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We substantiate our previous results on the danger of identifying the energy-average scattering function
with the Lorentz-weighted average of a scattering function fitted to the experimental data in a finite energy

interval.

This is a rebuttal to the Comment by MacDonald and
Birse! against our work? and in defense of theirs.»* These
papers deal with the following three topics: (i) the defini-
tion and the calculation of the energy average of the scatter-
ing function from high-resolution low-energy neutron
scattering data, (ii) the specific example of the scattering of
p3, neutrons by 32S and (iii) the definition of the optical-
model potential.

Definition and calculation
of the energy-averaged
scattering function

The elastic scattering cross section for pure neutron elas-
tic scattering reads

o(E)=nk 2|1 -S(E)|? , )

where g is the spin statistical factor. The energy average
(a(E)) of o(E) can be expressed in terms of the average
(S(E)) of the scattering function S(E) if one makes the
usual assumption that the factor k2 need not be averaged
over. An energy average can be written in the general form

(S(EDY = [~ aE'F(EESDS(E) @)

where the normalized weight function F should represent
the energy profile of the beam.® Brown® has pointed out
that the Lorentzian weight

FUEE) =—T" 1 3)
s (E-E)+DI

is quite convenient. Indeed, one has then
(S(E;D)) peo=S(E +il) , 4

where the indices L and oo respectively refer to the
Lorentzian and to the integration limits in Eq. (2). The
conditions of validity of ‘‘Brown’s theorem” (4) are that
S(E) be analytic in the upper half of the complex E plane
and that |S(E)| remain finite for |E| — oo in that half-
plane.

We have no queries about the validity of this theorem for
the actual scattering function and about the identification of
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S(E +iI) with the average of S(E) in most theoretical
works. However, we showed in Ref. 3 that it can be quite
inaccurate to approximate the average of S(E) by
S,(E +il), where S,(E) is a parametric approximation
derived from the analysis of high-resolution low-energy
neutron scattering experiments. By necessity, the experi-
mental data are affected by uncertainties and only cover a
finite energy range [E;,E,] that we call the ‘‘experimental

domain.”” Most analyses use the convenient R-matrix
parametrization®
1+iP(E)R,(E)
E) = —2i¢(E) - " W NHEIAprAET ,
S(E) =e 1—iP(E)R,(E) ®
where R,(E) is written as the sum
R,(E) =R*(E) +R™(E) (6a)

of a function R®**( E) which is a smooth function of energy
in the domain [ E;,E,] and of the ‘‘internal R function”
N
R™(E)= 3 yi/(Ex—E) , (6b)
=1

where the sum over A runs over the N resonances observed
in the experimental domain. We now spell out and substan-
tiate our main objections against approximating S(E +il)
by S,(E +il).

(a) Brown’s theorem is not valid for expression (5) be-
cause of the hard sphere factor expl —2i¢(E)]. This was
shown on p. 1920 of Ref. 2. We do not elaborate on this
difficulty because we expressed on p. 1921 of Ref. 2 our
agreement with the practice of not replacing E by E +il in
¢(E) adopted by all authors (see, e.g., Refs. 5 and 7) ex-
cept MacDonald and Birse.!34

(b) S,(E +iD can be significantly different from S(E
+il) even when S,(E) fulfills the requirements for the ap-
plicability of Brown’s theorem. We substantiate this state-

ment by the following simple but nevertheless realistic ex-
ample,

1+iPla +bE +R™(E)]
1—iPla +bE +R™(E)] ’

where P is a constant. The conditions of applicability of
Brown’s theorem are fulfilled if 5=0. Let us write

S,(E) =

@)
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Sp(E +il) in the familiar form
1 +iP[R,(E) +ims,(E)]

S,(E +il) = — ) (8)
? 1—iPIR,(E) +ins,(E)]
the corresponding ‘‘strength function” s,(E) is given by
bl N i
E)=—+1 —_— 9)
s(E) ™ Agl (E\—E)*+ P (

The first term on the right-hand side of Eq. (9) can be
dubbed ‘‘spurious’’ since it is not related to the usual
strength function (y3)/d; it can be as large as the second
term as we show in Sec. II; it is furthermore proportional to
the averaging interval I This first term is the main origin
of the problem exhibited in Fig. 10 of Ref. 2. Its appear-
ance reflects the drawback that ‘‘the Lorentzian weight
overemphasizes the importance of distant states.””® In the
present context, it introduces a sensitivity upon the detailed
parametrization of the background R°®*(E) which arises
from resonances which lie far from the experimental
domain and on which one thus has little information.

(c) Two accurate parametrizations SyV(E) and S ¥ (E)
which both fulfill the conditions of applicability of
Brown’s theorem can lead to quantities S, V(E +il) and
S,,(”(E+i1) which are significantly different. This fact
derives from the sensitivity of S,’(E) to the parametriza-
tion of R°*'(E). It will be illustrated by a realistic example
in Sec. II. Here, we consider the simple example of a back-
ground due to the tail of a resonance which lies far from
[E,E,]. We thus take

S,(E) =1—iTo/(E — Ey+5iTp)

For E =0, |E¢| >>Ty, the quantity S,(E) only depends
upon one parameter, namely the ratio I'o/E;. The strength
function s, as defined by Eq. (8) is given by (2)!
xToI/E$; it depends upon wo parameters, namely Io/E
and FEy, i.e., upon one parameter on which the measured
resonance tail is not sensitive; it is proportional to 1.

In order to identify and avoid these pitfalls associated
with the application of Brown’s definition to a parametriza-
tion of the scattering function, we defined in Ref. 2 the
average S function by the integral

E,

(S,({E))) =fEl“dE'F(E,E';1)S,,(E') (10)
that we evaluated by numerical integration. Since this de-
finition involves only the values of S,(E) for E inside the
experimental domain, it is not sensitive to the choice of a
specific parametrization of the data. The average energy
(E) on the left-hand side of Eq. (10) was introduced in or-
der to reduce the spurious energy dependence due to end-
point effects. These end-point distortions limit the useful-
ness of the definition (10) in the domain where |E — E,| or
| E — E|| is comparable to I; but the average (10) is quite re-
liable in the middle of the experimental domain. We found
that expression (10) is quite stable with respect to variations
of the weight factor F. This is a requirement for the mean-
ingfulness of the standard optical model, since empirical
optical-model potentials do not refer to a specific weight fac-
tor. The definition (10) enabled us to identify the origin of
the problems associated with the practical application of
Brown’s theorem and to propose for (S,((E))) an algebra-
ic expression whose accuracy has been demonstrated in the
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case when the strength function (y?)/d can be considered
as constant in the experimental domain.

Application to n + 328

The high-resolution data on the scattering of p3; neu-
trons by 32S in the domain [0, 1100 keV] were analyzed by
Johnson and Winters® with the parametric expressions
(5)-(6b). MacDonald and Birse!:? criticize this parametri-
zation and advocate the use of the parametrization

e L HilS(E) =B +iP(E)1R®(E)

SP(E) = ,
7 (B = e S (B) B+ (D) IRP(E)
(11)
R,‘”(E) =R$(E) +RI™(E) , (12)
with the choice B = —1 for the R-matrix boundary condi-

tion parameter. The choice of the boundary condition
parameter is actually irrelevant as far as our discussion in
Sec. I is concerned since the conditions of applicability of
Brown’s theorem are fulfilled in both cases provided that
one leaves untouched the common hard sphere factor
expl —2i¢p(E)] as usual. We have nevertheless verified
numerically that the numerical value of (S,((E))) [Eq.
(10)] as well as its algebraic approximation yields practically
the same values of the compound elastic and shape elastic
cross sections for the parametrization (5) as well as with the
parametrization (11) for both B=—1 and for B=S(E
=600 keV).

The quantity R$* (E) obtained by MacDonald? from the
parametrization (11) and (12) with B= —1 is represented
by the open dots in Fig. 1. A least-squares fit with the ex-
pression

—E

R$(E) = ay +BoE — 5,In 2 13)

u
E—-E ~’
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FIG. 1. Energy dependence of R°*(E) for the scattering of p3,
neutrons by 323, The full dots correspond to the parametrization
(5) of Johnson and Winters (Ref. 9) and the open dots to the
parametrization (11) of MacDonald and Birse (Refs. 1 and 3 ). The
curves are least-squares fits with the parametric form (13).
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with s5,=0.010, yields a,=0.010, B,=(0.066 +0.032)
MeV -l The first term on the right-hand side of Eq. (9)
shows that the corresponding strength function s,(E) of Eq.
(8) contains the I-dependent spurious contribution 7 ~!8,/.
For the typical averaging interval 7 =300 keV this spurious
contribution is equal to 0.006, and is comparable to the
physical strength function (y2)/d =0.010 +0.001.2*° Mac-
Donald and Birse did not encounter this spurious contribu-
tion in Fig. 1 of Ref. 1 because they happened to fit the
open dots in Fig. 1 with expression (13), where they set
B2=0 and take a;=0.150, 5,=0.011.3 The resulting disap-
pearance of the spurious contribution 7 ~!8,[ illustrates our
statement (c) in Sec. I. An even more striking illustration
of this statement emerges if one notices that a good fit to
the open dots in Fig. 1 is obtained by setting a,=0.09,
B8,=0.10 MeV~!, 5,=0. The corresponding spurious I-
dependent contribution to the strength function reaches
0.009 for I=300 keV; it is thus practically equal to the
physical strength function (y?)/d.

MacDonald and Birse! also claim that the optical-model
potential of Johnson and Winters'® does not fit the ‘stand-
ard’’ average that we had calculated from Eq. (10). We first
recall that the energy dependence of the quantities Rand s
calculated from this numerical average could be affected by
end-point effects. Nevertheless, Fig. 12 of Ref. 2 shows
that these ‘‘standard” quantities R and s are very close to
the quantities R and § which have been adopted by Johnson
and Winters to construct the shape elastic and compound
elastic cross sections represented by the full curves in Fig. 3
of Ref. 10. Hence, the agreement between the predictions
of their optical-model potential and the physical observables
computed from the ‘‘standard’’ quantities R and s of Ref. 2
is as good as that displayed in Fig. 3 of Ref. 10.

Definition of the optical-model potential

We reiterate that our criticism of the use of Brown’s
theorem for the calculation of the average of a scattering
function derived form the analysis of high-resolution neu-
tron scattering data does not apply to the identification of
S(E +il) with the average of the exact S(E) in the
theoretical literature. There, indeed, one is not hampered
by the finiteness of the experimental domain. Therefore,
we have no basic objection to the use of the modified
optical-model wave equation advocated by MacDonald and
Birse.* The following brief comments aim at clarifying some
points and are a reminder of the existence of some earlier
works not mentioned in Refs. 3 and 4. The one-body com-
ponent iz( T°) of the full scattering wave function satisfies
the Schrédinger equation (we set £2/2m =1)

[E-V2—9(E)yp(T)=0 , (14)
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where the ‘“‘mass operator’” #°(E) is nonlocal and strongly
depends upon energy; it is real for E smaller than the lowest
inelastic threshold. Its explicit expression has been given by
Lipperheide!! in the framework of Feshbach’s theory of nu-
clear ractions.'? Optical-model analyses use the Schrédinger
equation

[E—V2—V(E)—iW(E)ug(T)=0 . (15)
Lipperheide!? proposed the following identification,
V(E) +iW(E) =¥ (E +il) (16)

which has been widely used in the theoretical literature.
Relation (16) is an approximation because the scattering
function obtained by substituting #°(E +il) in Eq. (15) is
not equal to S(E +il), where S(E) is the exact scattering
function. Equation (14) shows that the scattering function
S(E +il) is obtained if one uses the wave equation

[E +il —V?

—2(E+iD)1Yp+y(T) =0 . an

MacDonald and Birse®* thus propose to analyze the
energy-average data with the wave equation

[E+il —V*—V(E) —iW(E)1ag(F)=0 . (18)
It might be of interest to investigate numerically to what ex-
tent the potential ¥V + iW differs from V + iW when both are
required to yield the same model scattering function. This
would provide a numerical check of the arguments present-
ed on pp. 502 and 503 of Ref. 14 and according to which
the difference between the two potentials is quite small, i.e.,
is much smaller than the accuracy presently reached in
theoretical calculations of #°(E +il). This is the relevant
criterion since the only merit of the wave equation (18) is
that P(E) +iW(E) can be identified with " (E +iI). The
main drawback of Eq. (18) is that the corresponding
‘‘optical-model wave function’” Yg+y(T) increases ex-
ponentially for large | ©|. In an infinite medium, Yz 44( T)
is a plane wave whose amplitude is damped even in the ab-
sence of interaction. ,

In summary, we have rebutted the criticisms of Mac-
Donald and Birse! and spelled out and substantiated the ar-
guments presented in Ref. 2 against the use of an infinite
range Lorentzian weight factor for averaging the scattering
function obtained by fitting high-resolution low-energy neu-
tron scattering data. The basic origin of the objections is
that the tail of the Lorentzian weight factor overemphasizes
the importance of the values taken by the scattering func-
tion outside the energy domain covered by the experimental
data.
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