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Comments

Comments are short papers which comment on papers of other authors previously published in Physical Review C. Each Comment should state
clearly to which paper it refers and must be accompanied by a brief abstract.
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In a recent paper, Johnson, Larson, Mahaux, and Winters have claimed that the use of the Lorentz-

weighted average to determine optical model phase shifts from low-energy neutron scattering data is in-

valid. We show that this conclusion is unjustified since the R-matrix parametrization fails to describe the
exact S matrix as lIE~ oo. We also show that the inconsistent numerical averaging precedure used by

those authors leads to values of R and s which do not agree with those obtained from an optical potential
fitted to the same data. Correct use of the Lorentz-weighted average avoids these problems.

We have recently shown' that the theorem by Brown on
the Lorentz-weighted average of the S matrix for elastic
neutron scattering,

(S(E))t=S(E+iI)
can be used to determine phase shifts of the optical model
potential (OMP) directly from high-resolution measure-
ments of resonant cross sections. One of us (W.M.M.) has
used this theory to determine parameters for an OMP for
n + S by using R -matrix parameters fitted to high-
resolution data. In a recent paper on energy averaging the
S matrix, Johnson, Larson, Mahaux, and Winters attack
the basis for our approach by claiming that Eq. (1) is an ap-
proximation which is not valid if one uses the R-matrix
parametrization to calculate S(E+iI). JLMW illustrate the
failure of "contour integration methods" by some numeri-
cal comparisons with their own "standard average. " In this
Comment we shall show that both the analytical and nurner-
ical results obtained by JLMW are incorrect and result from
(1) the failure of the R-matrix parametrization as ~E ~

and (2) an incorrect analytic continuation of the R-matrix
parametrization into the complex energy plane.

The theorem of Brown stated in Eq. (1) above is an exact
relation, not an approximation as stated by JLMW and im-

plied by their Eq. (1.2) and their symbolic proof in Eq.
(3.15). The proof we have given in the appendix of Ref. 1

shows that Eq. (1) follows from Cauchy's theorem of resi-
dues and the analyticity in the entire upper half of the phys-
ical energy sheet of the S matrix for physical potentials, viz.
potentials which are continuous functions of radius and de-
crease exponentially at infinity. For physical potentials,
~$(S') —1~ 0 as ~@'~ ~. Excluded as physical poten-
tials are the square well and any other potential which is
truncated at some radius a, ; the truncation introduces into
the S matrix an essential singularity at infinity so that
~$ —I( exp[2a, Im(k)] as Im(k) +~. Since the R-
matrix representation is obtained by cutting off the nuclear
potential at some channel radius, it therefore necessarily

fails to represent the physical S matrix as lEl ~. Thus,
the discussion of Eq. (1) given by JLMW is incorrect.

Nevertheless, contrary to JLMW, the R -matrix represen-
tation can be an excellent approximation to $(l') for com-
plex energies in the finite part of the physical energy sheet if
the potential is sufficiently small outside the channel radius.
In fact, the R-matrix representation for the elastic neutron
channel is simply a fancy way of writing the equation for the
S matrix which results from matching the interior radial
wave equation ui(r ) to the asymptotic solution It(r )
—5&Ot(r),

u,~(a, ) It (a, ) —u,~(a, )II'(a, )
Sjt k

uj't(a, ) Ot(a, ) —ujt(a, ) 0('(a, )
(2)

Introducing the definitions Lt(k ) —= a, O '(at, )/0 (a1, ),
@t—= argIt(a, ), and R,t —= u,~(a, )/au, t(a, ) gives the R -matrix
representation

2;a, 1 L,'(k') R,,—(tt, )
Sit k =e

I —Lt(k )R,I(a, )
(3)

We have here allowed for a complex k and given a form
which is suitable for analytic continuation into the complex
k plane. However, as noted above, Eq. (2) or (3) cannot be
used to discuss the asymptotic behavior of S,t as ~k ~ be-
cause the limit a, ~ must be taken first. In taking the
latter limit for a physical potential an exponentially diver-
gent factor from exp(2ig&) displayed in Eq. (3.16) by
JLMW is canceled by an exponentially damped factor from
the ratio in Eq. (3) above. Therefore, the exact asymptotic
behavior of S,~ is not governed by the phase factor studied
by JLMW.

JLMW have obtained the numerical results on S(E+iI)
presented in their Fig. 8 by using an incorrect analytic con-
tinuation of Eq. (3) to complex energies. This error arises
from their use of Eq. (3.1), an approximation to Eq. (3)
which has already been shown to introduce an extra energy
dependence into the values for R,„t obtained by Johnson
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and Winters. To see how this comes about, we first use
the result proved by Wigner that a real linear fractional
transformation of RJ~ gives again an R function. Let
R&i =R&i/(1 —BiR~~) and get

2iyi 1 —[Wi (k') —Bi jRJjo
S„(k)=e

1 —[Wi(k ) —Bi~RJoi

The quantity

Wi (k ) =W((k ) —Bi—= [Si(k ) —Bi) + i Pi(k )

(4)

0.20 I I I I I I I I

is an analytic function of k whose real part can be made to
vanish at some momentum ko corresponding to energy Eo.
For low-energy reactions, the choice is k0=0, corresponding
to the threshold for neutron emission, which gives 8~= —l.
However, some authors completely drop the real part of
~io(k ), the subtracted shift function Si (k ) = Si(k ) —Bi.
This is Eq. (3.1) of JLMW, where the function R (E) is the
quantity we have denoted as Rji. Dropping Si (k) is a poor
approximation for real energies; at complex energies the
neglect of Si (k) gives an erroneous analytic continuation of
the S matrix. It is sometimes argued that S~ can be made
exactly equal to zero by using an energy-dependent

Bi= Si(k). However, the resulting Rji is not an R function,
i.e., it is not an analytic function with poles only on the real
axis. The use of Eq. (3.2) of JLMW for this Rjoi is not
correct, and the use of this equation would give an errone-
ous continuation of R~~, and therefore the S matrix, into the
complex plane.

Neglect of the energy dependence of the shift function by
Johnson and Winters has also led to the strange results for
R,s presented in Fig. 10 of JLMW. As noted already, the
R'"' values found by Johnson and Winters include a strong
energy dependence introduced by their neglect of the
energy-dependent shift function in transforming from
single-level parameters to R-matrix parameters. This spuri-
ous energy dependence shows up in their R +i ms
= R (E+iI ) as a very strong dependence on I. By contrast,
MacDonald derived y~, E~, and R'"' values by including
the shift function in the transformation from single-level
parameters of Halperin, Johnson, Winters, and Macklin. '0

Shown in Fig. 1 are the R and s given by his R (E+iI).
The curves for I = 0.4 MeV show less fluctuation than those
for I =0.3 MeV, but no larger change in magnitude results
from changing I.

The R, s found by JLMW using their standard average are
shown in our Fig. 2. Both R and s show a strong energy
dependence which is in striking contrast to the R and s
shown in Fig. 1. This raises the following question: Are
these energy dependences really both compatible with the
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FIG. 1. The R,s from R (E+iI) =R +its using the R-matrix
parametrization given in Ref. (3) are compared with the corre-
sponding quantities for the OMP found in Ref. (3). (a) R for the
OMP ( ~ ) for both 1=0.3 and 0.4 MeV compared to R from
S(E+iI) for I =0.3 MeV ( ) and 1=0.4 MeV ( ———). (b)
s for the OMP for I =0.3 MeV ( ) and for I =0.4 MeV
( —. — —) compared to s from S (E +iI ) for I = 0,3 MeV ( )
and 1=0.4 MeV ( ———).
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FIG. 2. The R, s given by the "standard" average of JLMW
( ) are compared with the R,s given by the OMP of Ref. (8)
( ~ ~ ~ )
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respective optical model potentials found by MacDonald'
and by Johnson and Winters? To answer the question, it is
perfectly straightforward to calculate the R&I of an OMP for
either real or complex energies by integrating the radial
Schrodinger equation for u&I out to a specified channel ra-
dius and using the expressions for R&I and R,I given before
Eqs. (3) and (4) above. Here again the functions R, s are
simply the real and imaginary parts of R&I.

In Fig. 1 we have added the R,s for the OMP of Mac-
Donalds found by evaluating Rgq(E+ I'I) along both I =0.3
MeV and I=0.4 MeV. The R curves are indistinguishable;
the two s curves are separated by an almost constant
amount equal to about 0.005. One must not expect the R,s
given by the OMP to agree exactly in magnitude with the
R,s obtained from the experimentally determined R&1 be-
cause the OMP was not truncated at the channel radius.
The OMP outside the 6.4 Fermi channel radius contributes
significantly to its S matrix. We note, however, that both
sets of R show the same energy dependence. The experi-
mentally determined s fluctuates more than that of the s
from the OMP, but the dependences agree rather well given
the small number of levels.

In Fig. 2 we have added the R,s curves found from
R +i ms = RP~(E) by using the OMP of Johnson and
Winters to calculate the R function at real energies. There
is a massive disagreement between the energy dependence
of R from the "standard" average and from the OMP.
Moreover, we have used the OMP to calculate R at dif-
ferent channel radii and found that its energy dependence
does not change significantly. The fluctuation of s is also
much larger than that of the curves in Fig. 1(b) and the
mean value in the range E =0.3-0.8 MeV is well above the
value given by their OMP. Note also that the small differ-
ences in strengths between the OMP's given in Refs. 3 and
8, show up as shifts in the magnitudes of R,s but that their
energy dependences are changed very little. We conclude
that the energy dependences of R, s found by JLMW
disagree with those of the OMP given by Johnson and
Winters. Therefore, the so-called "standard" average of
JLMW does not give the S matrix for their OMP.
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