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Fast-phonon induced broadening of single-particle lines in excited nuclear matter
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A modified kinetic equation for nuclear matter, whose generator of irreversible motion contains a
contribution from coupling to a fast collective mode in addition to the usual kinetic kernel, is exam-

ined. The fermionic collision rates are evaluated in the relaxation-time approximation, assuming a

finite amount of excitation is transferred from collective motion to the single-particle degrees of
freedom in the form of a temperature increase. Both energy and angular dependence of the collision

frequencies are discussed.

NUCLEAR STRUCTURE Modified kinetic equation; fermion-boson coupling;

intrinsic kinetics; phonon-induced kinetics; total collision rate; resonance decay;
finite temperature in nuclear matter; distortion of the Fermi sphere.

I. INTRODUCTION

The interplay between collective and intrinsic excita-
tions in nuclear matter and finite nuclei is a current source
of attraction for theoreticians in the field, especially in
view of the original dynamical features that one can ap-
preciate. ' Complementarily to earlier studies on trans-
port processes in heavy nuclei, where damping of the col-
lective motion was especially examined, these latest
works make room for the consideration of either irreversi-
ble evolution. Both single-particle (s.p.) lifetimes and res-
onance broadenings could be extracted in a framework
that treats both kinds of excitations on an equivalent foot-
ing. '6 In particular, in Ref. 6 (hereafter referred to as I)
we have presented a detailed model where a modified ki-
netic equation for nucleonic states, that contains the aver-
aged coupling to a harmonic collective mode, is derived in
parallel to a master equation for the latter. In I we have
examined the way in which the mode approaches thermal
equilibrium while performing quantal brownian motion,
described by the above referred master equation, in a stat-
ic heat reservoir represented by nuclear matter at a finite
temperature T. The stationarity of the fermionic environ-
ment is an exact consequence of the sharp-resonance hy-
pothesis adopted to describe the propagation of the cou-
pled system between successive interactions and it makes
possible an analytic, exact diagonalization of the generator
of irreversible harmonic motion.

In the present work we attempt some estimates of the
s.p. broadenings or inverse relaxation times when the
sharp-resonance hypothesis is abandoned. Such a study
should precede a complete dynamical calculation involv-
ing the coupled fermion and harmonic systems, since it
provides useful information about the initial and the final
rate of s.p. decay and the subsequent distortion of the Fer-
mi sphere in the course of the evolution. It is not our pur-

pose to abound on details regarding the general theory
since enough discussion has been devoted to it in I. We
rather focus upon the examination of the modified kinetic
equation and the computation of the fermion collision fre-
quencies in the so-called relaxation time approximation.
The notation is the same as in I and when needed we
briefly recall the meaning of each symbol and concept, so
as not to distract the reader. The convention to be used
throughout this paper regarding density matrices is as fol-
lows: The same symbol p denotes either the fermion or
the boson density, although lower case Latin indices n la-
bel oscillator states from zero to an upper bound N while
Greek labels a and p name, respectively, particle levels
that participate in phonon creation and phonon annihila-
tion; thus, ea ~ e„. No confusion can ever arise since each
meaning becomes clear in context.

In Sec. II we briefly review the appearance of the modi-
fied kinetic equation and discuss the balance of competing
processes. The collision frequencies are examined in Sec.
III from the formal viewpoint when the sharp-resonance
approach is abandoned in favor of a broad, energy-
dependent form factor that accounts for finite s.p. life-
times. The generation of this form factor is traced to the
fulfillment of the kinetic hypothesis. The numerical cal-
culations and their interpretations compose the body of
Sec. IV, while Sec. V contains the final summary.

II. THE MODIFIED KINETIC EQUATION

We have shown in I that the fermions in the heat reser-
voir surrounding the harmonic mode of interest obey, in
the neighborhood of their thermal equilibrium, the linear-
ized kinetic equation

p(1)= [—iWk;„(1)+Mk;„(I )+M», (1)]p(1) . (2.1)

Here, p(1) is the reduced particle density for the s.p. la-
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beled 1 and Zk;„(1) is the mean-field or time-dependent
Hartree-Fock (HF) Liouvillian responsible for the reversi-
ble free fiow. The label kin denotes that the given symbol
is well recognized in kinetic theory. The real collisional
kernels Mk;„(I), A"„,(I) are, respectively, the collision
term owing to the residual fermion-fermion interaction
and the frequency-broadening operator that bears the ef-
fect of coupling to the macroscopic coordinate. The ki-
netic contribution has been analytically constructed in
Ref. 7 and a numerical study of the approximate eigen-
values has been performed in Ref. 8 for a range of nucleon

energies and temperatures of the environment. Our in-
terest here is to focus upon the collision kernel induced by
the harmonic oscillation. This term originates in a single
fermionic superoperator KF whose structure is

KF ——KPP+ K )P2 (2.2)

where p—=p(1), p2(') is the antisymmetrized two-fession
density, and Eo and E& are one- and two-body super-
operators, respectively. In the very close to equilibrium
regime, where all density matrices are diagonal, the com-
ponents of KF are

I'F«)f IP&&P I
[(1—Po)p (1—P I

&&&~
I

) —(1—PN)P (1—P, I
~&&~

I
)]

+
I
tt&&~

I
[(1—px)pa(1 —p, I p&&p I

)—(I —po)p~(1 —pa I p &&p I )]I, (2.3)

where F(e z)=Faz denotes an energy-dependent form
factor to be examined later.

We have shown as well in I that A „,represents the su-
peroperator

(1)=Kp(1)+Tr2K&(1 2)p2 (1 2) (2 4)

The procedure that gives rise to KF has been indicated in'

I. This kernel has been constructed using a rather stan-
dard technique in nonequilibrium statistical mechanics,
namely, a convenient truncation of a Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) hierarchy. In the
present case, the hierarchy is not equivalent to a Liouville
equation for an N-body system that evolves in a reversible
fashion with a Hermitian generator of the motion. In-
stead, what one constructs in the present case is a modi-
fied BBGKY hierarchy, starting from an equation of

~k.(i)=P HF(1» ]

=[Ho(1)+Tr2H)(1, 2)P2 '(1,2), ] . (2.5)

We recall as well that in I, the boson-induced collisional
terms have been given a diagrammatic interpretation that
we will not reproduce here.

Now, using expression (2.3) we obtain

motion for the many fermion system that already con-
tains, in its non-Hermitian generator of motion, the
boson-averaged interaction with the collective mode. In
such a frame, Kp and K~ are non-Hermitian superopera-
tors that cannot be factorized as commutators; however, it
is worthwhile to notice that M„, in Eq. (2.4) possesses the
same structure as the mean-field, kinetic Liouvillian,

~...(1)p(1)= P I ~a„ I
'F(ea„) I lu &&S

I
[(I—po)p, (1—pa) —(1—p~)pa(I —p„)l

+
I
~&&~

I
[(1—P~)P (1—P» —(1—Po)pp(I —Pa)]I . (2.6)

With these considerations, the kinetic equation (2.1) can be written as a gain-minus-loss evolution law for the matrix
elements of p(1),

PA PA + I ~A, A —q I FA, A —q[(1 pp)pA —q(1 pA ) (1 p~)PA(1 pA —q)]

+ 14+q,A I 'FA+q, A [(1 pn )pA+q( pA ) ( —po)pA( pA—+,)]— — — (2.7)

where A+q is a shorthand notation to indicate the partici-
pation of the s.p. level with momentum kA+q, the latter
being the phonon momentum. It is clear that Trp(1) =cte
and this equation can be understood as follows: Apart
from the level decay associated with the residual two-body
interaction, indicated by pq;„(Boltzmann collisional
derivative; see, for example, Refs. 7 and 8), phonon
creation and annhilation events drive the irreversible evo-
lution according to the usual gain-minus-loss pattern. The
s.p. level denoted as IA & increases its population from

states with momentum kA+q (kA —q) owing to creation
(destruction) of phonons, the latter processes possessing an
intrinsic weight proportional to the probability of nonex-
istence (existence) of quanta, namely 1 —p~ (1 —pp). We
are using the notation of I, where N denotes the upper
bound of the oscillator spectrum, 0 its ground state, and

p„ the population of the state with n quanta,
n =0, . . . , N. On the other hand, we read in (2.6) that the
s.p. level

I
A & depopulates towards those with momentum

kA +q (kA —q) through phonon creation (destruction) with
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probability 1 —po (1—pz). Equilibrium will be reached
when populating and depopulating events take place at the
same rate.

III. ESTIMATE OF THE KINETIC-PLUS-NONKINETIC
COLLISION RATE

In this work we evaluate the modified collision frequen-
cies in the spirit of Ref. 8. In that work, the kinetic col-
lision frequencies for fermions in nuclear matter interact-
ing through a residual force have been calculated as func-
tions of s.p. energy for a range of equilibrium tempera-
tures and a variety of realizations of the two-body interac-
tion. The philosophy of these types of calculations con-
sists of approximating the eigenvalue problem for the col-
lision operator (that gives rise to the characteristic col-
lision frequencies of the system) as

~k [P(1)l = —Lk.p(1» (3.1)

where I.I„.„ is the linearized operator for the loss processes,
namely, those that depopulate the s.p. states. Each diago-
nal element of the matrix on the right-hand side of (3.1) is
the so-called collision frequency, or inverse relaxation
time, of the system for the given s.p. energy. This pro-
cedure provides a means of extracting orders of magni-
tude, qualitative functional dependence, and parametric
trends of the eigenvalues of the collision operator.

Thus, in this work we select the loss amplitude in Eq.
(2.7) and define the phonon-induced collision rate,

&~ =
l 4,~ —q l

'F~,~ —q(1 —Px)(1 —P~ —q )

+
I ~~+q, ~ I

'F~+q, ~(1—po)(1 —p~+q) (3.2)

v~( ~ ) =
l 4,~ l'q(I p~ q)+~—- (3.3)

This means that the Inajor contribution to the thermally
equilibrated line width arises from events in which the
particle with momentum kz "decays towards" a state with
momentum kz q creating a phonon, this being the only
permitted process in a phononless situation, i.e., po-1.

The selection of coupling matrix elements will be dis-
cussed in Sec. IV. A word of caution should be devoted to

This quantity should provide an estimate of the s.p. width
originated in the coupling to the harmonic mode, when
evaluated within a model that yields reasonable figures for
the fermion and boson densities. The approach selected
here consists of fixing pq+q as a Fermi factor at a given
temperature T and looking for the values of po and p& in a
thermal canonical distribution for an oscillator with ener-

gy A'Q. In order to better fix the ideas, we will always
have in mind a system that, at the origin of time, consists
of cold (To ——0), equilibrated nuclear matter and an excit-
ed mode, p„=5„„,with 0&no~X. We assume that the

system evolves toward its overall equilibration, and at the
end of time, the fermionic environment has reached a
temperature T„=PA'Q/a. Here a is the level density
parameter in the Fermi gas model. Thus, p„
=exp( fiQ/T ) is ap—proximately equal to 5„o for fre-
quencies representing nuclear giant resonances (see I). We
then realize that

i f—dr LBFU, (q )LBF(papF ). (3.S)

where U, is the so-called correlation, or intermediate,
propagator. The time integral is extended up to infinity if
it can be assumed that the lifetime of a correlation, ~„is a
microscopic time scale related to the duration of a single
collision and much shorter than the macroscopic observa-
tion time, t. One then writes the collision kernel,

~BF(PBPF)=t f, dq LBFUt:(q)LBF(PBPF)t

However, for practical calculations it is usual to replace
the correlated (and complicated) propagator U, (q) by its
unperturbed counterpart Uo. In other words,

U( )r~ Uo(r) =exp( —iraq)exp( i WFr—) . (3.7)

If the interaction I.&I; is time independent, integration of
(3.6) under the assumption (3.7) gives rise to a 5 function
in place of the form factor F. Now, it is worthwhile no-
ticing that Uo(r) in (3.7) is an infinitely long-lived kernel;
thus, its introduction in (3.6) violates the previous hy-
pothesis regarding the separation between time scales.
This inconsistency is avoided if one selects a short-lived
kernel as an approximation for U, (r), i.e.,

U, (r)=exp[ i(WB+W—F)~] exp( —yr), (3.8)

where y stands as a large frequency parameter whose in-
verse is a microscopic time r, . Integration of (3.6) with
(3.8) gives rise to a Lorentzian form factor,

F(b,e)=Re f d Ur, (~)

Ay

(AQ —b.e) +(Ay)
(3.9)

We remark again that the validity of the kinetic assump-
tion, and consequently the legitimacy of the equations of
motion treated in this work, demands a broad Lorentzian
form factor (y &&Q, he/R).

On the other hand, it is necessary to observe that the
use of approximation (3.7) gives rise to a pecuhar behavior
of the fermionic environment, however, making possible
the calculations in I. Indeed, one can see in (3.2) that if
the form factor is a 5 kernel, the collision frequency van-
ishes except for those s.p. levels with momentum lying on
either of two preferential p1anes, whose equation can be
found from the simultaneous energy and momentum con-

the energy form factor F~+q& in Eq. (3.2). We recall that
in I, this factor was given by

Fg+qg qr——5(AQ
l

—eg+q —eg
l

) .

The origin of the 5 function can be traced to the time in-
tegral of the propagator between two successive collisions
between ferrnions and the collective mode. Strictly speak-
ing, we should remind the reader that, in the formal
description of irreversible dynamics for weakly coupled
systems, one writes that the joint probability of a fermion
and a boson configuration evolves in time as

-ai (paP—F)t (~B+~F)t(papF)t
Bt
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servation. This has been discussed in I, where advantage
has been taken of the fact that those fermion orbitals par-
ticipating in collisions with the macroscopic object relax
instantaneously. Thus, the heat reservoir can be con-
sidered to be in a steady state from the origin of time.
Contrary to this extreme situation, the correct treatment
of the kinetic assumption makes room for finite collision
frequencies whose systematic analysis we pursue in the
next section.

IV. NUMERICAL CALCULATIONS AND DISCUSSION

(4.1)

(4.2)

The computation of Eq. (3.2) demands the knowledge
of an order of magnitude for the coupling constants A,~&
and the microscopic width y in the form factor given in

Eq. (3.9). The former are selected as independent of a,p,
and the value is taken from Broglia' as an estimate for
isovector giant modes,

130 MeV
b

A (r')
where b is proportional to a reduced electromagnetic tran-
sition probability. " This expression yields

~

A,
~

between 2
and 5 MeV for nuclides with mass A larger than 100. We
have done our calculations with

~

A,
~

=v 10 MeV.
The parameter y possesses the dimensions of a frequen-

cy, and we assume its order of magnitude is

+/& -o.m~
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FIG. 2. The same as in Fig. 1, for a temperature
T =T„=1.3 MeV.
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where uF is the Fermi velocity, actually an average veloci-
ty for the fermions, and r, is a correlation radius giving
the range of the boson-fermion interaction. If we further
suppose r, =rc ——1.12 fm, and take into account that the
Fermi momentum in nuclear matter is k~ =3/2ro, we get

A'y =3
2mTO

(4.3)

04
I
O

0
so ~&~=&~6

so- ~~g=assi

to-

o.33

30 ~p ~ tL575

20-

10-

0 I I I / i I I I I I I I I I

10 20 g) 40 $0 IO M 10 20 30 & 50 10 70

E, (M+V) E, (MGV)

FIG. 1. The total collision frequency vq"" as a function of the
single-particle energy ez for different angles calculated for a
temperature T=TO ——0. The vertical line indicates the Fermi
energy.

Then, Ay is three times the translational quantum whose
value is 16.3 MeV. The latter is a typical resonant energy;
we then obtain, as a result of this approximation, a
Lorentzian width that permits the application of the ki-
netic hypothesis, since the lifetime y

' of the correlated
propagator U, (r) is about one third of a characteristic os-
cillation period for the range of resonance frequencies
under consideration.

We have chosen the initial conditions to correspond to a
one-phonon excited mode (no ——1). The asymptotic equili-
brium is selected at a temperature T =1.3 MeV, this being
the one to be reached in Pb after absorption of an
AQ=13.8 MeV phonon. The level density parameter a
has been taken from Ref. 10. We have simulated the in-
fluence of low-energy collective modes upon particle
dynamics by renormalizing the fermion inertial parameter
as an energy-dependent, effective mass whose values have
been extracted from Ref. 11. Our results are displayed in
Figs. 1—6.

In Figs. 1 and 2 we show the total frequencies
vz""——vz+vq'" as functions of the s.p. energy ez for dif-
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FIG. 3. The fermion-boson collisional frequency vz as a
function of energy for a selected set of four angles. The tem-
perature is zero and the correlation radius r, has been chosen
equal to ro ——1.12 fm.
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FIG. 5. The same as in Fig. 3, with a correlation radius
r, = 10ro.

ferent angles, computed at To ——0 (Fig. 1) and T„=1.3
MeV (Fig. 2). The kinetic frequencies vq'" have been cal-
culated as indicated in Refs. 8 and 12. The fermion-boson
collisional frequencies vz are shown in Figs. 3 and 4 for
the same temperatures. The effect of the form-factor
width is illustrated in Figs. 5 and 6, where the same calcu-
lations are presented, corresponding to a correlation radius

r, = 10ro.
Let us first examine Fig. 1. We should remind the

reader that at T =0, the kinetic collision frequency van-
ishes for ez &eF (see Refs. 8 and 12). In addition, the
coupling frequency v~, whose expression is given in Eq.
(3.2), consists of two step functions, 1 —p~ z and
1 —p„+~, modulated by the Lorentzian form factors.
Thus, vz deforms the kinetic collision frequency in two
different fashions: (i) it provides a nonvanishing total rate
below the Fermi level, and (ii) it changes the otherwise
smooth slope of the increasing branch in the figures, in-
sinuating a broad shoulder several MeV above the Fermi
level. It is seen that as the angle increases from zero to
m. /2, the low energy plateau is displaced to the right (see
as well Fig. 3), this tendency being reversed for back an-
gles approaching m. The overall displacement is as large
as 20 MeV, and we observe that for angles close to m/2,

the collision rate is almost negligible below the Fermi en-
ergy. This means that the small forward momenta are
more likely to participate in an event concerning the mode
than those small momenta being almost perpendicular to
the phonon momentum q. The same statement holds for
the small backward momenta; this symmetry effect will be
examined later in connection with Fig. 3.

In Fig. 2 we observe a situation corresponding to the
temperature T„where the ground-state population po is
almost unity. This means the frequency vz is given by
Eq. (3.3) and only one Fermi factor, 1 —pz ~, is visible.
In this case, s.p. levels belonging to the Fermi sea partici-
pate in collisions only to the extent permitted by the range
of the Lorentzian form factor, their contribution to the to-
tal rate being negligible. We see that the shoulder in Fig.
1 is here substituted by a smooth slope change, owing to
the diffuseness of the Fermi surface at T . The angular
pattern displays an asymmetrical displacement of the
lower bound of the curves towards smaller energies with
increasing angle, opposite to the symmetry exhibited in
Fig. 1.

In Figs. 3—6 we can appreciate more fully the effect of
the energy-nonconserving kernel F. In Fig. 3, the form-
factor width corresponds to a correlation length r, =ra
We clearly see the two step functions and their drift to-
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FIG. 4. The same as in Fig. 3, for T = 1.3 MeV.
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FIG. 6. The same as in Fig. 4, with a correlation radius
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wards each other when 0 increases from zero to m. /2.
Indeed, these two steps have almost collapsed for
8=0.42m, and we realize, from Eq. (3.2), that 8=~/2 is a
transition point where 1 —pz q and 1 —pz+q become in-

terchanged. Since we are assuming an initial excitation of
the oscillator where both po and pz are zero, we see that
for a given momentum, vq would be a symmetric function
of the angle with respect to m. /2, except for the form fac-
tors F. This fact indicates to us that all differences be-
tween the 8 and the (m. —8) patterns in Fig. 1 must be re-
lated to the Lorentzian kernels. In other words, at T =0,
the rate at which a given momentum kz lying in the plane
perpendicular to q "decays towards" k~+q, differs from
the decay rate towards the momentum kz —q in an
amount corresponding to the respective Lorentzian
weights.

Figure 4 displays the only existing step—considerably
smoothed by the finite excitation of the environment —in
the final condition, po-1. We observe the leftwards drift
with increasing angles and the presence of the Lorentz
form factors clearly exhibited in the steady negative slope
of the plateau.

Figures 5 and 6 were devised to illustrate to a better ex-
tent the effect of these form factors. The situation shown
here lies closer to the limiting case in which it merely
consists of a 5 kernel, since we have increased the correla-
tion length by a factor of 10. %'e observe that the peaks
in the collision rates are rather sharp for small angles
(they tend to disappear as 8 increases), giving rise to posi-
tive slopes related to peaks located at energies beyond the
scale considered here. Furthermore, back angles possess
very small collision frequencies, whose negative slopes in
the region are associated with Lorentzian maxima lying
far on the left of the plot.

V. SUMMARY

merical analysis of the expected trends of the kinetic-
plus-nonkinetic collision rates, in two different situations.
The morphology of these examples schematically corre-
sponds to (i) the initial condition of a dynamical process
of resonance decay in cold nuclear matter, and (ii) the fi-
nal or asymptotic state where the collective oscillation has
released its energy, in the manner of a finite temperature
T, to the fermionic environment.

We have computed the collision frequencies in the usual

approach, namely, the so-called relaxation time approxi-
mation, as functions of s.p. energy and angle between fer-
mion and phonon momenta. It has been seen that the
presence of a collective mode and a coupling device makes
room for the participation, in the fermionic dynamics, of
s.p. states lying rather deep in the Fermi sea. Such a par-
ticipation would be forbidden in cold nuclear matter sub-

ject to a two-body, nucleon-nucleon effective interaction
as the only source of relaxation, and highly inhibited even
in the case of a finite temperature of the nuclear environ-
ment. ' This effect is enhanced if a broad form factor is
allowed to account for short-lived collisions between the
fermions and the oscillation. In this sense, one could re-
gard the coupling as responsible for an increase in the ef-
fective diffuseness of the Fermi surface, in addition to a
distortion of the Fermi sphere in view of the angular
dependence of the calculated figures.

The two examples discussed here provide estimates of
the characteristic decay times of s.p. dynamics at the be-
ginning and at the end, respectively, of the irreversible
evolution of the overall system. A full numerical integra-
tion of the simultaneous equations of motion may give
further insight into matters like the deformation of the
Fermi sphere following the decay of a collective excita-
tion. Calculations in this respect are currently being pur-
sued and will be presented for publication.

In the present work we have illustrated the conse-
quences, upon s.p. lifetimes. or level widths, of the pres-
ence of an excited harmonic mode in nuclear matter. The
coupling between fermions and phonons possesses a two-
fold effect; it damps away the collective motion in a
manner that has been described in detail in I in the frame
of a solvable model, and it broadens the s.p. levels in their
mean field. Rather than solving the modified kinetic
equation for the fermions simultaneously with the master
equation for the mode, we have decided to perform a nu-
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