematic coin-
cidence arrangement consisting of two large area (600
mm2) Si surface barrier detectors placed on either side of
the beam axis. The defining detector covered the angular
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Iangc 33.5 —47.5 ln thc reaction plane with 8 801ld angle
of 60 msr. The recoil detector on the other side of the
beam axis subtended a 2' 1arger range in both the horizon-
tal and vertical planes. The coincidence efficiency of this
arrangement is close to 100% for the elastic scattering
and decreases almost linearly to zero for two-body inelas-
tic events with Q = —20 MeV. A detector placed at 15'
with respect to the beam direction was used to monitor
the elastic scattering for the purpose of normalizations.
The energy signals from the defining (ED) and recoil
(Eg ) detector were summed to provide a total energy sig-
nal (Ez. ED+——Ea). For two-body final states, ET is in-
dependent of the scattering angle and was used to generate
a Q value spectrum (Q =ET EI, w—here EI is the beam
energy). Data were taken in 100 keV steps over the bom-
barding energy range of 105—121.1 MeV. The data were
normalized both with respect to the integrated beam
current and to the elastic yield in the monitor detector.
Many repeat points taken throughout the experiment veri-
fied the accuracy of these procedures.

A typical Q value spectrum obtained at a bombarding
energy of 110 MeV is shown in Fig. 1. The identification
of the resolved peaks in Fig. 1 is based on the results of
the previous" high resolution study. Yields for the elas-
tic, single 2+, mutual (2+,2+)+4+, mutual (4+,2+), and
the yield in the spectrum (REST) above the mutual
(4+,2+) ( —7.5 & Q & —20 MeV) as well as the total yield
(0&Q& —20 MeV) in the spectrum were extracted at
each bombarding cncI'gy. The yields for thc I'csolvcd
peaks were obtained from fits to the appropriate region of
the spectrum using four Gaussian peaks with fixed
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FIG. 1. Q value spectrum for coincident fragments obtained
at a bombarding energy of 110 MeV. The elastic, 2+, un-
resolved mutual {2+,2+)+4+, and the mutual (4+,2+} peaks
are labeled. The dashed line indicates a background which was
subtracted from the spectrum.

FIG. 2. Angle averaged cross sections for the elastic, 2+,
(2+,2+)+4+, (4+,2+), and REST shown plotted as a function
of center-of-mass bombarding energy. The solid lines are the
cross sections obtained from the data using a Craussian smooth-
ing function with FTHM 1.5 MeV.
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widths. To the extent that the experimental peak shapes
are accurately described by Gaussians, this procedure re-
moves the possibility that spurious correlations can be in-
troduced as a result of imperfect resolution of these peaks.
The angle averaged excitation functions for elastic, single
2+, mutual (2+,2+)+4+, mutual (4+,2+) and "REST"
are shown in Fig. 2, and for the "TOTAL'* in Fig. 6(a).
The uncertainties in the relative cross sections estimated
from the reproducibility of the repeat points and statistics
are less than 5% with the exception of the elastic channel
which had poorer statistics and an error of 10%. The ab-
solute cross sections are, however, somewhat more uncer-
tain, due largely to uncertainties in the corrections for the
efficiency of the coincidence arrangement.

The excitation functions in Fig. 2 and Fig. 6(a) show
two distinct types of structures, broad structures of width
I, =2.0 MeV, each of which is fragmented into several
much narrower structures of width I', =150 keV. The
overall features of the present data are in good agreement
with the results of an earlier measurement' with a much
thicker target and larger energy steps. The present data
with fine energy steps, however, reveals a much richer
structure than was evident in the earlier data. 'o Many of
the narrow structures appear to be strongly correlated in
all the channels, a feature which is not expected for struc-
tures arising from statistical fluctuations. However, the
data have to be subjected to the critical tests of statistical
fluctuation analysis before any conclusions as to the non-
statistical nature of these structures can be drawn. The
statistical analysis of the present data will be discussed in
detail in the next section.

III. ANALYSIS
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channels by crk(E), k =1,2, . . . , M. To perform the sta-
tistical tests, the average cross section (crk(E) }was gen-
erated by a sliding average using a Gaussian smoothing
function of FWHM=1. 5 MeV. The average cross sec-

The identification of intermediate structure resonances
in the presence of a possibly fluctuating background is
one of the long-standing problems in nuclear physics.
Several types of statistical tests have been suggested in the
literature ' ' to distinguish the resonance structures
from statistical fluctuations, the most critical and effec-
tive test of which are those which search for correlations
between different channels, e.g., the method ' of (i} ener-
gy dependent deviation functions, (ii) cross correlation
functions, and (iii) counting the number of correlated
maxima. Before ascribing a nonstatistical nature to a
structure observed in the deviation or cross correlation
function, the statistical significance limits must be calcu-
lated for these quantities. Though methods (i) and (ii)
have been widely used in the literature, confidence limits
have not, in general, been calculated for these quantities.
Recently Lang et al. have calculated the statistical sig-
nificanc for deviation functions. In method (iii) the
probability of observing a correlated maxima in m excita-
tion functions is simply given by a binomial distribution
and can be calculated easily. This method, however,
suffers from the drawback that the binomial parameter in
the distribution function changes with different defini-
tions for the existence of a maximum in the measured ex-
citation function.

Let us denote the differential cross sections in different
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FIG. 3. The ratio ok(E)/(cri, (E)) shown plotted as a func-
tion of center-of-mass bombarding energy for the five channels.
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tions obtained this way are shown by the solid curves in
Fig. 2. We find that though the averaging has removed
the narrow structures, the broad structure still persists.
To remove the broad structures, we generate a new excita-
tion function

Yk =ok(E)/(&rk(E) )

for each channel. The new excitation functions Yk for
each channel are shown in Fig. 3. It has been shown that
the probability density of Yk is given by2'

y (Nk —1)/2

P(Yk)= exp[ Nk—(Yk+ YD„)/(1 —YD„)]I~,[2Nk(Yk YD )' /(1 —YD )},
k k

Rk(0)=Rk(@=0)= (1—YD ), (3)
k

and, given Nk, can be used to deduce the value of YD„.

The value of Nk, the effective number of channels for a
given transition, can vary with angle; ranging in the
present case from Nk ——1 at 0' and 180' to Nk '"=g/2 (g
even) or (g+1)/2 (g odd), where g =(2Ii+1)(2I2+1)
and Ii,I2 are the spins of the final fragments. In prac-
tice, we find that the calculated probability densities do
not depend sensitively on the particular values of Nk and

YD providing Eq. (3) is satisfied with Rl, (0) equal to the
k

experimental values. The values of YD„obtained using

various values of Nk are listed in Table I and those la-

beled "Mean" were used to generate the theoretical proba-
bility distributions which are used to compare with the ex-
perimental results.

The deviation function for each channel is defined as,

Y;-((Y;))D;E= (4)

where Nk is the number of independent channels in the
reaction, YD is the nonfluctuating or "direct" contribu-

tion to the average cross section, and Iz is a modified
Bessel function of order N. The autocorrelation function
Rk(e) is defined as

r

((&, )&
' &, +. &

')l
where (( ) ) now denotes the averaging over the whole
energy range of the excitation function. The normalized
variance is given by

I

The statistical model probability distributions for D;(E)
can be calculated using Eq. (1). The advantage of defin-
ing D;(E) in this way is that both the experimental and
theoretical distributions of D;(E) are expected to be ap-
proximately normally distributed with mean and variance
of 0 and 1, respectively. The experimental frequency dis-
tribution of D;(E) and their statistical model predictions
are shown in Fig. 4. The standard normally distributed
probability functions are also shown in Fig. 4 for compar-
ison. We find that the theoretical predictions are very
nearly normally distributed with only small deviations
near the tails. These deviations are slightly more pro-
nounced in the case of the elastic channel.

We now define the summed energy dependent deviation
function &(E) and cross correlation function C(E) as,

N

u(E) =—g D, (E),
iV,.

N
C(E)= g D;(E)Dj(E) .

i&j=l

The probability density P(&) of & can be obtained from
Eq. (1) by the method of characteristic functions. 20 ~~ We
first calculate the characteristic functions for Dk(E),
given by,

Ps& t) fP~&=D~)e 'dD~,

where Pk(Dk) are the probability density functions of
Dk(E) calculated using Eq. (1).

The characteristic function of the summed deviatjon
function &(E) is then given by24 25

TABLE I. Values of Xk and FD obtained from the experimental values of Rk(0). Listed are the
k

maximum and minimum values of 1%k and the associated values of Yz obtained using Eq. (3). The
k

values labeled Mean were used to calculate the theoretical probability distributions used in the compar-
isons discussed in the text. None of the results are sensitive to this particular choice.

Channel

0+
2+

(2+ 2+) 4+
4+ 2+
REST

R, (0)

0.0300
0.0071
0.0058
0.0039
0.00063

Min

Nk

Mean

1

2

6
12
20b

Max

1

3

13
23

Min

0.985
0.996
0.997
0.998
1.000

Fg)

Mean

0.985
0.993
0.982
0.976
0.994

Max

0.985
0.989
0.962
0.954

'Assumed to be dominated by 2+,2+.
Arbitrarily assumed.
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and can be evaluated by numerical integration. Earlier in
this section, we found that Dk(E) are very nearly normal-
ly distributed with mean 0 and variance 1. Therefore, for
statistically independent Dk(E) normally distributed with
distribution functions Pk(Dk), we find that the probability
density function P(&) of the summed deviation function
& is a normal distribution with mean 0 and variance cr
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The experimental frequency distribution of & (histogram)
and the theoretical predictions (solid curve) are shown in
Fig. 5. We have also obtained P (& ) by the numerical in-
tegration of Eq. (9), using the actual distribution functions
Pk(Dk) shown by solid curves in Fig. 4. The distribution
function P (& ) obtained from this exact calculation has a
mean p~ =—0.001 and variance o ~ ——0.206 and is essen-
tially indistinguishable from that calculated assuming
normal distributions for Dk(E). The experimental fre-
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FIG. 4. Frequency distributions of the deviation functions
for the five channels. The histogram shows the experimental
values. The solid line shows the distributions calculated using

Eq. (1) and the values of Xk and 'FD noted in Table I. The

dashed lines show normal distributions.

N

The probability density function of &(E) is then simply
given by the Fourier transform of N~,

P(M ) = f @~(t)e—'~'dr,

2

FIG. 5. Frequency distributions for the summed deviation
function &(E) (upper) and cross correlation function C(E)
(lower) together with the expected distributions for statistical
fluctuations as discussed in the text.
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TABLE II. Moments of the experimental and theoretical distributions for &(E) and C(E). The
theoretical values were obtained using different assumptions discussed in the text.

Fluctuation theory

Moment

p()
cr2(& )

P3(M)
p(C)
o. (C)
p3(C)

Experiment

—0.005
0.429
0.080
0.027
0.470
0.839

Numerical
integration

—0.001
0.206
0.005
0.000
0.098
0.000

Gaussian

0.000
0.200
0.000
0.002
0.102
0.059

Data

—0.059
0.077
0.020

quency distribution has a mean p~ ——0.0 and variance
o.~ ——0.429 and has to be compared with the correspond-2

ing quantities for the calculated distribution. We observe
that o ~(exp) is twice as large as cr~(calc), indicating that
Dk(E) are not statistically independent. These values are
summarized in Table II.

To strengthen these conclusions, we calculate the sta-
tistical significance limits on & from the theoretical dis-
tribution function P(&). The percentage of data points
which are allowed according to the statistical model to
have &)&U or & & &I, , where &U and &L, are arbi-
trary upper and lower confidence limits on &, is defined
as"

2.3

2.1

1.9

(a) TOTAL
—22& Q &0

))I |II
)

(12)

a= J~ P(&)d&, (11)

a= I P(&)d& .

For a 1% confidence limit a=0.01, the values of &U
and &I obtained from Eqs. (11) and (12) are
&U=

i Wl. i
=1.04. Thus, according to the statistical

predictions, the cumulative probability for the events to
have &)&U or

i &L,
i

is 2a=0.02. Therefore, at the
most 3 events out of a total of 161 would be expected to
lie outside the 1% confidence limits. Contrary to the
above prediction, however, we observe from Fig. 5 that at
least 13 of the experimentally observed events lie outside
the 1% confidence limits, thereby suggesting that the
structures observed in the individual channels are strongly
correlated.

To make these correlations more apparent, &(E) is
plotted as a function of E, ~ in Fig. 6(b). Because of the
summation over a large number of reaction channels [Eq.
(5)], this function tends to average over the statistical fiuc-
tuations leaving the correlated structures more apparent.
The peaks or dips in &(E) show one to one correspon-
dence with the structures in the excitation function of
TOTAL shown in Fig. 6(a). In Fig. 6(b), the 1% confi-
dence limits are shown by the dashed lines. Evidently
most of the peaks or dips in Fig. 6(b) are more than one
standard deviation (+0.40) away from the mean value of
N(E). Even under the scrutiny of the more critical test
of 1% confidence limits, there are as many as nine struc-
tures in Fig. 6(b) which stand out quite prominently,
which again signifies the strong correlations among the
different channels. These strong correlations indicate a
nonstatistical origin for the structures observed in dif-
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FIG. 6. The summed, angle averaged cross sections (a);
summed deviation function &(E) (b); and cross correlation
function C(E) (c) shown plotted versus center-of-mass bom-
barding energy. The dashed lines in (b) and (c) indicate the 99%%uo

confidence limits for statistical fluctuations as discussed in the
text.
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ferent excitation functions.
We now calculate the theoretical predictions and confi-

dence limits for C(E). Unfortunately, the distribution
function P(C) of C(E) cannot be calculated using stan-

dard techniques as the terms in the sum [Eq. (6)] which
defines C(E) are not strictly statistically independent.
We have therefore proceeded in the following three dif-
ferent ways. In the first of these ways, the various terms
in the sum of Eq. (6) were assumed to be, in fact, statisti-

cally independent, and standard numerical techniques
were used to calculate P (C) and the associated confidence
limits. Secondly, the Dk(E) were assumed to be normally

distributed as discussed above and a Monte Carlo calcula-
tion was used to calculate P(C). Lastly, P(C) was calcu-
lated using the experimental values of Dk(E) where the
values of Dk(E) for each channel were shifted randomly
in energy with respect to all the other channels. The
values of the moments of the distributions of C(E) ob-

tained using these three procedures are summarized in
Table II and the obtained frequency distributions are
shown in Fig. 5 for the first method (solid line) and

Monte Carlo method (dashed line) together with the ex-

perimental frequency distribution.
The experimental cross correlation function C(E) is

shown in Fig. 6(c) as a function of E, . Correlations
among different channels now manifest themselves as pos-
itive peaks [instead of peaks and dips as in the case of
&(E)]. As in the case of &(E), the confidence limits for
a nonstatistical character of a particular peak in the cross
correlation function C(E) can be obtained from the cu-
mulative distribution function of P(C). The 1% confi-
dence limits on C (E) were calculated to be

CU ——
~

CL
~

=0.727 and are shown in Fig. 6(c) by dashed
lines. As is evident from Fig. 6(c), most of the peaks in

C(E) lie beyond the 1% confidence limits.
The critical tests of summed deviation function and

cross correlation function show that the experimental data
do not follow the predictions of the statistical model, indi-

cating the existence of strong correlations among struc-
tures in different channels. On the basis of the convincing
evidence presented in this section, we believe that most of
the structures observed in the present data [Figs. 2 and
6(a)] are of nonstatistical origin.

IV. DISCUSSION AND CONCLUSIONS

The statistical fluctuation analysis presented in Sec. III
shows the high degree of correlation between the narrow
structures observed in the different exit channels. The
frequency distribution and confidence limits calculated
for the deviation and cross-correlation functions on the
basis of the statistical model convincingly demonstrate the
nonstatistical origin of these structures. We therefore
conclude that they are in fact of resonance origin.

From these data and analyses, together with previous
excitation function and angular distribution data, ' a fair-
ly clear and complete experimental picture emerges. We
observe a series of broad structures with width
I, =1—2 MeV which appear not only in the elastic
scattering channel but also in the yield summed over
many inelastic (and presumably also transfer) channels.

Each of these broad structures is fragmented into a num-

ber of much narrower resonances with widths
I', =100—300 keV. Measurements of elastic scattering
angular distributions in 1 MeV steps over this energy
range indicate angular momenta for the broad structures
which follow that of the grazing partial wave. Specifi-
cally, for the energy range covered in the present data, the
three broad structures centered at E, =52.5, 55.5, and
59 MeV are characterized by angular momenta of 36A',

38%, and 4(Hi, respectively.
These observations then seem to be qualitatively con-

sistent with the picture of the broad structures arising
from a series of potential or shape resonances in the en-

trance channel each of which is fragmented into narrower
resonances by mixing with states of a more complex na-
ture. It is extremely unlikely that the narrow resonances
we observe correspond to isolated compound nuclear
states. For example, E, =59 MeV corresponds to a
compound nucleus excitation energy of 70 MeV which for
J=40% lies some 13 MeV excitation above the rotating
liquid drop yrast line. Using a back-shifted Fermi gas
level density formula with standard parameters we cal-
culate a compound nucleus level density of 10 MeV
which is several orders of magnitude larger than the ob-
served density of narrow structures. This result suggests
that the observed narrow resonances correspond to some
special subset of compound nuclear states which, for
structural reasons or for reasons of symmetry, are
prevented from dissolving into the many times more
numerous compound nuclear states.

Some indication of the nuclear structure effects respon-
sible for the obviously small mixing between the reso-
nances and background compound states comes from the
partial widths of the resonances for decay into two Si nu-

clei. If we assume that the 8, =90' cross sections from
Ref. 10 arise solely from the resonant amplitudes we ob-
tain values of I Ei /I'd'or which are typically a few percent
which, together with the observed average widths of
-200 keV, leads to a typical value of I Ei of order 1—2
keV. This is to be compared with the average statistical
width of a compound nuclear level for decay into two

Si nuclei in their ground states of a few eV. We thus see
that the resonances have extremely enhanced widths for
decay into the Si elastic and inelastic channels, an effect
which must have its origin in the nuclear structure of the
resonances.

Results similar to the above for the ' C+' C system
have led to the suggestion and numerous theoretical at-
tempts' ' to describe the resonances in terms of nuclear
molecular states formed by coupling the rotational degrees
of freedom of a dinuclear molecule to the vibrational exci-
tations of the constituent nuclei. To date no such calcula-
tions have been performed for the Si+ Si system and it
is therefore difficult to assess the validity of this approach
for the present case. It is true, however, that the observed
widths of 200 keV correspond more closely to those ex-

pected for compound nuclear states than to resonances in
a nuclear molecular potential, and it may therefore be
more realistic to attempt to describe the present data in
terms of states of an equilibrated compound nucleus
which possess a special structure. One possibility along
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these lines is that the observed resonances may correspond
to extremely deformed shape isomers in the compound
nucleus. Calculations ' within the framework of the Stru-
tinsky prescription do show the existence of well-defined
secondary minima for the Ni system at large deforma-
tions for angular momenta in the vicinity of 40k'. To
date, however, there has been no unambiguous experimen-
tal demonstration of the existence of such "superde-
formed" states in light nuclei and the connection therefore
remains tenuous at best. Further experimental and
theoretical work is thus essential before any definitive
statement can be made regarding the nuclear structure of
these narrow high-spin resonances. On the experimental
side, it is necessary to obtain more quantitative informa-
tion on decay widths in the various reaction channels, par-
ticularly in channels other than the elastic and inelastic.

Some more rigorous spin assignments could be obtained
through, for example, phase shift analyses of the elastic
scattering data. Theoretically, a more detailed characteri-
zation of the expected patterns of decay widths into the
elastic, inelastic, and transfer channels as well as estimates
of the spreading widths are required. In any case, it is
clear that the present observations reflect the existence of
states of unusual structure at high excitation energy and
angular momentum in a region where it might previously
have been thought that nuclear structure effects might
long since have vanished.

This work was performed under the auspices of the Of-
fice of High Energy and Nuclear Physics, Division of Nu-
clear Physics, U.S. Department of Energy, under Contract
No. %'-31-109-ENG-38.
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