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(p,p), {p,n), and (n,n) scattering on ""' ' ' Sn have been analyzed employing the Lane cou-

pled equations. The (p,n) measurements were made at Ep=24. S MeV, the appropriate energy at
which to complement existing (p,p) measurements at 24.5 MeV and (n,n) measurements at 11 MeV.
A search routine on the Lane coupled equations code yielded the complex isovector and isoscalar
strengths from the simultaneous fitting of (p,p) and (p,n) data. These strengths have provided excel-

lent fits to the (n,n) data on all five tin isotopes. The near constancy of the real and imaginary iso-

vector strengths with A implies that the effects of channel coupling to the first 2+ and 3 states are
either small or fairly uniform over the isotopic sequence. The implications of the Lane coupled
equations with regard to the Coulomb correction on the imaginary optical potential are discussed.

INTRODUCTION

The diagonal and nondiagonal matrix elements of the
Lane potential, '

Ui
U=Up+ t 'T,

connect (p,p) and (n,n) elastic and (p,n) quasielastic
scattering as follows:

U)
Uvv ——Up+ (N —Z),

U„„=Uo — (N —Z),Ui

Uv„—— &N —Z .
U)

2W

The Lane potential is clearly charge independent; the ab-
sence of the Coulomb interaction would suggest that the
(p,p), (n,n), and (p,n) potentials should be compared at the
same bombarding energy. This is valid if the proton bom-
barding energy is much greater than the Coulomb dis-
placement energy (CDE), the negative of which is the Q
value for the isobaric analog transition. For lower bom-
barding energies, Lane' provided in the Appendix to his
paper a formal basis for the treatment of Coulomb effects.
In effect, the resulting Lane coupled equations' imply that
Eq. (2) is still valid provided that U„„describes neutron
elastic scattering at a bombarding energy which is lower
than the incident proton energy by the CDE. Specifically,
the Lane coupled equations imply that at bombarding en-
ergies differing by the CDE, the isoscalar (Uo) and iso-
vector (Ui) strengths are identical for protons and neu-
trons. As shown in the Appendix to this paper, this is
possible in the DWBA approach if Uo and Ui (both com-
plex) are linearly dependent on bombarding energy and if

Uvv is parametrized with the full Coulomb correction 3

for both real and imaginary parts.
The usual Coulomb correction as applied to the

parametrization of the real potential assumes that, aside
from the change of sign of the isovector term, the proton
and neutron isoscalar and isovector real strengths are
identical when evaluated at the same average kinetic ener-

gy inside the nucleus. For protons, this occurs when the
proton incident energy is reduced by the average Coulomb
potential energy given by 1.38Z/3 '~ (MeV) for rc ——1.25
fm and is referred to as the full Coulomb correction.
Since 1.38Z/A'r —=CDE, the stipulations of the Lane
coupled equations are thus tantamount to making the full
Coulomb correction for both real and imaginary poten-
tials. The full Coulomb correction for the real potential is
well understood and widely used in parametrizing the
real potential. ' The imaginary Coulomb correction as a
function of energy and mass number is less well establish-
ed. Therefore a test of the Lane coupled equations can be
viewed as a check on the applicability of a full Coulomb
correction to the imaginary optical potential.

Carlson et al. utilized the Becchetti-Greenlees (BG)
best-fit proton parametrization in their global analysis of
(p,p), (p,n), and (n, n) scattering. As a result, their DWBA
analysis incorporated the full Coulomb correction in the
real potential and no Coulomb correction in the imaginary
potential. The best-fit isovector interaction parameters
determined from the quasielastic data were used in con-
junction with the BG best-fit proton optical model param-
eters to generate the neutron optical potential by reversing
the sign of the isovector terms. Predictions of neutron
elastic scattering were then obtained and compared with
measurements for five nuclei at neutron bombarding ener-
gies which were lower by approximately the CDE. Good
agreement was observed for Fe, Ni, Zn, In, and Sn(n, n).
On the other hand, a similar analysis by Schery et al. , on
the heavy nuclei between ' Au and Th, did not yield
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predictions which agreed with measured neutron elastic
scattering data.

Using the DWBA, Patterson et al. obtained simultane-
ous fits to global (p,p) elastic and (p,n) quasielastic data at
25, 35, and 45 MeV, the (p,p) data being generated via the
BG (Ref. 3) global Coulomb-corrected proton potential.
The energy dependent isovector and isoscalar strengths so
-obtained were reasonably successful in reproducing (n,n)
scattering on Al, Fe, Sn, and Bi at 7, 14, and 24 MeV. It
should be noted, however, that Patterson et al. employed
0.6 times the full Coulomb potential energy correction or
0.84Z/2 '~ MeV in the parametrization of both the real
and imaginary proton potentials.

The work of Carlson et al. and Patterson et al. would
indicate that the simultaneous fitting of global (n,n), (p,p),
and (p,n) data requires less than the full Coulomb correc-
tion in the imaginary proton potentials. To check the ap-
propriateness of the use of the full Coulomb correction
for the imaginary potential, the Lane coupled equations
were applied to (p,p), (n,n), and (p,n) scattering on the
even tin isotopes. The (p,n) measurements were obtained
at E~ =24.5 MeV, the appropriate energy to complement
(p,p) scattering measurements at 24.5 MeV and (n, n) mea-
surements at 11 MeV. Such an analysis on a series of
isotopes at bombarding energies specified by the Lane
coupled equations provides a less ambiguous test of the
applicability of the coupled equations (and appropriate-
ness of a full imaginary Coulomb correction) since any
lack of detailed agreement cannot then be attributed to the
use of global potentials and/or comparisons with mea-
surements at not precisely the appropriate bombarding en-
ergies.
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FIG. 1. Time-of-flight spectrum for "Sn(p, n)" Sb at
O~,b ——3.5' and 24.5 MeV bombarding energy. Increasing time of
flight is towards the left. Time calibration of the system is
1.015 ns/channel. Clearly visible above the continuum are neu-
tron groups populating the ground and 2+ excited-analog states
in 116Sb

EXPERIMENTAL METHOD

The 24.5 MeV protons were accelerated by the
Lawrence Livermore National Laboratory Cyclograaff. '

A 15 MeV 'H beam was extracted from the 80-cm
fixed-energy cyclotron and was swept to reduce the burst
rate from 25 to 2.5 MHz. The beam was then injected
into an EN Tandem Van de Graaff for acceleration to the
final energy. The average beam current on target was typ-
ically 60 nA; the burst width was typically 2.5 ns F%HM,
corresponding to an energy spread of 0.23 MeV for ll
MeV neutrons.

The tin targets (isotopic enrichments & 93%%uo) were
self-supporting metal foils of around 4 mg/cm thickness.
Sixteen collimated 10.75 m flight paths (see Fig. 1 of Ref.
11), which span the angular region from 3.5' to 159', were
employed for simultaneous data acquisition. To prevent
overlap in the time-of-flight spectrum of low energy neu-
trons with high energy neutrons from a subsequent burst,
a neutron detector bias of 5.4 MeV was employed. Pulse
shape discrimination was employed on the sixteen 11.4 cm
diameter by 5.1 cm thick NE213 scintillators to reduce
the gamma ray background. The stop pulses into the
time-to-amplitude converter were generated by a channel
electron multiplier' which detected secondary electrons
emitted from a thin (20 pg/cm ) carbon foil located about
90 cm in front of the target. For a discussion of the neu-
tron detector efficiency see Ref. 11.
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FIG. 2. Measured differential cross sections (bottom) for
populating the ground state analog in "Sn(p, n) at 24.5 MeV,
and (p,p) differential cross sections (top) generated using optical
model parameters from Beer et ai. Solid lines are simultaneous
best fits generated using the search routine on the Lane coupled
equations code.
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FIG. 3. Same as Fig. 2 except for ' Sn. The dotted curve is
the differential (p,p) cross sections calculated with the one-
channel optical model code using coupled equations parameters.
The dashed curves are the coupled equations predictions assum-

ing no Coulomb correction on the imaginary potential starting
from the Lane consistent neutron potential [Eq. (A3b)].

EXPERIMENTAL RESULTS

Figure 1 shows a raw time-of-flight spectrum at
8h&

——3.5' for " Sn(p, n)" Sb at a proton bombarding ener-

gy of 24.5 MeV. Clearly visible above the continuum are
the neutron groups leading to the 0+ ground and 2+
excited-analog states in " Sb. The counts in the 0+ group
were extracted using a computer code which fitted a
Gaussian to the peak. In all cases, a linear background
was assumed. The extracted counts were converted to
differential cross sections which are displayed for
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FIG. 4. Same as Fig. 2 except for ' Sn.

Sn in the bottom half of Figs. 2—4, respectively.
The errors on the differential cross sections are com-
pounded from the counting statistics and the goodness of
fit to the peaks. The plotted errors are the above errors or
+7%, whichever is larger, the latter figure representing
the absolute uncertainty in the detector efficiency. Our
differential cross sections at 21.5 (Ref. 13) and 24.5 MeV
for " 'z4Sn are consistent with the Colorado (p,n) mea-
surements' at 22.8 MeV. A comparison of our differen-
tial cross sections for ' Sn(p, n) at 24.5 MeV shows
reasonable agreement with the 25 MeV measurements of
Ref. 7.

LANE COUPLED EQUATIONS CALCULATIONS
OF (p,p) AND (p,n) SCATTERING

The Lane coupled equations code' (LOKI 74), wliicll
provides an exact solution of the Lane coupled equations,

TABLE I. Isoscalar and isovector strengths in MeV. '

Vp

8'p
V1

81
V'V', +ZW', b

x'(p, p)
X'(p,n)

Initial

50.6
8.68

82.4
51.2

1.08
3.34

116Sn

Final

49.9
9.22

71.8
69.4
89.2
0.77
2.43

Initial

50.6
8.68

82.4
51.2

3.23
9.6

118Sn

Final

49.8
9.15

67.6
68.3
85.3

1.00
1.65

Initial

50.6
8.68

82.4
51.2

2.47
14.3

12PSn

Final

50.1

9.44
69.0
63.0
84.0

1.22
1.92

Initial

50.6
8.68

82.4
51.2

2.81
8.55

122S

Final

49.8
9.38

75.5
59.0
87.9

1.50
2.13

Initial

50.6
8.68

82.4
51.2

1.99
4.53

124Sn

Final

49.9
9.54

71.2
71.4
89.6

1.80
3.26

Up = Vp+

ihip

and U1 ——V1 +i W'1, with Vp and V1 having a Woods-Saxon volume and Fp and F1 having a derivative Woods-
Saxon surface form factor.
K =kz/k~ ——0.58, where oz(p, n)=kzWf and oz(p, n)= ki V~, oz(p, n) obtained from LoKi 74 for ' Sn.
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was employed to calculate simultaneously (p,p) elastic and

(p,n) quasielastic scattering. The geometrical and spin-
orbit parameters were assumed to be identical for protons
and neutrons and were taken from set A of the global
Ohio University neutron potentials. ' The Coulomb dis-
placement energy was calculated from the expression
1.444Z/A'~ —1.13 MeV (Ref. 17), where Z is the Z of
the target plus —,. The initial isoscalar and isovector
strengths (see Table I) were obtained by comparing global
set A at E„=11 MeV with the U„„parametrization of
Eq. (2) and identifying the corresponding isoscalar and
isovector real and imaginary components. A four-
parameter search was then instituted on the volume-real
and surface-imaginary isoscalar and isovector strengths to
best fit the (p,p) and (p,n) data. In the search routine the
isoscalar and isovector strengths were identical for pro-
tons and neutrons [see Eq. (2)], and the total neutron and
proton potentials were automatically changed to reflect
changes in the isoscalar and isovector strengths. Because
tabular data were lacking, the (p,p) cross sections were
generated from the one-channel optical model code
LOKI 30 using optical parameters derived by Beer et Ql. ,
from their fits to the (p,p) data at 24.5 MeV. For each
isotope„eighteen data points (see the top halves of Figs.
2—4) between 20 and 130' were chosen so as to character-
ize accurately the minima and maxima of the proton elas-
tic scattering angular distributions. To ensure that the
I.OKI 74 search routine gave roughly equal weights to fit-
ting the (p,p) and (p,n) data, the errors on the (p,p) elastic
differential cross sections were made comparable to those
of the (p,n) quasielastic data. These assigned errors varied
from +7% at the forward angles to +15% at the back an-
gles (see the top halves of Figs. 2—4). Fortuitously, these
assigned errors are not unreasonable since Beer et al.
quote an absolute cross section normalization uncertainty
of +15%.

Simultaneous best fits to the (p,p) and (p,n) data are
shown as solid lines in Figs. 2—4 for " ' ' Sn. Similar
quality fits were also obtained for " '22Sn. Within the
quoted errors on the (p,p) and (p,n) cross sections, the
search routine has provided acceptable fits to (p,p) and

(p,n) data.
The best-fit isoscalar and isovector volume-real

strengths ( Vo, Vi ) and surface-imaginary strengths
(8'0, 8'I) are listed in Table I along with the initial and
final X values for the (p,p) and (p,n) channels. The obser-
vation (see Table I) that the (p,p) and (p,n) data are explic-
able in terms of a relatively constant "total" isovector
strength (+Vi+k8'i ) indicates that coupling to excited
states is fairly uniform over the isotopic sequence, and
need not be included explicitly in the present analysis.
The k factor obtained using i.oKI 74 corrects for the fact
that VI and 8'j are not equally effective in generating
cross sections to the analog state. As required, the iso-
scalar strengths are also fairly constant. The small varia-
tion of the isoscalar and total isovector strengths could be
due to the neglect of the coupling to the 2+ and 3 states.

Using U of Eq. (2) to generate neutron parameters
from the best-fit isoscalar and isovector strengths for each

isotope, (n,n) elastic scattering at 11 MeV was calculated
using the one-channel optical model code LOKI 3D. These
predictions (solid lines) are compared with measurements
in Fig. 5. The agreement between our predictions and
measurements is comparable to that obtained between the
optimum fits (see Fig. 4, Ref. 9) and measurements. This
would imply that our values of V and 8" are close to
those of Ref. 9. An examination of Table II shows excel-
lent agreement for ' Sn and slightly poorer agreement for
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FIG. 5. "6'2 ' Sn(n, n) elastic scattering angular distribu-
tions at 11 MeV. Measurements are from Ref. 9. Solid lines are
predictions employing the isovector and isoscalar strengths de-
duced from a simultaneous best fit to (p,p) and (p,n) data.
Dashed curve for ' Sn(n„n) is the prediction assuming no
Coulomb correction for the imaginary potential while conserv-
ing the total imaginary proton strength obtained from the Lane
coupled equations search code.
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Sn. Table II also shows that our values of V and W
are close to those obtained from global set A. Table I
shows that a decreasing VD is compensated by a decreas-
ing V&, while an increasing 8'0 is compensated by an in-

creasing 8'I, resulting in small changes in V and 8'from
the global set A values.

The success of the Lane coupled equations in simul-
taneously fitting (p,p) and (p,n) at 24.5 MeV and subse-
quently (n, n) at 11 MeV is consistent with the assumption
of a full Coulomb correction for both real and imaginary
potentials for 24.5 MeV protons on the tin isotopes. In
the Appendix, the neutron imaginary potential is derived
on the assumption of no Coulomb correction while con-
serving the total proton imaginary potential obtained
from the search routine. The prediction using this smaller
imaginary potential is shown in Fig. 5 for ' Sn(n, n) as a
dashed line. Thus, independent of the information de-
rived from the (p,n) channel, calculations of (n,n) scatter-
ing at ll MeV do not agree with measurements if no
Coulomb correction is assumed in the parametrization of
the imaginary proton potential at 24.5 MeV.

In the Appendix, the proton imaginary potential is cal-
culated assuming no Coulomb correction starting with the
imaginary neutron potential of Eq. (A2b). The new
imaginary proton potential is increased relative to the
correct value given by the Lane coupled equations search
routine. The new isoscalar imaginary strength Ws' and
isovector imaginary strength 8'&' (see the Appendix) are
then inserted into LOKI 74 and (p,p) and (p,n) scattering
calculated for ' Sn. The results are shown as dashed
curves in Fig. 3. Although the fit to the proton data is
slightly poorer, the drastically lower (p,n) cross sections
resulting from the lower imaginary isovector strength
show the assumption of no Coulomb correction to be un-
tenable.

As an additional check, the W0' and W'," values were
regarded as different initial inputs into the search routine.
After searching, the final best-fit isoscalar and isovector
real and imaginary strengths were identical to those listed
in Table I. Figure 3 also shows (dotted curve) ' Sn(p, p)
calculated with the one-channel optical model code
LOKI 3D using values of parameters obtained from the
LoKI 74 coupled equations search routine. With the ex-
ception of differences at 8& 150', the good agreement
with the coupled equations result confirms that the cou-
pling term is indeed small compared to the elastic scatter-
ing terms.

CONCLUSIONS

A straightforward application of the Lane coupled
equations to fitting 24.5 MeV (p,p) and (p,n) data on the
tin isotopes has yielded isoscalar and isovector potential
strengths which produce very good fits to (n, n) data at 11
MeV. As discussed in the Introduction and Appendix,
the applicability of the Lane coupled equations is con-
sistent with the full Coulomb potential energy correction
on the imaginary potential for the tin isotopes at 24.5
MeV bombarding energy. Furthermore, it was shown that
the neutron and proton imaginary potentials, deduced
from the corresponding best-fit proton and neutron poten-
tials, respectively, assuming no Coulomb correction, yield
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predictions which disagree with measurements. In addi-
tion, independent of (p,n) data, (p,p) scattering at 24.5
MeV and (n,n) scattering at 11 MCV are themselves con-
sistent with a single Lane model optical potential only if
the full Coulomb correction is applied to the imaginary
proton potential.

Recent analyses of experiments on " Ca (Refs. 4 and 19)
and Si (Ref. 20) and theoretical calculations on Ca
(Refs. 21 and 22) and Pb (Ref. 23) would suggest that
the imaginary Coulomb correction is dependent on both
energy and nuclear structure effects, and is approximately
one-half the full Coulomb correction for Ca and Pb at
20—30 McV bombarding energy. Using a microscopic
folding model, Dietrich et al. have found that good fits
to Pb(n, n) and Pb(p, p) can be achieved only if the full
Coulomb correction is invoked in evaluating the local
momentum in the exchange calculation and no Coulomb
correction is used in evaluating the eneI'gy dependent t
matrix. It is thus surprising that the tin isotopes require
the full Coulomb correction for the imaginary potential.
The good agreement observed using the Lane coupled
equations could well be due to energy dependent nuclear
structure effects resulting in an effective full Coulomb
correction for the tin isotopes at 24.5 MCV proton energy.
Thus, it would be interesting to calculate the eneIgy
dependence of the imaginary Coulomb correction for the
tin isotopes. In addition, thc cncIgy and mass regimes iQ

which the full Coulomb correction on the imaginary po-
tential is applicable can be investigated by applying the
coupled equations to the tin isotopes at higher bombard-
ing energies and to other nuclei ( Fe, Fe, Zn, Pb,
etc.) pmvided appropriate (p,p), (p,n), and (n,n) experi-
mental data exist. .

W„=Wo(0)+aE„— [WI (0)—pE, ] . (A2b)
(N —Z)

E~=E„+ ', (full Coulomb correction)
1.38Z
g 1/3

=E„+CDE,

as is the case in the quasielastic (p,n) reaction, then

Wp ——Wo(0) +aE„+ [WI (0)—pE„](N —Z)

(N —Z)—
(A3R)

W„=Wo(0) +aE„— [Wl (0)—pE„](N Z)—
(N —Z)—= 8"0— 8'1 .

4A
(A3b)

Hence, at bombarding energies differing by the CDE the
effective isoscalar ( Wo) and isovector ( WI ) strengths are
identical for protons and neutrons as specified by the
Lane coupled equations.

A proton imaginary potential determined solely from
flttlIlg pI'otoII data Rlld pal'Rlllctrlzcd wl'tllout cxpllclt
Coulomb coI'Icction terms is given by

Wp ——Wo(0)+aEp+ [Wl (0)—pEp] . (A4)
(N —Z)

4A

Comparison of Eq. (A4) with (A2a) shows that

ACKNO%'LEI3GMENT8 Wo(0) = Wo(0)— 1.38Z
g 1/3
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APPENDIX

In Eq. (2), Uo and Ul are in general complex and given
by

Uo ——Vo+i8'o,

W'I (0)= W'1(0)+ ', P .

(A5)

If Wo(0) and W'I (0) are then incorrectly interpreted as
the zero energy isoscalar and isovector strengths, the re-
sulting neutron potential is

W„'= Wo(0)+aE„— [Wl(0) —pE„],(N —Z)

(A6)

U1 ——V1+i8'1 .
1.38Z
g 1/3

1.38Z
g I j3

1.38Z P(N —Z)
g 1/3 (A2a)

The treatment of Wo and W& with respect to energy
dependence and Coulomb correction is similar to that for
Vo alld Vl. Hcllcc, 111 tllc followlllg, ollly Wo Rnd Wl
will be considered. If 8'o and S'1 are hnearly dependent
on energy and if the proton imaginary potential is
parametrized with the full Coulomb correction, the pro-
ton and neutron imaginary potentials are the following:

Wp
——Wo(0)+aEp+ [Wl {0)—pEp]

(N —Z)

Therefore in the Sn(p, n) reaction at E~ =24.5 MCV, where
a full Coulomb correction applies, the new imaginary neu-
tron potential is reduced relative to the correct Lane cou-
pled equations value [Eq. {A3b)].

Starting with the Lane consistent imaginary neutron
potential of the form Eq. (A3b), the imaginary proton po-
tential ignoring the Coulomb correction in the imaginary
part is

Wp' ——Wo(0)+aEp+ [WI(0) —pEp] .X—Z

Substituting
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ol

E„+ ', for E~ yields
1.38Z
g 1/3

X—Z — 1.38Z X —Z
Wp' ——8'P+ WI +,/, a —}33

g 1/3

(A7)

38Z 1.38Z
Wp ——8'p+, /, a= Wp(Lane)+ ', a,g 1/3

(A9a)

'p' ——W o'
Z 8'), (A8)

8'p' ——Wp(Lane)+ ',
/3 a —P

1.38Z X—Z
g 1/3

Since a=-P and [(X—Z)/4A] «« I, the imaginary proton
potential without Coulomb correction (8'~ ) is increased
from the correct Lane coupled equations value [Eq.
(A3a)]. The proton imaginary potential, 8'~, can be ex-
pressed in terms of isoscalar and isovector components as
follows:

1.38Z P= 8'I (Lane)— 1.38Z
g I /3

III Eqs. (A9a) and (A9b), the, lsoscalar strength Is Ill-
creased while the isovector strength is decreased relative
to the correct Lane coupled equations values. In all calcu-
lations, P=0.31 from Ref. 7 and a was deduced to be
0.174 from Ref. 4 for E~ «25 MeV.
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