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This paper is mainly concerned with the construction and various properties of a new class of an-

tisymmetric, two-fragment„elastic scattering optical potentials. The construction is based directly
on the wave function formulation of N-particle collision theories, which are antisymmetrized herein
using the method of Adhikari and Glockle. Those theories which are label transforming are con-
sidered first. For such theories, the resulting optical potentials are asymmetric but nevertheless real
for energies below the inelastic threshold E;„,~, and are asymmetric and absorptive for E&E;„,i.
This unusual feature of asymmetry is a consequence of working directly with N-particle collision
theories, almost all of which are expressed in non-Hermitian matrix form, and arguments are
presented as to why asymmetry is not a practical problem. Not only are the new class of optical po-
tentials asymmetric, it is also found that exchange effects generally enter them in an extremely sim-

ple fashion. These latter two features distinguish the members of the new class from the optical po-
tential developed recently by Goldflam and Kowalski. Examples of label-transforming theories pro-
ducing such potentials are the extended Faddeev theory of Levin, the precursor form of the Bencze,
Redish, Sloan theory, and the wave function component theory of L'Huillier, Redish, and Tandy.
Their existence establishes that formalisms other than those based on the Alt, Grassberger,
Sandhas transition operator lead to symmetrized optical potentials free of elastic unitarity cuts, al-

beit potentials which are not Hermitian analytic. In addition to the above theories, a new, sym-

metrized form of the equations of the channel permuting array theory is developed.

I. INTRODUCTION

The principal goal of this paper is the construction and
description of a new class of two-fragment, elastic-
scattering optical potentials (or complex potential wells)'
for a scattering system composed of ¹identical fermions.
After a period of theoretical research some years ago, lit-
tle additional work on this problem was done until the re-
cent investigations of Goldflam, Kowalski, and Picklesi-
mer cited in Ref. 3. Like these latter investigations, the
work of this paper is based on modern collision theory,
but in contrast to them, we base our analysis on a wave
function and not a transition operator formalism. This
approach leads to a class of potentials in which exchange
effects enter in a relatively simple fashion and which
possesses the unusual but not impractical property, as dis-
cussed in Sec. V, of being real (i.e., free of elastic unitarity
cuts) and asymmetric for E below the inelastic threshold

E;„,~, and absorptive and asymmetric for E&E;„,~. These
are the main features distinguishing the present class of
optical potentials from those of Ref. 3. These features
and the existence of a class of optical potentials possessing
them is a result of our working directly with the integral
equations of X-particle collision theories, and we examine
this class in detail after deriving our main theoretical re-
sults.

It is not simply these features that distinguish our work
on optical potentials from that of Goldflam, Kowalski,
and Picklesimer (GKP). There is also the crucial fact that
in these two approaches the phrase "optical potential"
(i.e., "unaveraged complex potential well" ) has different
meanings. In this paper and others connected with it, we
depart from what is no doubt the more traditional mean-
ing and denote as an optical potential any one-body effec-
tive potential which, when used in the relevant, one-body,
relative-motion Schrodinger equation, leads to the exact,
two-fragment, elastic scattering amplitude (to within a
phase factor). It is within this context that we derive and
examine the new class of antisymmetrized optical poten-
tials. GKP on the other hand, have confined their use of
the phrase optical potential to its more traditional mean-
ing of an effective potential which is real and symmetric
for E &E;„dand is Hermitian analytic for E &E;„,&. Be-
cause of this "strict constructionist" approach, they for-
mulated their Hermitian analytic optical potential by
means of a symmetric framework. Nevertheless, the
quantities studied in Sec. II of Ref. 6 form a natural path
to an asymmetric formulation such as ours: in that sense,
the work of Ref. 6 anticipates some of our (independently
derived) results (although no work formulating an an-
tisymmetric, asymmetric optical potential has been pub-
lished by GKP). It should be clear therefore, that the op-
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tical potentials of the transition-operator approach of
GKP and of the wave function approach used herein are
very different objects.

In order to derive an antisymmetrized, two-fragment
optical potential using a wave function approach, it is
necessary to develop a scheme for antisymmetrizing (or at
least partially antisymmetrizing} the quantities that occur
in this formulation of many-particle scattering theory.
The relevant quantities are known as wave function com-
ponents; ' the development of a procedure for antisym-
metrizing them is a second goal of this paper. The
method followed is essentially that of Adhikari and
Glockle.

II. BACKGROUND

A. Notation

%'e consider a scattering system composed of X parti-
cles labeled 1, . . . , X, initially assumed to be distinguish-
able. Corresponding to the various asymptotic arrange-
ments into bound fragments are partitions of the particles
into distinct clusters. Partitions will be denoted a (i), b (j),
etc., and can contain m clusters, 2 & m & N. The
parenthetic labels i, j, etc., will distinguish the various or-
derings of the particle labels, e.g., b(0)=(1)(2)(34), and
b (1)=(1)(3)(24) in the N =4 case. For any given b, the in-
dex j will take on the Nb+1 values of 0&j &Nb. The
parenthetic label "0"will always refer to a specific serial
ordering, as in the b(0) cited above. The set Ib(0) I will
be referred to as the set of canonical labels. ' Two-cluster
partitions will be denoted by lower case Greek letters, e.g.,
a(i) and p(j}. When it is necessary to specify the number
of clusters m in a given partition, we shall append it as a
subscript, e.g., b~(j ) Two part. itions b (j) and b (k) are re-
lated by the operator Pb(j)b(k),

in partition b(j },i.e., processes of the form a(i)n ~b(j)m.
The wave function components of an N-particle scattering
theory will be denoted fb(j)(a(i)n ). We shall add super-

scripts when needed to distinguish analogous quantities
occurring in different theories.

4"(an ) =A (p) %(a(0)n )

—1/2

g ( —1) "R (;)%(a(i)n),
/=0

(2.4)

B. Antisymmetrization procedure

When the N particles forming the scattering system are
identical fermions, which we assume, the solution to (2.2}
must be antisymmetrized. The procedure we follow to
achieve this is a slight generalization of that of Ref. 8. (It
also holds for identical bosons by setting the fermion pari-
ty phase factors and internal symmetrizers equal to unity. }
We illustrate the procedure in this subsection by applying
it to %(a(i)n) of (2.2).

We first define the b-channel antisymmetrizer Ab(p),
generalizing the analogous antisymmetrizer of Ref. 8:

Nb

Ab(()) = (Nb+ 1) ' $ ( —1) "Rb(i)Pb(i)b(p), (2.3)
i=0

where, for the assumed case of identical fermions,

( —1} ""' is the parity of the permutation and Rb(;) an-
tisymmetrizes the internal states of b(i). As in Gold-
berger and Watson, ' we employ a normalization such
that Ab(p) produces a normalized state. Then, if %(a(i)n)
solves (2.2) in accord with the usual boundary conditions,
the properly antisymmetrized solution of (2.2) is qi"(an)
given by

b(j)=Pb(J)b(k)b(k) . g 1) where

We are interested in collisions initiated in a two-cluster
channel, e.g., a(i). The corresponding Schrodinger wave
function will be denoted %(a(i)n ); it obeys

(E—H )%'(a(i)n )=0,
where H is the Hamiltonian for the system and n denotes
the internal states of the colliding fragments. Correspond-
ing to partition b (j) is the decomposition
H=H~(J~+ V ' ', where V 'J' is the intercluster interac-
tion in partition b (j) and Hb(j) is the Hamiltonian govern-
ing the behavior of the system with the V (j)=0. The
eigenstates of Hb(j) will be denoted 4b(j)n and are a Prod-
uct of bound states Pb(j)„for the m clusters forming b(j)
times relative motion plane wave states. The subscript n
will denote the bound state quantum numbers, just as in
0'(a(i)n} of (2.2). The only @b(j)n that we shall be in-
terested in have the same total energy E as appears in
(2.2); this energy dePendence of Cb(j)n will be suPPressed.

From the Hb (j) we can form the resolvents
Gb( )(z) =(z —Hb( )), whose z~E+i 0 limits define theJ J

~ (+)usual outgoing wave Green's functions Gb(J) (E). Transi-
tion operators wi11 genera11y be denoted T~(J~~(;~,

' they
describe transitions from states in partition a(i) to those +Gp(j) (E)I ~(j))Ii"(an ), all P and j . (2.6)

%(a(i)n)=P () (p)%(a(0)n)

and where N =N +1, Nb ——Nb + 1, etc. Henceforth, we
shall assume, unless otherwise stated, that the i, j, etc.,
sums in this paper run over all allowed values, including
zero. With this understanding, the limits on these sums
and those, e.g., on b or P will generally be suppressed in
all remaining equations where they appear.

Integral equations are the standard means of combining
(2.2) with the relevant boundary conditions. If particle
distinguishability is assumed, then a unique solution to
(2.2) obeys the N2 ——2 ' —1 Lippmann-Schwinger (LS)
equations

~(a(i}n}=+.(;).&~(,).()+G~(iI«}I'""'P(a r n ~

where p(j} runs over all two-cluster partitions. We now
let the particles be identical fermions. Application to (2.5)
of the procedure embodied in (2.4) then yields (Ii"(an)
obeying

+a(i) 1 /2g ~p(j)a(i)( 1) a(i)@a(i)n jN a
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This set of N2 equations with the terms P+a omitted was
originally derived in Ref. 8. Because questions concerning
its validity have been raised, we present in Appendix A an
alternative derivation involving Mgller operators. In gen-
eral, we shall assume that the internal states P (;)„areal-

ready each antisymmetric, so that in (2.6) and also in simi-
lar equations below, we may replace R (;)4 (;)„by4 (;)„.

III. ANTISYMMETRIZATION OF
LABEL-TRANSFORMING

WAVE FUNCTION EQUATIONS

A. General results

The procedure of Eq. (2.4) can be used to antisym-
metrize any type of wav function equation. Because of
their relative simplicity, w shall restrict our discussion of
connected-kernel, S-particle scattering equations to those
in which the relevant labels correspond to partitions rather
than chains of partitions.

The general form of the wave function component
equations of interest to us is

0b(j){a{i )n ) @a(i)n ~b(j)a(i)

b(+j)'(E) g Vb(1),(k)i', (k)(a(i)n ),
a, k

(3.1)

where itib(j){a(i)n) is the (distinguishable-particle) com-
ponent in partition b (j) generated by a two-body collision
in partition a(i). The connectivity property of (3.1) is
maintained by the coupling potentials Vb(j), (k), whose
form depends on the particular theory. In general,
Vb(j), (k) is asymmetric, so that (3.1) is a non-Hermitian set
of equations. It is this non-Hermiticity that leads to the
asymmetry of the new class of optical potentials of Sec.
IV. Some examples of Vb(j), (k) are given below.

We now assume that the N particles are identical fer-
mions and apply the method of Eq. (2.4) to Eq. (3.1). This
produces components itib(j)(an)=A (0)itib(j){a(0)n), which
obey

appropriate linear combinations. The simplest examples
to deal with are those for which Vb(j)q(k) is label
transforming, ' and we restrict ourselves to that class in
the remainder of this section. For future comparison with
the transition operator formalism of Ref. 10, it is helpful
to display explicitly the implicit presence in Eq. (3.2) of
the operator Rb(k). %'e can do this most simply by allow-
ing Rb(j) to act on each side of this equation. From argu-
ments similar to those used in Sec. III 8 below it follows
that

1$b(j)(an ) =Rb (i)gb (j)(an )

and hence, that (3.2) is equivalent to

4b(j )(an ) =g ( 1) @a(i)n~b(i)a(i) jN a

+Gb(j) (E)g Rb(j)Vb(j)n(kA'a(k)(an ) '(+) I

a, k
(3.3)

To obtain (3.3) we have also used the following relations:

Rb (j )@a(i)n ~b (j)a(i) @a(i)n ~b (j )a(i)

—1
~~b(j )a(k)~ ~pb(j)pa(k) ~

then as we prove below, pb(j)(an ) obeys

0b(j)(an ) ( 1) pb(j)b(0A'b(0)(an )

We next sum both sides of (3.5) on j, which gives

g Wb(j)(an) g ( ) Pb(j)b(0) Pb(0)(an) .

(3.4)

(3.5)

[Rb(j),Gb(j) (E)]=0 .

The assumption of label transformability now allows us to
introduce Eq. (3.5), a result crucial to the further develop-
ment of our theory. Let p be any element of S)v, the per-
mutation group of order N. When Vb(J), (k) is label
transforming, i.e., when

A(j)(an ) g { 1) C a(i)n'lib(j)a(i)~N a

+Gb(j) (E)g Vb(j)n(k)itn(k)(an )
(+) t

a, k
(32)

The RHS of (3.6) is almost in the form Ab(0)fb(0)(an),
where Ab(0) is defined by (2.3). We put it in this form by
introducing fb(I)(an ):

gb(j)(an)=NI, Qb(j)(an) . (3.7)

We have again assumed that each of the two bound states
in P (;)„is antisymmetric; hence R (;) does not appear in
the first term in the right-hand side (RHS) of (3.2).

Unlike the solutions 4"(an ) of (2.4) or (2.6), the

pb(j)(an) of (3.2) are generally not antisymmetric. The
reason for this is the dependence of pb(j)(an) on its
distinguishable-particle label b(j). The exception to this
general situation occurs when the exact solution to (3.1) is
independent of the subscript b(j) and is equal to the
Schrodinger solution %(a(i)n ), in which case (3.2) reduces
to (2.6), which defines the antisymmetric Schrodinger
solution 4"(an). There are a number of theories (i.e.,
choices of Vb(j)a(k)) for which this is true, ' examples of
which are encountered below.

In the general case, properly symmetrized components
may be obtained from the gb(j)(an) of (3.2) by forming

Then the RHS of (3.6) becomes

Nb Q ( ) pb(j)b(0)fb(0)(a
J

=~b(o)fb(o)(an ) =Wb(an ), (3.8)

where we have used the fact that pb(j)(an) like fb(j)(an)
obeys

4(j)( )= b(j) 4(j)(

Thus, (3.3) leads, via (3.5), to manifestly antisymmetric
components pb(an), defined with a normalization analo-
gous to that of the antisymmetrized plane wave or of the
full scattering state )Ii"(an ). We shall refer to b as a ge-
neric partition or channel.

For that special class of theories in which the sum of
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g it}b(J)(a(i )n ) =%(a(i)n ),
bj

then (3.6) and (3.7) imply that

(3.9)

the components over the distinguishable-particle partition
labels yields the (unsymmetrized) Schrodinger solution, '
i.e., for which

where

( y '(an ) ),(,)
—y;(,)(an ),

N
A +a(i) 1/2)b(j)= g ( ) @a(i}n~a(i)b(j)~N a

i=0

(g )b(j)a(k) =~b(j)a(k)Gb(j ) (E) ~

+

g N b Pb(an ) =%~(an ) .
b

(3.10)

For those theories where {ttb(i)(an ) is independent of b (j)
and equal to }Ii"(an), (3.5) is an intrinsic property of
qi"(an ) and (3.10) simply introduces a renormalization.

Equation (3.5) implies that it is sufficient to determine
the canonically labeled components. Setting j=0 in (3.3)
and using (3.7) we have

Pb ( )0( an) g( 1 ) @a(i)n ~b(0)a(i)

+Gb(())(E) Q (Nb/N, )' Rb(0)
a, k

+ Vb(0)a(k)|i'a(k)(an ) .

(V)b(j)a(k) Vb(j)a(k)

Similarly, (3.12) becomes

and

(}(t0(an ) )b ——Pb(p)(an ),
(@0)b @a(0}n~ba ~

(go )ba Gb(0) (E+ba

go(an )= 40+go Vo 00(an ),
with

(3.15)

Wb(p)(an ) @a(0)n 5b(0)a(0)

+Gb(0)(E) g Vb(0}a(0)tea(0)(an ),(+) (3.12)

Application of (3.5) to the g (k}(an ) on the RHS of (3.11)
then leads to a set of equations involving the canonically
labeled components gb(0)(an ) alone:

8=(g —V) (3.16)

( Vo)ba Vb(0)a(0)

is defined by (3.13).
In addition, we define the two matrices of Green's func-

tions, 9 and ~S:

where the exchange-effect Potential Vb(p) (p) is defined by ~&=(go Vo) '.— (3.17)

Vb(0)a(0) (Nb~Na) g~b(0)Vb(0)a(k)( 1) ~a(k)a(0} '
1/2 +a (k)

k

(3.13)
Equations (3.12) and (3.13) are the basic results of this

subsection, supplemented by (3.8) and (3.5). We choose to
work with the I }I'ib(0)(an ) ] rather than the I fb(0)(an ) I be-
cause the former are normalized to 4 (p)„5b(0) (0}. As a
result (see Appendix B), Eq. (3.12) yields amplitudes that
are the matrix elements of the properly symmetrized tran-
sition operators' taken between plane wave states normal-
ized as are the Ipb(0)(an)j themselves. Note that if we
had used the Igb(0)(an) I, it would have been necessary to
renormalize the resulting amplitudes.

Equation (3.3) is in general a very large set of equa-
tions. ' The assumption of label transformability has ef-
fected a reduction to Eq. (3.12), which is N, )&N„hwer e
N, is the total number of equivalence classes. ' From the
structure of (3.12) [and also (3.3)] it follows that fb(0)(an )
yields asymptotically at least portions of and in some
cases the whole transition amplitude for processes of the
type a~b '' But (3.5) s.hows that to within a phase fac-
tor, gb(i) and gb(0} yield the same asymptotic quantities.
This will prove to be a crucial ingredient in our formula-
tion of the optical potential.

It is useful for further developments to express (3.2) and
(3.12) in matrix form. Equation (3.2) will thus read

P '(an)=4 "+gVQ'(an), (3.14)

In terms of these quantities, the solved forms of (3.14) and
(3.15) are

P'(an)=C} "+8V4" (3.18)

go(an ) = 40+ ~9' Vo@o(an ) . (3.19)

~b(j)b{0)@b(0)m @b(j)m

to help construct the unnormalized, N-particle, antisym-
metrized plane wave states

I}"(an) =g( —1) {'}4(;)„

~a(s)
Pa(i)a(0) @a(0)n (3.20)

B. Proof of Eq. (3.5).

In this subsection, we shall prove Eq. (3.5). We employ
the relations

~a(i)a(0) @a(0)n @a(i)n

and
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~ 1/2

X{ 1) Pb(j)b(0)@b(0)m .
J

The states (I~b(j) are products of an antisymmetrized
t

bound state for each of the clusters forming b{j) times
Ielatkve plaIlc Vvavc states.

To establish (3.5), we usc the solved form (3.18), which
in terms of partition labels reads

+a A(j){an) y~b(j)a(i){ 1) @a(i)n+ y +b(j)d(k)Vd(k)a(i){ 1) @a(i)n ' {3.22)

FOIsl'mpllclty~ WC Consider P =Pb(0)b(j). ThCI1 froII1 (3.22) WC llavC

+a P 4(j){an)=QP~b(j)a(i)P P@a(i)n + g P+b(j)d(k)P PVd(k)a(i)P P@a(i)n ~

1/2

d, k, i
(3.23)

~' ( ).={—1) "@
( ). ~

By assumption, Vis label transforming, which means that 9' is also. Hence (3.23) becomes

PA(j){an)= 4(0)p ( )P@ () + ~pb(j)pd(k)Vpd(k)p ()Pc' (.) ~ (3.24)

Now, Pb(j ) =b (0) while the fact that P is a member of the permutation group of order N means that Pd (k}=d(k'). Be-
cause of this latter relation, the sum on all k of Pd (k) in (3.24) can be replaced by the sum on all k' of d(k'), exactly as
in Ref. 10. Since k is a summation variable wc may replace it by k. These facts transform {3.24) into

$ /g+a Pfb(j)(an )=g ~b(0)Pa(i)P@a(i)n + +b(0)d(k) Vd(k)Pa(i)P@a(i)n

Evaluation of Ppb( )(an ) is thus reduced to the determina-
tion of J'4~~;~„. %'e shall prove that

+b(j )P@a(i)n ( 1 ) @Pa(l)n {3.26)

this result, when used in (3.25) establishes (3.5).
To verify (3.26) we expand ill"(an ) via the 4"(bm):

4 {an)=)jdp{m)4"(bm){4"(bm)
~

4"(an )} .

The antisymmetry property guarantees that P has the
same effect on (II"(an ) and on @"(bm), viz. ,

P~(bm) =f,e"(bm)

(3.27)

P4 {an)=fP~(an),
wh«e fP is a phase factor independent of the state labels
Nl and R.

The factor fP can be easily determined by using the ex-
pansion (3.21):

E~
P@"{bm)= g Pc'b(k)m = g fP@b(k )~ ~

C. Pl'o)ected cqQstioQs

It is often useful to work with only a few of the channel
components pb(0)(an ) rather than with the entire set obey-
lllg tllc Xn XNn cquRtlolls (3.15); wc Illay cvcll wlsli to 1)c
more restrictive and work with only certain relative
motion states (pb(0) ~

pb(0)(an)). Both choices can be
singled out by means of projection operators, leading to~p
equations for projected components P 0(an ) obeying equa-
tions with effective interactions, exactly as in the one-
channel problem. '

Let I0 be the X, XN, unit matrix, and define H 0 to be
a dlRgonR1 matrix liavlllg llollzcl'0 ciltllcs 0111y 011 tllc flist
n0 diagonal elements; these may each be unity or a projec-
tor of thc form X I p }{/ I, ~h~~~ the partition index
on

~
(() ) is suppressed. The complement to 9'0 is

B0 I0 %0. We——als—o define p 0(an )= %0/0(an )
Then inserting I0=%0+g0 into (3.15) and eliminating
the g0$0(an) portion in the usual manner, ' we find that
P 0(an) obeys

(3.29)

(3.28)

Sllicc tllc 8RIIlc fP Illllltlpllcs cacll tcrnl II1 tllc k slllll, Rnd
the two sums in (3.28) are identical, we may evaluate fP
by choosing k =j in the k sum and k'=0 in the k' sum.
That is, the same factor must multiply @b(0) in each of
the two expressions for P@"(bm). We readily find that

fP =(—1) '"'. This latter result, plus the relations (3.27)
and (3.28) then yield (3.26), which establishes (3.5). A
similar analysis holds for (3.3) as well.

(3.30}

I 0 (g()
'

gg V——
()B0)—

and where we have assumed that [&0,g0]=0. The effec-
tive interaction U0 is the formal solution to

(3.32)
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Equation (3.29) is the desired result; it will be employed
in the next section in our derivation of an antisymmetric
optical potential. Our interest is in cases for which H0
projects only onto two-body bound states for which the as-
sumed connectivity property of V ensures the connectivity
of (3.29) and (3.32). Furthermore, it is sufficient to con-
sider only the (connected) canonically labeled components
since the amplitudes obtained from g), (0)(an ) and
gb(J)(an }are phase equivalent by Eq. (3.5).

IV. ANTISYMMETRIZED OPTICAL POTENTIAL

A. General properties

Equation (3.29) provides a natural basis for construct-
ing an optical model in which the effects of particle iden-
tity are already included, and we undertake such a con-
struction in this section. [Equation (3.29) also provides a
formalism for treating nuclear reactions, a topic that will
be discussed elsewhere. ' ]

The problem of deriving an elastic scattering optical po-
tential or at least a one-body complex potential well'
which includes the effects of the Pauli principle is an old
one. Citations to, as well as comments on, much of the
relevant literature can be found, e.g., in Ref. 3. The early
formal work stressed the notion of projection operators
onto antisymmetric subspaces, while more recent investi-
gations have emphasized group theory and the need to
work with connected kernel, multiparticle collision
theories, which are essential for determining not only
unique results but, for example, the effects of breakup.

In the most recent work on this problem, the following
features of the antisymmetrized optical potential formal-
ism are deemed crucial:

(i) it should yield a two-body description of two-
fragment elastic scattering;

(ii) it should yield an optical potential which is real
below the lowest inelastic threshold (assuming no exoergic
reaction channels);

(iii) it should be based on a connected-kernel description
which is consistent with (i) and (ii) and which allows for
approximations also consistent with (i) and (ii).

An obvious consequence of (iii) is that the detailed
structure of the optical potential will depend on which
many-particle collision theory one uses; i.e., the optical
potential will not be unique.

One way of ensuring (ii) is to require that the optical
potential has no elastic unitarity cuts. ' In recent work on
the antisymmetrized optical potential, various transition
operators have been investigated and it has been concluded
by Kowalski and co-workers that the appropriate one to

I

(~0 }b(0)c(0) a(0)0'4a ~ha ~ (4.1)

where P ~0@ is the projector onto the ground state in
channel o.',

~a(0)0 I '(t'a(0)0} &( a(0)0 I
(4.2)

i.e., we set n =0 in pa(0)„. For simplicity we shall drop
the second index 0, and write P (0) and (t (0). Since only
the a(0) element in %0 is nonzero, only the same element
in U0 will contribute to (3.29). This element will be
denoted U; from Eq. (3.29) a formal expression for it is

Ua = Va(0)a(0) + g I a(0)a(0) @a(0)~a(0)c(0)~c(0)a(0) ~

a, e

where the nonzero elements of B0 are

+a(0)a(0) =@a(0) 1 ~a(0)

and

(4 3)

Bb(0)g(0)=Bb(0)——1, b&a .

Next, consider it0. In order that the matrix element

&p (0) ~

U
~ p (0)) can be identified with the optical po-

tential, g (0)(aO) must obey the following boundary condi-
tion:

use is that denoted the Alt-Grassberger-Sandhas (AGS)
off-shell extension' since it leads to a Hermitian-analytic
optical potential free of elastic scattering cuts. For exam-
ple, Kowalski points out that the prior transition opera-
tor' (off-shell extension} produces an optical potential
that may have elastic scattering singularities.

Our approach to the antisymmetric optical potential
problem is based not on transition operators but on the
wave function equations developed in Sec. III. We first
consider those V0 that are label transforming. This allows
us to derive a class of asymmetric optical potentials which
satisfy the three criteria noted above when the two as-
sumptions on thresholds and nonabsorptiveness stated
below hold.

The two assumptions we invoke are first, that there are
no reaction channels whose thresholds lie below E;„,~ and
second, that the matrix elements Vb~o~, ~o~ are nonabsorp-
tive, e.g., that they are sums of Hermitian interactions and
do not involve subcluster transition operators or Green's
functions. Examples fulfilling these assumptions are
given in Sec. IV B. When either of these assumptions fails
to hold, an optical potential can still be defined, but it
may be absorptive at energies below the lowest inelastic
threshold. We note two examples of the failure of the
second assumption in Sec. V, and discuss a non-label-
transforming one in detail in Appendix D.

We begin by restricting H0 as follows:

(2~)'"&r, ka(0) ~
ga(0)(~O) & — e ~ +f'0,.0e

~ « (4.4)

where r is the intercluster separation in partition o;, k o
is the incident momentum, and fa(0) a(0) is the exact, an-
tisymmetrized elastic scattering amplitude. This will be
the case if fi, (0)(aO) is a "true component" and therefore

I

obeys Eq. (3.10). Equation (4A) is also the correct boun-
dary condition if pa(0)(aO) is independent of the subscript
a(O) and equal to %'"(aO), the exact, antisymmetrized
Schrodinger wave function. These statements follow from
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the results of Appendix B. There may be other choices of
wave function components for which (4.4) holds, but these
are sufficient for our purposes and are appropriate to the
examples given below.

The final step in our construction is to define the one-

body elastic scattering state
I

X'-+'):
k

~'.0,.0= & k.'
I
T

where
I
k '

I

=
I
k

(4.9)

The exact, antisymmetrized, elastic scattering transition
amplitude A p o is obviously given by the on-shell matrix
element of T~.

I

&'-"&—= &da(0) I Pa(0)(a0) & . (4.5)

From (3.29),
I

J'+') obeys

I

y'+') =
I
k.)+(E—e.o —lc.(0)+io)-'w".

I
x'-„+'),

a

(4.6)

where E (o& is the kinetic energy operator for the relative
motion of the two clusters forming channel a and

~ =&4 ( )IU IN ( )& (4.7)

=~ +~ (E—eao —1(a(0)+'0) (4.g)

is a one-body operator.
Under the assumption that & r

I

X'+ ) satisfies (4.4), F a

is the antisymmetrized complex potential well or (non-

energy-averaged) optical potential describing elastic
scattering of the two fragments forming channel a and

I

X'-+') is the optical model state vector. From (4.3), P a
k

is clearly seen to be nonlocal and energy dependent. When
the previously stated assumptions on threshold behavior
and nonabsorptiveness are satisfied, U and P are also
seen [via (4.4) and go in (4.3)] to be real below the inelas-

tic threshold and hence to be free of elastic scattering
singularities. (This nontrivial and very important con-
clusion is discussed in further detail in Sec. V.) Since F a
is a one-body operator and U is obtained by solving a
connected™kernel integral equation, the three crucial
features noted at the beginning of this section are satisfied

by our construction. However, P is not Hermitian ana-

lytic, a point discussed in Sec. V C.
Equation (4.6) is a one-body Lippmann-Schwinger (LS)

equation. We may use it to define a one-body transition
operator T~ obeying a similar LS equation:

B. Specific examples

We illustrate the preceding development with three ex-
amples; the first is based on the extended Faddeev theory
of X-particle scattering, ' the second on the precursor
form of the Bencze-Redish-Sloan (BRS) theory, " and
the third, equivalent to the second, is based on the AGS
off-shell transition operator. ' The first two of these
theories are discussed as a wave function formalism in
Ref. 15, the third is discussed in Appendix C. The key
element in the derivation of these formalisms is the
Benoist-oueutal, L Huillier, Redish, Tandy (BLRT) parti-
tioning technique for the external channel interaction
V ' in partition b„viz.,

V =ggC V.",
m=2 0

(4.10)

1. The extended Faddeev (EF) theory

In this case the matrix V of (3.14) has elements

EF m(k)
j (4.11)

which are nonabsorptive and energy independent. Fur-
thermore, as shown in Ref. 15, the structure of (3.1)
guarantees that in a two-cluster partition, the unsym-
metrized components Pp~z~(a(i )n ) satisfy

b
where C~ = [(—1) (m —1)!];V,

" is the set of interactions

external to (between) the r clusters forming partition b„
and internal in (binding) each of the m clusters forming
partition a; and here we assume pairwise interactions
only. The labels j and i referring to the arrangement of
particles in b„anda, e.g. , b„(j), are suppressed in (4.10).

3/2g 'EF
& ryder(k) I fp(J)(a(i)n) & —br(k)p(, )(bp(,).(t)&~.e

" +fp(, )~,.(;).e ' 'r
p ),1~~co

(4.12)

where fp( ) (;)„ is the exact, distinguishable-particle
scattering amplitude. Furthermore, these gt, (1) obey

'EF

I

for the optical potential. Inspection of (4.3) shows that in
this case, the leading term in U, viz, V (o& (o], is

g fb ("J.) 4(a(i)n), ——
r, b,j

EF a(k) ~a&k&
Va(0)a(0) ~ +a(0) Va(0) ( ) a(k)a(0)

k~o
(4.13)

where %(a(i)n) is the exact Schrodinger solution, and
hence are true components.

In the EF case the connectivity structure of the unsym-
metrized equations leads to Eq. (4.12). Since the connec-
tivity property does not change on symmetrization, then
the JIVE"( )(an ) obey a .similar boundary condition. Thus,

since in the EF theory P (0)(a0) yields the exact, antisym-
metrized scattering amplitude, this theory provides a basis

That is, in the lowest order only the pure exchange terms
contribute to the optical potential P ~. However, it is
shown in Ref. 15 by means of an off-shell transformation,
that the next order term in U actually leads to the direct
(nonexchange) Born term & k 'p (0) I

V
I pa(0)k~).

addition, a multiple scattering series for the distinguish-
able particle elastic amplitude has been developed in Ref.
15. The extension of this to the present case of identical
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particle scattering will be addressed in a future publica-
tion. '

gb (J)(a(i)n)=%{a(i)n), all b„(j). (4.15)

Hence, gb (J){a(i)n) satisfies (4.12) without the factor

5~(k))s(J), i.e., the boundary condition is given by the term
in parentheses for (4.12), which is the usual one for the
Schrodinger solution.

In order to apply these ideas to the identical particle
case, we must show that the analog of (4.15) holds for the
antisymmetrized components. The method for establish-
ing this relation, viz. ,

yb'R(,')(an )=q "(an ), (4.16)

follows precisely the arguments of Ref. 15 for the distin-
guishable particle case, the only change being the replace-
ment of the unsymmetrized quantities by their antisym-
metrized counterparts. Because of the essential repetition
of these steps of Ref. 15, we shall here assume that they
have been taken, yielding Eq. (4.16) as the result. As a
consequence, the form of the boundary condition obeyed
by rt)ir(an ) in the BRS case is the same as for P@p)(a(0)n ),
viz. , the term in parentheses in (4.12) with f@i)~ (p)„re-
placed by the exact antisymmetrized amplitude
fp(p) (p) . We therefore conclude that the BRS precur-
sor equations also provide a basis for the antisymmetrized
optical potential.

The precursor BRS components gb (J)(a(i)n ) are shown

in Ref. 15 to correspond to the precursor form of the BRS
transition operators. It is shown in Appendix C that these
same BRS wave function components also correspond to
the transition operators obtained by using the BLRT par-
titioning technique in conjunction with the AGS off-shell
extension. Hence the post and the AGS transition opera-
tors combined with the BLRT technique yield the same
optical potential.

Since the EF and BRS equations are generated by dif-
ferent off-shell transition operators (the prior and post, '

respectively), then their respective F ~'s are not expected
to be identical. Only their on-shell transition axnplitudes
will be the same. Equivalently, the EF and BRS optical
potentials will produce one-body wave functions which
will agree only asymptotically.

We remark here that the behavior of the lowest order
term in U is analogous to that of Eq. (4.13) for the EF
case:

Va(p)a(p) g ~a(p) Va(k) { 1) ~a(k)~(p) ~ (4' 17)
BRS a(0)

k~O

2. The precursor BRS equations

In this case, ' V~Rs=( V~"), where T means transpose,
so that

sRs b (j)
~b (j)a (k) Cm ~a (k) ~ (4.14)

which remains nonabsorptive and energy independent.
The index b„(j)in (4.14) labels the external and not the
internal portion of VBas. The consequence is that each
gq ~z&

is independent of the subscript b, (j) and equals the

full solution 5

In this case also only the pure exchange terms contribute.
The presence of the full, direct Born term and the ex-
istence of a multiple scattering expansion for F" in the
BRS case has been discussed by Kowalski; see also the
remarks in Ref. 15.

V. DISCUSSION

A. Elastic scattering singularities and antisymmetry

The analysis of the preceding section clearly establishes
the not-unexpected result that wave-function formulations
of X-particle collision theories can be used as the basis for
deriving an optical potential. Our conclusions go further
than this, however, since we also have claimed that when
the assumptions on thresholds and nonabsorptiveness are
satisfied, our method leads to an optical potential satisfy-
ing the three properties noted in Sec. IVA. While the
first of these is trivially satisfied by our construction, the
validity of the second and third property may not be so
obvious, and we discuss them in detail, property two in
this subsection and property three in Sec. V D.

There are two cases we consider: true components,
which we examine first, and, components like those of
BRS,' which are independent of partition labels and
equal to the full Schrodinger wave function. The crucial
property we invoke for true components is the boundary
condition (4.12), which holds by definition for all true
components and not just for the EF case. The meaning of
this boundary condition (bc) is that only rt@J)(a(i)n) con-
tributes asymptotically to the 2—+2 amplitude fir(J)
no component gb(j){a(i)n ), with b&P, contributes to this
amplitude. This result, which holds for all b, j, and i, de-
pends only on the connectivity property of the equations
of the particular formalism. Furthermore, the connectivi-
ty property of (3.1) is maintained when (2.4) is used to
form (3.2), since it depends only on the kernel term and
not the source (plane wave) terms. Maintenance of the
connectivity property thus ensures that fir(J)(an ) obeys the
same kind of bc as does Pp(J)(a(i)n), viz. , a form identical
to that of (4.12). That is, only Pi)(J)(an) contributes
asymptotically to the 2—+2 processes an —+p(j)m. By Eq.
(3.5), the amplitudes for an +P(j )m and an—~P{0)m are
identical apart from a phase factor. By the analysis of
Appendix 8, this amplitude (viz. , f&(p) (p)„)is precisely
the exact, properly antisymmetrized one obtained by tak-
ing plane wave matrix elements of the properly antisym-
metrized transition operators. That is, of course, why we
need only consider the canonically labelled components.
In addition, however, this bc states, for example, that all
the elastic flux in the EF description of the identical
particle case is contained asymptotically in
(P~(p)p ~

r)'j~(p)(aO) ) =
~

X'-„+'): none of it is obtained from

any other Projections, such as {P (p)p ~
g&(p)(a(0) ) or

{(()&(p)~
~

g&z(p)(aO) ), m&0. To ensure that we obtain only
f~(p)p ~(p)p of (4.4) asymptotically, we have restricted our
description to

~

X'+'); this is accomplished by means of
k

Hp defined by (4.1) and hence via the presence in F " and
U of the projector gp defined below Eq. (4.3).

The Presence of the Projectors Hp and gp have in-
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teresting consequences. Use of Ho, as noted above, means
that

I

X'+'& yields asymptotically the entire, antisym-
k

metrized elastic scattering amplitude. But,
I

X'+'& obeys
14

an equation involving the ground state matrix element of
U and this latter quantity obeys an equation [e.g. , (3.29)
or (4.3)] in which gp occurs. Hence gp ensures that no
elastic flux is contained in U~. That is, exactly as in Ref.
6, the presence of go ensures that &~ and U are free of
elastic unitarity cuts. Therefore, if all reaction channel
thresholds lie above E;„,~ and E &E;„,~, then P " must be
real since none of the Green's functions appearing in U
and in P ~ can have any poles. In addition, if E)E;„,&,

then P will become absorptive but will still not contain
elastic unitarity cuts due to the presence of gp. Finally,
since

I

P'+'& and & P (p) I
)Ii"(aO) & are equal asymptotical-

ly and fb(p)(aO) is here assumed to be a true component,
then f~(o)p ~(p)o is necessarily unitary when E &E;„,) even
though P " is asymmetric.

Similar comments apply to the second case, of which
the BRS components are an example. In this case, Eq.
(3.1) is a connected-kernel set whose components are each
equal to %(a(i)n). The antisymmetrization procedure
(2.4) now yields equations whose solutions are each
(P"(an ), which also satisfy (2.6) and (3.5). In this case,

&&~(o)p I
+"(a")&

= &0~(o)o I
fb(p)p(an) &

=
I
&'-„"&

uniquely yields, by definition, the exact, antisymmetric,
elastic-scattering amplitude. For energies less than the
first inelastic or reaction channel threshold and for no ab-
sorptive interactions appearing in H, then by the preced-
ing arguments the associated optical potential P is real.

The procedure of this paper may seem unusual in that
we partially symmetrize [recall that pb(an) is fully an-
tisymmetric, but fb(J)(an ) is not], and then project

g (p)(an) onto the ground state P (p)o to obtain IX'-„+'&,
a

denoted a one-body elastic scattering state. An an-
tisymmetrical N-body elastic wave function can evidently
be formed from P (Q)(g

+' by antisymmetrizing; it will
k

also yield the antisymmetrized elastic scattering ampli-
tude. Suppose, however, that we formed the fully an-
tisymmetric component p~(an) first and then projected it
onto P (p)p to form an alternate one-body elastic scattering
state

I
"a & =

& fa(o)o I g~(an ) & =
I X-„&+exchange terms .

a

It is clear that while
I u~ & will obey an equation like (4.6)

but with a different optical potential,
I

u & and IX'+ &
k

wi11 each yield the same amplitude. That we can generate
two different one-body elastic wave functions and optical
potentials for a given V~~o~d~o~ but still obtain the same
amplitude should be no surprise: we only require asymp-
totic equality. It is evident from this discussion that if we
wish to work only with antisymmetrized, X-particle
states, then the order of projecting and antisymmetrizing
is unimportant as far as the amplitude is concerned, al-
though changing the order will produce a different optical
potential. However, if an approximation is introduced,

then amplitudes as well as optical potentials will differ.
We consider approximations in Sec. V D.

We have referred to IX'+'& as a one-body elastic
k

scattering state. In view of the normalization problems
discussed, e.g., by Fliessbach, this nomenclature may
seen unwarranted, but it is in fact proper. We use it for
two reasons. First

I

P'+'& does yield the properly normal-
@

ized, fully antisymmetrized, elastic scattering amplitude,
generated by the one-body plane wave state

I
k & =

& P (p)p I
C (p)p &. Second, and more importantly,

suppose one uses suitably defined projection operators to
construct from the set (3.15) a coupled two-channel model
in which (t (o)p and P~(o)p are linked. Then, as shown in
Ref. 17, the elastic scattering state appearing in the exact,
antisymmetrized, rearrangement amplitude Ap~o~o ~o]0 is
Ig'-„+'&, normalized to

I
k & plus outgoing waves. By

working with scattering equations which yield the proper-
ly normalized amplitude, e.g., the set (3.15), one automati-
cally produces properly normed one-body states.

B. The LRT and CPA components

The only cases we have considered so far are those in
which Vb(J], ~k] is nonabsorptive and label transforming.
Two exceptions to this are the L'Huillier-Redish-Tandy
(LRT) components and the components arising in the
various channel permuting array (CPA) versions of the
channel coupling array (CCA) theory of N-particle scatter-
ing. ' In the former case, Vb"(J), (k) is label transforming
but apparently absorptive, due to the presence in it of
channel Green's functions. In the CPA case, Vb(J), (k) is
nonabsorptive but not label transforming due to the oc-
currence in it of the channel permuting array, a numerical
matrix whose entries are independent of b(j) and a(k).
There are both kinds of CPA components: true com-
ponents and those independent of the channel index and
equal to the Schrodinger solution, and we consider them
both below. The LRT components are true components
and we examine them first.

Since the LRT components are label transforming,
the analysis of Secs. III and IV is valid for them. Al-
though Vb(J), (k) contains Green's functions, the fact that
the gb(J) (an) are true components means that due to a bcLRT

like (4.12), P (o)(aO) must uniquely yield the antisym-
metrized elastic scattering amplitude: none of the
P&(p) (aO), P&a, can contribute to elastic scattering.
Hence,

must define a one-body scattering state obeying an equa-
tion with an optical potential which is nonabsorptive for
incident energies below the inelastic threshold when there
are no exoergic rearrangement channels. Furthermore, the
LRT-formulated optical potential must be free of elastic
scattering singularities since all the elastic Aux is neces-
sarily contained solely in

I
X &. Thus, despite the pres-

71

ence of the Green's functions in Vo, the correspondingLRT

optical potential enjoys the three properties listed in Sec.
IVA, e.g., U "(o)~(o) does not contain G~(p')(E).
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The CPA components are more complicated than those
of LRT because of their non-label-transformability. Lack
of this property means that the construction of Eqs.
(2.4) and (3.3) does not lead in any direct way to gb{J) (an)
obeying (3.5). Nevertheless, for those

gb {1)(a(i)n )
=%(a(i)n), application of (2.4) necessarily leads to
fb{J)(an)=%'"(an) H. ence lack of label transformability
only means that for these particular CPA components, the
antisymmetry is not made directly manifest through the
CPA equations. That antisymmetry nevertheless results
suggests that for the CPA true components, (2.4) and (3.3)
will produce g{J)(an) such that g Qb{.J) (an) is antisym-
metric, i.e., that the non-label-transforming equations are
only a temporary and not an ultimate obstacle to proving
antisymmetry. We prove this in Appendix D for the
X=3 case using a comparison method, and we conjecture
that for arbitrary N, g Pb{J) (an) is also antisymmetric
although we are as yet only able to offer plausibility argu-
ments to support this conclusion. If one accepts this con-
clusion, then, as discussed in Appendix D, the major ef-
fect of the non-label transformability in the CPA true
component case is that the set of N2=2 ' —1 equations
defining either the gq{J~(an) or the relevant transition
operators cannot be reduced to a smaller set indexed only
by the canonical labels, except by iteration. [The effect
of iteration is to produce a set of equations for the
g{o)(an) in which Vo contains Green functions. ] But,
because these are true components, then, just as in the
LRT case, when the incident energy is less than the first
inelastic threshold and no exoergic rearrangement chan-
nels are open, the CPA-formulated P "will be real.

The foregoing comments are rigorous even though they
are stated descriptively. They yield the result that our for-
mulation of the antisymmetric optical potential applies to
more N-particle collision theories than those cited in Sec.
IV B. This is a consequence of working with a wave func-
tion formulation and is thus one of the advantages of such
a formulation.

C. Comparison with other formulations

It is easy to realize that the present approach to the op-
tical potential can easily encompass the case of distin-
guishable particles. In the distinguishable particle case,
the optical potential of the present approach is very dif-
ferent than the Feshbach optical potential. ' For example,
and in contrast to the Feshbach potential, the (real) fold-
ing potential in the present approach is not contained in
the lowest-order approximation [see the remarks following
Eq. (4.13)]. The present approach is also distinct from
that of Kowalski and collaborators ' ' in that, e.g. , in the
absence of particle identity, their approach does reduce to
the Feshbach potential. In the following, we compare the
present approach more closely with those of Refs. 1 and 3.

In the earlier approaches to an antisymmetric optical
potential, ' a projection operator 8 was sought such that

e+ (an) =A+{o)(P+(o)ou )

The function u asymptotically yields the elastic ampli-
tude and is thus an elastic scattering wave function. The
equation determining u~ involves a nonlocal operator K,

made up of terms such as

Noi =(da(o)o I {('a{i)o) ~

where the notation (
I

) means integration over all com-
mon variables. The nonorthogonality overlap Xo, is the
same quantity as appears in the coupled reaction channel
and resonating group method approaches to nuclear re-
actions. Connected with its appearance may be problems
associated with eigenvalues of the kernel E that are equal
to unity. ' In our method for constructing 7 ~, no such
problems occur, since we determine g~(o)(an) first and
then obtain

I

p'+'& from it by projection. Corresponding-'
ly, full antisymmetrization of f {o)(an) is unnecessary in
order to obtain either an elastic scattering wave function
or the antisymmetric, elastic scattering amplitude, since
both

&0 (o)o I 0 (o)(«) &
= I&'-„+'&

and

& Na(o)o I ~a(o)fa(o)(«) &

yield identical elastic scattering amplitudes.
In the later approaches to the antisymmetric optical po-

tential based on transition operators, full antisymmetry is
also introduced at the beginning, but the need for a for-
mulation free of elastic scattering singularities has been
stressed. In their analysis of this problem, Kowalski and
Picklesimer proved' that a formulation based on the tran-
sition operator known as the AGS off-shell extension' led
to a Hermitian-analytic optial potential that was free of
such singularities. Because they limited themselves to
Hermitian analytic potentials, they selected this formula-
tion as the desirable one to use in discussing the antisym-
metric optical potential. By basing our analysis on wave
function components with known (and desirable) proper-
ties, we have shown herein that other transition operators
can be used to formulate optical potentials, albeit asym-
metric ones. Thus, in addition to the AGS operator, noted
in Sec. IV 8 2 and discussed in Appendix C, both the prior
(EF) and post (BRS precursor) forms lead to an optical
potential with the requisite properties. Other wave func-
tion component formulations are allowed as well.

The asymmetry of our class of optical potentials is a re-
flection of the fact that our construction is based directly
on connected-kernel, multichannel scattering theories, and
generally in such theories, connectivity is achieved by
means of a non-Hermitian, operator-matrix formula-
tion. ' While asymmetry for E &E;„,( (and lack of Her-
mitian analyticity for E)E;„,) ) is an unusual feature, it is
not in our opinion of any practical significance. First, by
construction the present non-Hermitian-analytic potentials
yield the exact, symmetrized transition amplitudes.
Second, non-Hermiticity in a connected-kernel formalism
has never been a bar to successful calculations, exact or
approximate; the simplest examples of this are all of the
analyses based on the three-particle Faddeev equations. '

Indeed, if we compare the way exchange effects enter the
driving terms of U of Eq. (4.3) and the analogous term
of the construction of Ref. 3, we see that in the former
case exchange effects occur linearly while in the latter case
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they occur nonlinearly. This may well allow for simpler
approximate calculations using the present formalism (see
further comments below). As a third point mitigating
against alarm concerning non-Hermiticity for E&E;„,~,

we note that in the opposite limit of E»E;„,I, where a
"tp" type of approximation is expected and can be practi-
cal, the transition operator based on the EF theory has
been shown' to have the same form as obtained from an
antisymmetrized spectator expansion. I The non-
Hermiticity of the present class of optical potentials, aris-
ing from the asymmetry of the formalism, is different
from that introduced by the energy averaging of theoreti-
cal phase shifts and strength functions, ' since the latter
leads to absorption but not symmetry. After an energy
Rvcl'Rgc ls performed ill tllc plcscllt case, olic will still llRvc
an asymmetric (but not absorptive) potential. However,
we note that elastic scattering data are typically fitted
through use of empirical potentials which are local in
coordinate space. That is, local potential phase shifts can
fit data, independent of the structure of the underlying op-
tical potential formalism. Approximating P by a local
potential will evidently give agreement with data. In addi-
tion, use of this approximation will render the asymmetry
of P an invisible feature in elastic scattering analyses.
Replacing P " and

~

X'-+') by local equivalents, however,
k

111Ry Ilot bc Rs stlalglltforward 111 Iluclcal I'cRctioil Rpplica-
tions, as we discuss elsewhere. '

D. Approximations

As the preceding discussion indicates, the exact results
are straightforward to deal with. The situation is some-
what less clear when one makes approximations, a topic
we examine next. There are several points we consider;
our only limitation will be to those approximations for
which the connectivity property of Eqs. (3.15) or (3.32)
holds [this is consistent with requirement (iii) of Sec.
IVA]. For simplicity we again assume that all reaction
channel thresholds lie above E;„,~ and that H contains no
absorptive interactions.

For exact solutions, f (Oy (0}0 ls ilcccssarily unitary, as
already noted. Suppose E ~E;„,I and that for simplicity,
P ~ is spherically symmetric in a coordinate representa-
tion, i.e.,

( r '
i
P "

f
r ) = (r,'

i

P""
/
r ) .

Then each partial wave radial function

XI(k r )=(r Im ~X'-„+')

will be asymptotic to the unitary form

sin(k r lirl2+5'I ')Ik r—
where 5~

' is the (exact) phase shift. Next, let us introduce
an approximation; it will yield the approximate quantities

XI(k~r ) and &, and we again assume that P is
spherically symmetric. If thc exact components arc true,
and if the connectivity property is mairltained in the ap-
proximated equations, then

~

X'-+') will necessarily yield
k

the entire, antisymmetrized, approximate elastic scattering

amplitude (which will be unitary since no channels other
than the elastic one are assumed to be open) and the ap-
proximate radial function will again have a unitary form
asymptotically, i.e.,

XI(k r )-sin(k r ln—l2+. 5I ')/k r

These remarks follow from the fact that the true com-
ponent property depends only on the connectivity struc-
ture of the defining equations. An approximation for
wh1ch thcsc remarks hold» 1n both thc EF- and BRS-
precursor cases, is GI', ~zI'(E)=0, b&two-cluster channel,
and G r~z~ (E) +Pr ~z G

—
r~ p (E), where Pr~j ~

projects
onto internal bound states in the retained two-cluster
channels y. One can also devise coupled channel approxi-
mations in the EF theory which include m-cluster breakup
partitions for which the unitary behavior of XI(k r ) will
continue to obtain. 'I For E &E;„,I, flux is lost out of the
incident channel and the unitary form will not occur.
However, one can still introduce approximations for
which only ~X'+') yields the elastic part of the ampli-

k
tude.

Next, let us consider the fact that because our class con-
tains more than one member, the introduction of the same
mathematical approximation will yield different approxi-
mate (asymmetric) P ", none of which will be equal to the
approximate GKP potcntlal. This Iaiscs two qucstlons:
First, which set of phase shifts should one users Second,
should one not be disturbed that the same physical ap-
proximation leads to different phase shifts? The first
question is one that arises Icheneucr approximations are
used in multiparticle collision theories; a specific answer
to it is unknown. A general answer is that the choice de-
pends on such factors as ease of calculation, physical in-
sight, reliability of the model, structure of the formalism,
etc. Because exchange effects enter the present class of
optical potentials so simply, one or another of them could
be preferable to the GKP potential. On the other hand,
since it is necessary to consider second. -order terms in or-
der to obtain the full (direct plus exchange) Born ampli-
tudes in the EF, BRS-presursor, or CPA cases, it might be
preferable to use the GKP potential when making approx-
imations. Clearly, one must have information on the sys-
tem in order to help decide. As for the problem of the
same physical approximation producing formalism-
dependent results, it should be obvious that this is a spuri-
ous objection: a mathematical approximation is not a
physical approximation. The latter occurs only when the
former is combined with a particular formalism in which
lt ls to be llscd. Collsldcrcd 111 tllls way, thc sccolld qllcs-
tion is simply a variant of the first one, commented on al-
ready. We also recall that once approximations ar'e intro-
duced into an asymmetric formalism, then the results need
not be time-reversal invariant. References discussing this
feature of the theory are given by Kowalski and Levin.
The comments on approximations, made just above, clear-
ly apply to this case as well.

Thc aim of oUI discussio11 1las been to show that the
new class of asymmetric, antisymmetrized optical poten-
tials are a valid and interesting means of describing elastic
scattering. However, the scope of an antisymmetrizcd,



multiparticle collision theory goes well beyond a descrip-
tion of elastic scattering. As noted, the EF theory is being
used as a basis for describing nuclear reactions. ' In its
unsymmetrized form, it has been shown by Birse and Red-
ish to be a means of converting the CRC ansatz into a
convergeable theory; the symmetrized version has been
similarly used by Adhikari, Birse, Kozack, and Levin to
embed the RGM ansatz. The symmetrized EF theory
has also been used' to solve the old, previously unsolved
problem of the role of Pauli-principle exchange effects in
the distorted wave Born approximation, to derive the
standard model of (d,d) and (d,np) processes, and to for-
mulate antisymmetrized, coupled-channel models of direct
nuclear reactions, including breakup. This widespread set
of applications of the EF theory is, we feel, reason enough
to warrant the investigation of non-Hermitian, multiparti-
cle collision theories and their associated asymmetric opti-
cal potentials.
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spondence. F.S.L. is happy to acknowlege the support
from the Bank of Interamerican Development that helped
to make his visit to Universidade Federal de Pernambuco
so pleasant. It is a pleasure to acknowledge financial sup-
port from the U.S. Department of Energy (DOE), the
Conselho Nacional de Pesquisas (CNPq) of Brasil, and the
Financiadora de Estudos e Projetos (FINEP) of Brasil.

APPENDIX A:
ANTIS YMMETRIZED LS EQUATIONS

Since the validity of Eq. (2.6) for 4"(an) has been ques-
tioned, we established it here using the M@ller operator
approach of Sandhas. For partition p(j) the Manlier
operator is Qp~j~, whose action on 4'(a(i)n ) is

We have achieved t%vo ma)or ob)ectives in this paper.
First, a general procedure has been developed for antisym-
metrizing wave function descriptions of many-particle
scattering, e.g., the EF, I.RT, precursor BRS, AGS, and
CPA formulations, as discussed in the preceding. Second,
this antisymmetrized wave function approach has been
llscd to derive R class of Rntisymmctrizcd optlcR1 potcil-
tials which has a number of features different from the
optical potentials discussed in the recent literature. We
note again that the development in this paper carries over
to the case of identical bosons simply by setting all the

phase factors ( —1) "equal to unity.
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We express our thanks to Gy. Bencze, M. C. Birse, W.
Glockle, Z. C. Kuruoglu, E. F. Redish, and especially

Qp~ i%'(a(i)n)=5p~p (;)e' (;)„,all P(j) ~

I (a(l)n) =5p(i).(;)e.(;)„+6p(+(JI(E) VP(J)% (a(l)n),

which follows from"

(A2)

'p( (')" ) =5P(J)a(l)@a( )n+ (1—&p(,))'p(&(~')ll ) (A3)

There are X +1 sets of equations (Al) —(A3), each set
having NI members. Multiply both sides of each equation

—1/2in these sets by ( —1) "X ', under the assumption that
the particles are all identical fermions and that the bound
states in 4~~;~„are each antisymmetric. The resulting
X +1 sets of equations can now be added, yielding, e.g.,

EqllRtloll (Al) ls R sct of X2 =2 —1 equations whlcll
uniquely define p(a(i)n ). The equivalent definition is

g Qp(j) g ( —1) ~'~%(a(i)n)= g 5p(J)~()( —1) ~'~4
(;) /E~~, all p(j) . (A4)

i=a i=0

The i sum on the left-hand side of (A4) is just

4"(an )= g ( —1) "%(a(i )n )/g '~—:A (0)%(a(0)n ),

so that (A4) becomes

n&t &e"(an)= +5», ;&(
—1) "e &;&„/S''", all P(J) . (A5)

On following the steps leading from (Al) to (A2),"(A5) yields

4"(an)= +5II(~)~(;)(—1) "N~(I)„/N~ +Gp(q)(E)V~'J'4 (an), all p(j), (A6)

which is just Eq. (2.6). The derivation of Sec. II was
based on Eq. (A2); we see that the two derivations are
equivalent. The key point is that the antisymmetry is in-
dependent of the number of equations indexed by p(j). It
requires only that the incident wave be antisymmetrized.

APPENDIX 8:
ANTISYMMETRIZED TRANSITION OPERATORS

When 5 is a two-cluster channel, say P, then either from
thc RsyIIlptotic foIIIl of (rp(0)pp(0)~ ~

fpo)(IIII)) 01' fl'oI11



SADHAN K. ADHIKARI, R. KOZACK, AND F. S. LEVIN

(ep(p) ~ leap(0)(an)) one obtains an antisymmetrized tran-
sition amplitude which is the matrix element of a transi-
tion operator we shall denote Tp(0)a(0) (energy dependence
is suppressed). That is, we have

~P(0)m, a(0)n &~P(0)m I
" P(0)a(0) l @a(0)n )

When b is an m-cluster channel, I&3, on-shell matrix
elements (@b(0) ~ Tb(0) (p) ~

(I) (0)„)define either all or
portions of the relevant transition amplitudes. From Eq.
(3.12), it follows that the Tb(p) (p) obey

Let us now isolate one member of the j sum in (86). Us-
ing exactly the arguments employed in going from Eq.
(3.24) to Eq. (3.25) now gives for (86)

=(NbNd ) g Rb(0) Vb(p)d(k)( —1) Pd(k)d(0) ~

j,k

The j sum in (87) yields Nb so that the RHS of (87) is
seen to be identical to that of Vb(0)d(0), thus establishing
the desired result.

A (+)
b(0)a(0) Vb(0)a(0)+ ~ Vb(0)d(0)Gd(0)(@)Td(0)a(0)

d

Equation (3.12) follows from (81) through the relation

Td(0)a(0) l @a(0)n ) g Vd(())b(0) I fb(0)(«})
b

APPENDIX C:
THE AGS TRANSITION OPERATOR

The AGS transition operator Ub„defined via'

Ub, ——5b, G, '+ V GG, ', (Cl)
Bencze and Redish, in their study of symmetrized tran-

sition operators for systems of identical particles, ' have
shown that the properly symmetrized amplitudes are
given (in our notation) as the on-shell matrix elements
(4&b(0)

~

T ' ' ' '~ 4& (0)„)of class oPerators T ' ' ' '

which obey

T"( )a( )=Ib(o)a(o)+ y&b(0)d(0)Td
d

(83)

In terms of the Vb(j)d(k) and Gd(0)(E) appearing in (81),
the quantities in (83) are

1/2

b(j )g Rb(0)Pb(p)b(j)( —1 ) Vb(j )d(0)
Xb j

Ib(o)d(o)

(84)

and

It b(0)d(0) Ib(0)d(0)G(+) (g)d(0) (85)

while our Vb(o)d(o) is given by
1/2

Nb
Vb(o)d (o)— ~d(k)g Rb(0) Vb(0)d(k)( ) Pd(k)d(0) .

k

(3.13)

We shall now show that Vb(p)d(p) and I ' ' ' ' of (84)
are identical. Use of (85} and the standard assumption
that (Bl) and (83) have unique solutions then yields

Tb(o)~(o)
——T ' ' ' ', which establishes the claim made

below Eq. (3.13) that Eq. (3.12) leads to the properly nor-
malized amplitudes.

We begin by recalling the proposition in Sec. III of Ref.
IO, which in our notation is

Ib(o)d(0) Ib(0)d(k)p
a(k)d (0)

Applying this Nd times to (84) gives

is related to the post form of the transition operator Ub,
+'

via Ub, ——5b, 6, '+ Ub,
+ '. The BRS-precursor com-

ponents are obtained by writing an integral equation for
Ub,

+'
by expanding V via the BLRT distribution tech-

nique22 and then using a relation like Eq. (82) to define
the components Sinc. e Ub,

~
4, ) = Ub,

+'
~

(I), ), the com-
ponents obtained from the AGS operator are identical to
the BRS-precursor components, as noted in Sec. IV B2.

APPENDIX D:
ANTISYMMETRIZED CPA EQUATIONS

It was noted in Sec. VB that while the construction of
(2.4) and (3.3) does not yield CPA components whose sum
on j is manifestly antisymmetric, it does lead both to an-
tisymmetric transition operators obeying noniterated,
connected-kernel equations and in the X =3 case to wave
function components whose sum is antisymmetric even
though they do not obey (3.5). We discuss these points in
the present appendix, beginning with the %=3 com-
ponents.

Our notation for the N =3 case is as follows. The state
vector for the canonically labeled incident wave in parti-
tion 1=(l)(23) will be denoted

~

4&)) =
~

P)(23))
~
k(1)),

where we have explicitly displayed particle labels. Parti-
tions 2 and 3, defined, respectively, as (2)(13) and (3)(21),
may be obtained from (1)(23}by application to them of
the two-particle transposition operators P&2 and P&3. The
partition labels 1, 2, and 3 will be used in place of, e.g.,
a(0), a(1), and a(2). The labels 1, 2, and 3 are, of course,
the usual pair indices for the three-particle problem.

There are a variety of different CPA wave function
components and corresponding transition operators, each
obeying a different set of three coupled equations. We
shall concentrate here on those (true} CPA wave function
components and transition operators denoted 1/ij and Tjk
(for details, see Ref. 7). To generate the relevant N =3
CPA equations, we use a channel coupling array W") of
the form7'3

=(NbNd ) g Rb(0)Pb(0)b(j )( —1)
j,k

+ Vb(j)d(k)~d(k)d(0) (86)

010
W(')= 0 0 &

1 0 0
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When the incident wave is (I)(, we have the following
equations ' for the CPA wave function components

g, (l):

g) (1)=@)+G')+ ' V Pp(1),

1i (1)=g'+'V'tP (1), (Dl)

$3(1)=G3+'V'Q ((1),
where the E dependence in GJ+' and the n dependence of
4&„is suppressed.

The sets of equations for fi(2) and QJ(3), needed to
form

3

p = g ( —) 'p (i),

o( ——even, are generated from the incident waves 42 and

43. These sets are the following:

p)(2) =G')+'V p2(2),

P2(2) @2+G2 V e3(2) r

g3(2) =G3+'V'tl ((2),

components, the sum of the components, denoted g in the
preceding paragraph, is nevertheless antisymmetric.
Indeed, the construction used to derive (D4) is such—
exactly as in the case of (3.2) and label transforming
V's—as to lead one to expect g to be antisymmetric. The
fact that P(z applied to (D2) or (D3) produces results not
in the form of W" ' equations does not mean that
P)zf& —g, but only that this direct test for antisymmetry
is inconclusive in the CPA case. Evidently one must use
indirect means to establish the antisymmetry of P. We
shall do this by showing that the sum 1i in the CPA case
is equal to the sum of the Faddeev wave function com-
ponents, a sum which is manifestly antisymmetric.

We proceed as follows. The (unsymmetrized) Faddeev
components fj~(k) obey3' (j =1,2, 3)

QJ(k)=C&k5ik+GJ'+'Vj + oj g (k), (D5)

where k =1, 2, or 3 indicates the incident channel. On
forming the components

QJ(1)+——( —1) 'gq(2)+( —1) 'QJ(3),

we find that they satisfy

42=( —1) '+2+G~"V%3

g3
——( —1) '43+G3+'V'f),

(D4)

which is a set of equations based on LV(" but with an al-

tered inhomogeneity as compared to the equations for
the individual gz(i) If we no.w form g=g.Pi, it is not

easily shown that this f is antisymmetric. This is a conse-
quence of the fact that 8'g V" is not label transforming.

Although (3.5) does not hold in the case of these CPA
I

—Go+' V)

Go+'V(

gF () g(+)V

yF G(+)V ()

qF g(+)V g + V

Q((3)=G')+'V Qp(3),

g2(3) =62+'V'g3(3), (D3)

g3(3) =@3+63+'V'Q)(3) .

Equations (D2) and (D3) use the same 8""as (Dl). The
only difference is in the position of the incident wave.
However, because Wi~k'V" is not label transforming, (D2)
and (D3) cannot be obtained by applying interchange
operators to the three equations of (Dl), as noted in the
text.

We now construct the components

QJ =(I(,(1)+(—1) 't)'jj(2)+( —1) 'Q (3)

as in Eq. (3.2). They obey

4)=~')+GI+ V'6

@2+G2 V2(yl +$3 ) p

c3 =(—1)"C,+G',+)V, (qF+yF) .

(D6)

Since the Faddeev equations are label transforming, then
the P~ of (D6) obey (3.5), and hence P=g )Q is an-
tisymmetric (as is easily shown). In fact, from the proper-
ty" g', p, (k)=4(k), where 0'(k) is the Schrodinger
solution in the case where the distinguishable particle k is
incident on a pair of identical particles, the construction
(D6) leads to g (()'jJ ——%'", where (II" is the antisym-
metric Schrodinger solution describing collisions involving
three identical particles.

To show that the CPA sum P is equal to P, we first
note that (D6) can be rewritten in the form

(+) (+)

—G2 V2 1 —G,'+'y,
—G3 3

—
3 V3 1

(+) (+)

qF

Qz = ( —1) 'Cz

yF
( —1) 'C3

(DS)

(D7)

We shall denote the 3X3 matrix in (D7) by the symbol
M~, the Faddeev multiplier.

Next, we express the QJ of (D6) through

(D8) yields (D4) when acted on by MF.
The antisymmetry of p=g ,f follows from E. q.

(D8): summing both sides of (DS) leads to P=Q=+",

since the kernel term in (D8) makes no contribution to the
sum. Hence, g is antisymmetric, even though the PJ do
not obey (3.5). We note two additional points in connec-
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tion with (DS). First, the presence of Gp+' in (DS) means
that in the limit rj ~ ao, we have (rJ.~ oo,

pj I QJ ) = (rj~ ao, QJ I p~ ), i.e., QJ and l(J yield the same
2~2 transition amplitudes. Since the Qz obey (3.5), this
means that at least in the asymptotic two-body sector,
the QJ also obey (3.5). Put alternatively, each QJ, j= 1,2, 3

yields the same, antisymmetrized, two-body transition am-

plitude [to within the phase factor ( —1) ']. Second, and
again due to the Gp+' in (DS), we see that the contribu-
tions to the breakup amplitudes from gl and from gi are
not the same, although in view of the relation P=g~, the
total CPA and Faddeev breakup amplitudes are the same.

Although the latter two results are not unimportant, the
main point of the preceding analysis is the antisymmetry
of g.ritz. This is the N =3 equivalent of the following

property for arbitrary N: g& .Qp(J)(an) is antisymmetric,
where hatt(J)(an) means a two-cluster-labeled, N-particle
CPA generalization of the components obeying (D4). But
the antisymmetry of the latter sum always holds in the
CPA case, as we show below, and we conjecture that this
is true for any non-label-transforming theory. A more im-

portant conjecture is that g hatt(z)(. an) is also antisym-

metric, whether the theory is label transforming or not.
We shall first consider the CPA sum g&.gt)(J)(an).

There are two cases of interest: that of the so-called
channel scattering states ' in which P~(J)(a(i)n) is in-
dependent of the index P(j) and is equal to the
Schrodinger wave function (Ii(a(i)n), and the case of true
components, for which

g gp(J)(a(i)n ) =)p(a(i)n ) .
p,j

[d (k)jk p should be needed to antisymmetrize quantities

indexed by the b (j ). For example, if

b(0)=(1, . . . , nb)(ng+I, . . . , N)

arid

d(0)=(1, . . . , nd)(nd+1, . . . , md)(md+1, . . . , N),
Nd

then none of the Id(k)Ik p should be needed to ensure
Nb

antisymmetry of g gb(, (z)(an), exactly as in the case of
the incident wave P (p)„. We are thus claiming that dis-
tinction of generic channel labels implies separate an-

tisymmetry of each generally labelled component

Pb(an)=ggb(~)(an) .

This is only reasonable, given first the expected antisym-
metry of gb gb (an ), and second that for the label

transforming case Pb(an) has been proved to be antisym-
metric.

We turn next to a consideration of the CPA transition
operators. We discuss the N =3 case first. Although the

QJ of (D4) do not obey (3.5), the amplitudes and transition
operators associated with them are manifestly antisym-
metrized, i.e., are those appropriate to a system of three
identical fermions. We shall prove this after first discuss-

ing the antisymmetrized transition operators TJ, obtained
from the "distinguishable-particle" transition operators

Tjk, which we assume act on the partial ly symmetrized

I
c'k).
The equations obeyed by the Tjk are (see, e.g., Ref. 7)

In the former case, since

gt)(J)(a(i)n ) =%(a(i)n ),
Tjk = WJk V"+ g WJ~ V G~+'T~k . (D9)

We choose W= W(" and then construct the three sets of
equations for Tzt, I

@k ), j =1,2, 3, obtained by allowing k
to take on the values 1, 2, and 3. Next, we assume that
the particles are identical fermions. As noted in Refs. 10
and 27 the properly antisymmetrized transition operator

TJ tobe used in this N =3 caseis

the antisymmetrization procedure is precisely that of Ap-
pendix A and automatically yields the result that

gp .Qt)(J)(an) is antisymmetrized, as noted in Sec. VB.
In the latter case, since the summations are finite, we may
interchange the orders, carrying out the P,j sums first
which yields %(a(i)n ), and then performing the sum on i
in the antisymmetrization procedure yielding 'p (an ).
Combining these summations gives

g Qtt(J)(an) =q(a(n ),
p,j

thus proving the antisymmetry of the double sum for the
case of true CPA components. Similar results hold for
the other CPA components discussed in Ref. 7. We ex-

pect in all cases that gb .Qb(J)(an) will be antisymmetric.
Let us now consider our main conjecture, viz. , that in

all theories the sum g.gb(~)(an) is antisymmetric. In
view of the preceding remarks, this is true for the case of
the 1V =3 and the channel scattering state CPA com-
ponents. While we do not have a proof for any other
non-label-transforming equations, the conjecture seems to
us to be almost self-evident, on the ground that the dis-
tinction between generic channels b and d should mean

Nb
that only the partition labels I b (j) I~ p are needed to form
an antisymmetric combination: none of the partitions

T" ( 1) V P + V2G(+)T"

T', =(—1)"V'P»+ V'G', +)T""

TA @1+ylG(+)TA

(Dlo)

which is a connected-kernel set of equations involving

We see by this construction that imposition of the Pauli
principle has not led to a set of equations for the antisym-
metrized CPA transition operators any smaller than the
set for the distinguishable-particle case. This is in con-
trast to the case of the label-transforming Faddeev equa-
tions, for which the imposition of identical particle sym-
metry directly effects a reduction to an N, )&N, set (in this

Tj~= TJ.) + ( —1) 'TJ 2P,2+ ( —1) 'T~ 3P»

it is to be applied to
I
4) ). These T J are readily found to

obey
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On multiplying both sides of (Dll) by ( —)
' and then

summing on i, (Dl 1) becomes

QJ ——( —1) '4J+Gq+'g WJ' 'V Q (D12)

The amplitudes obtained from (D12) are easily seen to be

the on-shell matrix elements of the operators UJ defined

N =3 case, N, = 1). In the general case of N identical
particles and N2 coupled equations, the analogs of (D4)
for the PJ and of (D10) for the antisymmetrized operators
TJ are also N2XN2. Reduction from an N2 XN2 to an

N, XN, set will occur in the general CPA case only if the
Goldflam-Tobocman procedure of iterating the equations
is followed. Put in another way, the construction yield-

ing (D10) is equivalent to first solving the unsymmetrized
transition operator equations and then imposing the ef-
fects of identical-particle symmetry by forming the ap-
propriate linear combination of the operators or ampli-
tudes.

Now that (N =3) the TJ have been determined, we es-

tablish that these T J" or their appropriate matrix elements
are indeed those associated with the components PJ of
(D4). The generic form of the equations (Dl)—(D3) for
the QJ(i) is

y (i) @ 5 +g~(+) y gr~(&)@my ()) (Dl 1)

by

U, ~e, )=g W,'"V y

so that UJ obeys

U, =+W,'"(—1) -V r, ++W,'"V G'+'U

(D13)

On the other hand, the equations obeyed by the T 1 of
(D10) are obtained by choosing W= W"' in (D9) and then
summing both sides of (D9) on k after multiplying each
term by ( —) P,k. This yields

T y Pr~(~)( 1) kykP + y Pr(1)gag(+)TA
k m

(D14)

whose detailed form is (D10). Since the connectivity of
the iterated kernel implies that the solutions of (D13)
and (D14) are each unique, comparison of these latter
two equations shows that UJ ——Tz, thus establishing our
claim that the nonantisymmetric QJ yield the antisym-

metrized TJ.
It is straightforward to show that the preceding analysis

holds for the (N2 —1)!sets of CPA equations that one can
generate in the case of an arbitrary number of particles. '
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