
PHYSICAL REVIE% C VOLUME 29, NUMBER 4 APRIL 1984

guantal Brownian motion in stationary and nonstationary fermionic reservoirs

E. S. Hernandez and C. 0. Dorso
Departamento de Fisica, Facultad de Ciencias Exactas y Waturales, Universidad de Buenos Aires,

7428 Buenos Aires, Aires, Argentina
(Received 1 November 1982)

A model for collective mode damping in nuclei is devised in the frame of a theory of irreversible

evolution. The decay width of a fast nuclear vibration, originated in its coupling to the remaining

nuclear degrees of freedom, is calculated in a dynamical fashion. To this aim, a set of equations is

proposed that describes the simultaneous dynamics of the oscillation or its associated array of bo-

sons and of the interacting fermions that play the role of a heat reservoir. These are, respectively, a
quantal master equation and modified kinetic one. The two of them exhibit their mutual coupling
in the non-Hermitian terms of their generators of motion. The equations are worked out in detail in

(a) the weak-coupling approximation plus (b) the very-close-to-equilibration regime plus (c) the
energy-conserving description of intermediate processes. %ith hypothesis (c) the heat bath can be

regarded as lying in a steady state at all times and the master equation is solved for different tem-

peratures and phonon energies. The damping width of the oscillations is thus quantitatively
predicted.

NUCLEAR STRUCTURE Damping width. High-frequency collective modes.
Nonstationary fermionic heat reservoir. Coupled dynamics. Quantal master
cquat1on. Modified BBIGKY hlcI archy. Modi fled k1Ilct1c cquatlon. S1Ilglc-

particle lifetime. Temperature-dependent transition rates. Thermal equilibra-
. tion. Irreversible evolution with effective collision frequency or relaxation time.

I. INTRODUCTION

High-energy nuclear vibrations constitute beautiful ex-
amples of damped macroscopic motion in finite systems.
Since the observation of the giant dipole resonance, that
gave a strong motivation to the particle-hole model of col-
lective oscillations, ' a wealth of literature has dealt with
the experimental recording, the theoretical frame, and the
overall systematics of these modes, "whose domain has
enlarged with the observation of higher resonant multipo-
larities. s

Among the various interesting features of high-
frequency vibrations, their observed widths have been re-

garded as manifestations of dissipative coupling to some
other macroscopic or particle coordinates associated to the
nucleus. The vie%points adopted to describe thc reso-
nance broadenings range from the assignment of particle-
hole (p-h} widths' ' to the construction of complex
dispersion relations for the multipole density oscillations
in a spherical cavity ' ' in the frame of the nuclear hy-
drodynamic model. Different versions of the same prob-
lem could be quoted, in particular the elastic-vibration
description, the one-body dissipation model, and
Green's functions method in the spirit of perturbation
theory. ' ' ' These theories and models, like their coun-
terparts, namely those aiming at the reproduction of the
peak resonant energy, focus upon very specific features of
nuclear dynamics, like the real and imaginary part of an
energy eigenvalue in a dispersion law for high-frequency
collective motion. It is our purpose to provide a frame in
which both the macroscopic and the intrinsic motion that

take place within similar time scales, can be looked upon
and followed over a finite time interval. This permits us
to penetrate into the mechanism of the mutual damping
that gives rise to both resonance and single-particle
broadening in the course of' the combined evolution and
learn about the relative importance of the microscopic
events that may compete in the selected approximation.
Owing to the advent of nuclear transport processes (as ob-

served, for example, when low energy collisions take place
between heavy iona} it is nowadays a familiar issue to
think about several features of nuclear dynamics in terms
of nonequilibrium evolution in many body systems.
Most studies in this direction are concerned with the prob-
lem of nuclear friction or dissipation of large amplitude
collective motion, usually formulated in terms of classi-
cal master or Fokker-Planck equations that describe the
relaxation of the macroscopic degree of freedom in the
presence of a static intrinsic heat bath. Giant resonances
should be regarded as quantal, rather than classical, har-
monic oscillations, since their frequencies lie in the same
range as the nucleonic orbital frequencies in the mean
field, namely about a tenth of MeV. The theoretical
dcscrlptlon of thc1r damping thus demands a p1opc1 ap-
proach on the basis of a parallel quantal treatment of both
collective and part1cle dynamics. Such a standpo1nt leads
to an attractive picture of the decay of this kind of collec-
tive excitation and gives rise, in a straightforward fashion,
to a quantitative prediction for the damping width. This
approach is indeed different from some recent works that
consider single-particle dynamics as an important in-

gredient of nuclear dissipation since our interest lies

29 1510 1984 The American Physical Society



29 QUANTAL BROWNIAN MOTION IN STATIONARY AND. . . 1511

on quantual high-frequency, rather than classical low-
frequency, collective motion.

A realistic situation that may correspond to a finite nu-
cleus poses several difficulties, starting from the necessity
of stimulating the finite configuration space, or,
equivalently, the distorted nuclear Fermi sphere, the deli-
cate treatment demanded by angular momentum conser-
vation, and the convenience of somehow renormalizing
the coupling of the resonance to other collective, mainly
surface, oscillations, considering, for example, the nucleon
effective mass to be a function of the energy. However,
the relevant dynamical features of the situation under
scope can be cast into a simplified model consisting of a
quantal oscillator that undergoes Brownian motion in a
fermionic environment of thermally excited and equili-
brated nuclear matter.

The framework of the formulation is shown in Sec. II,
where apart from a minimum of equations that display
the major components of the calculations, most room is
devoted to examining the different microscopic processes
that draw the combined motion towards equilibration and
that represent either phonon or particle-hole creation,
propagation, and annihilation in a dynamical picture.
They are represented by suitable diagrams. We briefly in-
dicate how one can operate with graphs to extract the
equations of motion for the bosonic density, that acquires
the form of a Pauli-type master equation whose dynamics
does not resemble the well-known classical macroscopic
nuclear motion. It rather looks like the evolution of a
linear chain with nearest neighbor interactions and asym-
metric, temperature-dependent transition rates that are
here rigorously derived within the frame of the model.
The asymptotic motion of the fermion density is examined
in Sec. III. It can be seen to respond to a modified kinetic
equation, whose approach to equilibrium is governed by
two kinds of collision frequencies, associated with the fer-
mionic pairwise interaction and to the boson-fermion resi-
dual interaction, respectively.

Section IV contains our calculations performed in the
oversimplified situation in which the heat reservoir
remains at a steady state. This configuration naturally
occurs in the sharp-resonance or energy-conserving ver-
sion of intermediate propagation between consecutive col-
lisions. The numerical analysis is carried out solving the
eigenvalue problem of the master equation for the oscilla-
tor density. A range of temperature and phonon energies
is considered, and the smooth behavior encountered allows
straightforward extrapolations. The time evolution of the
density is studied and quantitative estimates of the life-
time of an excited state or inverse width are given. Sec-
tion V contains a discussion of the results while the sum-
mary and conclusions are presented in Sec. VI.

II. THE MODEL

A simplified model of the coupling between a quantal
nuclear vibration and the fermionic environment consists
of a harmonic oscillator with frequency 0 in contact with
nuclear matter that provides a heat reservoir. The latter is
assumed to be a fourfold (spin-isospin) degenerate Fermi
gas whose equilibrium distribution at temperature T

(b)

FIG. 1. Interaction vertices. (a) Phonon creation with parti-
cle deexcitation from orbital

~

a ) to orbital
~ p ); (b) phonon an-

nihilation with particle excitation from state
~
p, ) into

~
a).

(MeV) is

p,q= I/[ I+exp(e —ez)/T] .

The overall system is assigned a Hamiltonian,

H =Hg+HF+Hgp,

(2.1)

(2.2)

where the labels B, I', and BIi stand for bosonic (collec-
tive), for fermionic, and for interaction, respectively. The
latter is selected as a standard particle-phonon field of the
form

H„=g (X.„r'b„'b.+X".„rb.'b„) . (2.3)

In (2.3) the boson operators I,I are raising and lowering
ones for quanta in the harmonic field, while b, b denote
fermion creation and annihilation, respectively. We
choose the labels a,P, etc., to specify single-particle (s.p. )
states on top of the Fermi level, their deexcitation towards
a single-hole state p, v, etc., is accompanied by the
creation of a single phonon of energy A'Q, according to
(2.3). The conjugate process (quanta annihilation) gives
rise to a particle-hole pair. The interaction vertices are il-
lustrated in Fig. 1. More generally, we later relax the re-
striction to states above and below the Fermi level, and
speak instead of excited and deexcited s.p. orbitals. In this
frame the term particle (hole) will be rather loosely used to
denote those s.p. states that may release (accept) energy in
order to create (destroy) a phonon.

We notice that the problem described by the Hamiltoni-
an (2.2) plus the interaction (2.3) is formally identical to
that of radiation-atom coupling in quantum optics (see,
for example, Ref. 34). It should be borne in mind that a
fundamental difference arises since the collective mode
possesses a microscopic structure in terms of coherent
particle-hole excitations. ' This structure induces
particle-phonon correlations that may not be ignored
when analyzing finite nuclei. For our current purposes,
those correlations are ignored; we defer to a later work the
examination of their importance in spherical nuclei. Thus
the present model considers an oscillator placed in a fer-
mionic heat reservoir without any reference to its micro-
scopic constitution.

The coupled equations of motion for the density ma-
trices of the oscillator and the heat bath can be derived
following established prescriptions of irreversible statisti-
cal mechanics, like the projection method of the theory of
master equations ' or the reduction technique that
leads, for example, to the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy and to the one-body
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kinetic equation. ' Either procedure yields formally the
same result, differing perhaps in the representation of the
correlation superpropagator U„defined below. We will
not get into the details of the derivation; they are reviewed
in Ref. 39. We simply quote here that we have decom-
posed the whole density vector as

p(t) =p&(t)pF(t)+p, (t)

=pp(t) +p, (t), (2.4)

where po(t) is the state supervector of the vacuum or situ-
ation of statistical independence between the oscillator and
its environment, and p, (t) is the correlation supervector
belonging to the class of traceless supervectors with
respect to both the fermion and boson coordinates. In this
frame, the reduced equations of motion are obtained from
the Liouville one,

ikp=Lp= [H,p], (2 5)

utilizing either technique mentioned above. The final re-
sult takes the form of a causal evolution law,

ifipg ——Wgpg+Kg(po), (Q =B,F) (2.6)

where Wg is the free-flow generator or effective Liouvil-
lian,

Wg Lg+ T ——g(LttFp g ) (2.7)

0'~F(r) =L~z U„(r)LaI; . (2.9)

Here U„ is the superpropagator in correlation space,
whose expression may look different according to the real-
ization of the projection or reduction sup eroperator
chosen to carry out the derivation. However, seemingly
different expressions of U„are indeed equivalent except
for, at most, a time-dependent phase factor. As an exam-
ple, we note that the reduction procedure carried over by
the scalar product in Liouville space that consists of trac-
ing away the uninteresting degrees of freedom [T g in
Eq. (2.7)] gives in our case,

(here —Q denotes the complement of the coordinates la-
beled Q, and T is the symbol for a trace operation with
respect to the variables in the subscript), the term Kg is
the collisional derivative,

Eg(po) = J dr Tg[+zz(r)p. o(t —r)], (2.8)

and qfzz is the collision (or memory) superoperator,

tal trace of a commutator, i.e.,

T~T~L (B,F)p(B,F)= TJ; T~ [H (B,F)p(B,F)

p(—B,F)H(B,F)]=0 .

We briefly recall the significance of the entities in Eqs.
(2.7)—(2.9). The trace term in (2.7) represents the mean

field that each subsystem experiences, on the average, due

to the presence of its partner. The collision term given in

(2.8) provides the dynamical coupling between both densi-

ty supervectors that leads to mutual equilibration. The
collision superoperator O&F is most often discussed in ir-

reversible statistical mechanics, ' where it is

recognized as the irreducible kernel that causes vacuum-
to-vacuum transitions through an infinite sequence of
events in correlation space. For a review of the properties
of the operators of kinetic theory, we refer the reader to
Refs. 33 and 39 and references cited therein. Further-
more, we recall that the reduced density pg (Q =B or F)
remains normalized provided that TgKg(po)=0 at any

time; this is a consistency requirement that one should
check whenever a specific form of (2.8) is used.

In this work we have evaluated the non-Hermitian gen-

erators of the motion displayed in Eq. (2.6) for Q =B and

Q =F, in the weak coupling approximation that con-

sists of the choice, for the correlated superpropagator,

lU„(r)= Uo(r) =exp — (Ltt+L~)r— (2.12)

i.e., the free superpropagator. The use of this approxima-
tion is legitimated under a set of conditions; first, the
magnitude of the interaction strength must be small rela-
tive to a typical energy or frequency of the motion. This
is satisfied in the nuclear problem where one expects the
interaction strength A,~& of Eq. (2.3) to be about or below 1

MeV for a giant-dipole mode of about 15 MeV of excita-
tion energy in medium-heavy nuclei (see for example, the
estimate given by Broglia' or Ref. 4, Chap. 6). Second,
the interaction time must be sufficiently long for the ener-

gy to be conserved during the collision. Notice that hy-
pothesis (2.12) combined with (2.9) and with the identity
po(t —r) = Uo( —r)po(t) leads one to calculating the time
integral

f dr exp[i (0 ro q)t] =rr5+—(A to „)—
=m.5(Q —co „)

t
U„(t)=exp —— dr(1 p~ TF p~ T~ )L— —(2.10) +i H[1i(fl co „)],—(2.13)

while the time-independent projection proposed by Willis
and Picard gives, in our notation,

U„(t)=exp —— dr(1 p~ TF p~ T~- —WP I

pFp~ TFT~ )L . (2.11)

It is clear that the exponents, operating on any Liouville
vector, yield the same result, since they only differ in a to-

where A'(0 —co~&) is the energy variation as the interaction
takes place. We use ~~„=e —e„ for the transition ener-

gy of the pair (ap) in Eq. (2.3).
The details of the calculation are given in Ref. 39 and

we quote the results in a diagrammatic representation
whose ingredients are, in the Liouville space:

(a) An arrowed double line denotes an oscillator Liou-
ville state

~

n ) (n' ~;
(b) Arrowed single lines designed above the phonon line

are "excited" states,
~

a) (a' ~;
(c) Arrowed single lines drawn below the phonon lines
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(3)

by one propagating "excited" fermion;
(2) Number-of-quanta-conserving processes with one

more phonon plus one propagating "deexcited" fermion;
(3) and (4) Conserving processes with one propagating

p-h pair and either none or one active phonon in the inter-
mediate state;

(5) and (6) Nonconserving processes, characterized by
the creation of two extra quanta. Here the intermediate
state consists of one propagating phonon plus one "excit-
ed" and one "deexcited" particles.

The collision derivatives are evaluated combining the
diagrammatic representation of the collision kernel (Fig.
2) with the cluster structure of the many-fermion system.
Observation of Fig. 2 permits us to discriminate three
classes of initial vacuum states.

(a) Graphs (1) and (2) select those initial states that con-
sist of a single fermion coexisting with the oscillator in
state

FIG. 2. Collision superoperator. See text for the description
of the different graphs.

are "deexcited" states,
~ p & &

p'
~

.
Time always flows from right to left in every graph.

We remark that in the present language, "excited" and
"deexcited" s.p. states are relative concepts since they
refer to the result of the annihilation of an oscillator quan-
tum, or to its creation. In this frame, 4'zF is depicted in
Fig. 2.

This figure symbolically exhibits six different kinds of
processes carried out by the collision superoperator, be-

tween the initial and final vacuum configurations.
(1) Number-of-quanta-conserving processes with one

less active phonon in the intermediate state accompanied

pg(t)= gp„„(t) i
n &&n'

i
.

In other words, p~(t) contributes just a one-particle cluster
with weight

p, (t) =—p(r)= g p» (t)
~

A &&A'
~

.

(b) Graphs (3) and (4) demand a two-fermion state on

the right, represented by a two-cluster pz(1, 2;t). We see
that fermions belong to different classes, since one of
them is assigned to create a phonon, while the other one
will participate in quantum annihilation.

(c) Graphs (5) and (6) operate upon two-fermion states
as well, but of the same kind, i.e., either both "excited" or
"deexcited, " since the collision process embodies two
quanta creation or annihilation.

In the very-close-to-equilibration regime, where both p~
and the one-body component p:—p~ of pF are diagonal in
their respective spaces these derivatives adopt the form,

+ I&&&&
I
PI S»&S (I I~ —Ip&&p I

) ——(1—I ~)pp(1 —p IS &&S I )lj. (2.14b)

po= a+pi —~-po
pe= —~+~a+ ~-px-i

(2.15a)

(2.15b)

(2.15c)

The conservative flow terms W~p~ vanish in the asymp-
totic regime. The dissipative evolution of the matrix ele-

ments p„„=p„ofpz is governed by an asymmetric Pauli-

type master equation,

p„=8'+(p„+i—p„)+W (p„ i
—p„), 0&n &N

I

not accept probability flow from n=0 (n =N) other than
towards n= 1 (n =N —1). In this respect, the evolution
problem posed by Eqs. (2.15) is that of a finite linear
chain with nearest neighbor interactions and perfectly re-

flecting walls; notice that the same equation, considered to
be valid for all n, describes the dynamics of the same
chain with absorbing walls, i.e., the norm Tzp~ is not a
constant of the motion.

The upwards and downwards transition probabilities
are, respectively,

Equations (2.15b) and (2.15c) express the fact that the os-
cillator spectrum is bounded (the upper bound at n =N is
here set for calculational purposes); consequently, one can- and

A'W+ = g ~ A~„~ m5(Q co~„)p„.(1—p—~) (2.16a)
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0.5.

O.2 0.4 08 10
K„(tm-') 0.2 0.4 0.6

FIG. 3. Fermion occupation numbers in the summands for
the transition rate O' . They correspond to the computations

undertaken in this work for a temperature T=4 MeV and a
phonon energy A'0 = 18 MeV. The abscissa is the radial momen-

tum in fm ', since the other two components have added up ac-

cording to the discussion in Sec. IV.

A'W = g ~

A, „~ m.5(Q a) „)p (1——p„) . (2.16b)

III. RELAXATION OF THE MULTIFERMION SYSTEM

Before facing a model study of the master equation
(2.15) we must establish some simplified form for the nu-
cleon occupation probabilities p (t) or p„(t). Their asymp-
totic evolution demands some further work, since EF in

These expressions give the rate of gain (loss) of population
of the oscillator state

~
n)(n

~

as a sum over transition
strengths times the occupation probability of the fermion
pair involved in the process n+1 quantum. If p&,p~ are
close to Fermi distribution factors at a given temperature
T, an estimate of the relative behavior of 8'+ and W
can be given; assuming p& p(e&)——, we have p~=p(ftQ+ e~)

due to energy conservation. The summands in Eqs. (2.16)
are quantitatively drawn in Figs. 3 and 4 except for the
transition strengths

~

A,~z ~

. According to this scheme,
low temperatures (T «A'Q) favor W+ and thus the evo-
lution proceeds towards the oscillator ground state. In-
creasing temperature causes 8'+ and 8' to become com-
parable; in this case, Eqs. (2.15) indicate that the motion is
diffusionlike, rather than dissipative as in the former case.

The generator of dissipative-diffusive evolution is
represented by an asymmetric tridiagonal matrix; in the
present work, the transition probabilities are neither pos-
tulated nor written down on heuristic grounds, but derived
from the microscopic analysis of the generator of dissipa-
tive evolution in the general equation of motion (2.6). It is
interesting to quote here that analytic expressions are
available for the eigenvalues and eigenfunctions of such a
matrix. They are given in the Appendix. Future calcula-
tions will rely heavily on the properties of these eigen-
values, whose evaluation demands the introduction of the
fermion one-body densities in equilibrium.

FIG. 4. Same as in Fig. 3 for the transition rate 8'+.

with

t'fip=W p+iK p, (3.2)

(1)=W (1)+T~[L~F(1)p~],

K (1)=Kp(1)+ Tr2K& (1,2)p(2)+K~'N(1) .

(3.3a)

(3.3b)

Equation (3.2) displays the standard structure of a kinetic
equation, while both the Hermitian, free-flow generator

and the dissipative kernel K exhibit the boson-
averaged effect of the external coupling agent. The super-
script KIN denotes the kinetic contribution to either con-
servative or dissipative dynamics, the corresponding gen-
erators being, respectively, the Hartree-Fock Liouvillian

~KIN( I) [~ (1) ]
= [hp(1)+ Tr V2(1,2)p(2), ]

and the Boltzmann collision kernel E ' whose expres-
sion has been written down by many authors (see Refs. 30
and 33 and references therein).

For several applications, it is useful to dispose of a di-
agrammatic representation for KF. We introduce thus the
collision vertices as depicted in Fig. 5 where lines denote
either I.iouville states

~

A ) (A'
~

or particle labels 1,2; the
wiggly lines indicate antisymmetrization between the par-
ticle lines they link. Figure 5(a) corresponds to Kp in Eq.
(3.1), while Fig. 5(b) represents K&. Within this scheme an

Eq. (2.14b) affects the motion of the whole N body fer--

mion density pF. However, it is straightforward to show '

that, starting from the general equation of irreversible
motion (2.6), for Q =F, the reduction procedure that
builds up the we11-known BBGKY equation ' gives rise
to a modified BBGKY hierarchy" that includes the cou-
pling mechanism with both a conservative and a dissipa-
tive contribution. Noticing that KF in Eq. (2.14b) is the
sum of a one-body plus a two-body term,

KF(pp) =Kpp+K~p2 (3.1)

where p2 '( l, 2) is the antisymmetrized two-fermion densi-

ty, one arrives at a modified kinetic equation that reads
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(a)

FIG. 5. One and two fermion collisional vertices [(a) and (b),
respectively]. The wiggly lines denote antisymmetrization of the
two-particle wave function in both the initial and final state.

FIG. 6. Diagrammatic expansion of the modified collision
term of the fermionic heat bath. See text for the description of
the graph.

object like Trzi( t(1,2}p(2} that appears in the modified
collision derivative (3.3b) is drawn in Fig. 6. It should be
remarked that the presence of the wiggly line tells us that
the particle line in the intermediate state carries a relative
weight p(2) (either a matrix element p«or pz& ), while
the simple one-body collision vertex 5(a) is weighted by a
Kronecker delta in the given indices. The whole modified
collision kernel can be diagrammatically written as the
sum of the drawings in Figs. 6 and 5(a) plus the kinetic
term ' proportional to the square of the fermion pair-

I

wise interaction, ([V, ]) . Its expression in the current re-
gime has been worked out in Ref. 30 and calculations of
the mean free paths associated with this kernel have been
performed in Ref. 42 for different nuclear interactions.

In the very-close-to-equilibration regime, the fermions
in the heat bath obey the linearized kinetic equation, '

trtP(l)=[ —iW (1)+M (1)+Mosc(1)]P(1) . (3.4)

The expression for M ' (1) is given in Ref. 30 while for
~osc we get

~osc= g I
~.„l '~5(&—~.,)I[(i—po}p„(1—p }—(1—p~)p (1—p, }l

I p &&) I

+ [( 1 PN )p.( 1 —p„}—( 1 —po}p,( 1 —p.}]
I
~ & & ~

I I ~ (3.5)

pA(t) =pa(eq)+5'�(t} (3.6)

The Hartree-Fock or conservative term W (1) is zero
when p(1) is diagonal.

The total collision frequencies are then the eigenvalues
of the superoperator MToT —A K$N+Mosc Since the
diagonalization problem here involved represents a rather
heavy numerical task, if even possible, we resort to the re-
laxation time approximation ' '; we assume that the
occupation number of the state

I
A }(A

I
is

I

with q, k~ the phonon and relative fermion momenta,
respectively. The summation over s.p. labels is, in the
thermodynamic limit,

y=Xg Jd'k„, (3.10)

where g is the total momentum degeneracy, including the
spin-isospin degrees of freedom. If we assume that the
boson energy and momentum satisfy a dispersion relation
for acoustic modes,

where Q=c,
I q I

=c,q, (3.11)

5pg(t) = 5pg(t)/&ToT(A—) = —&TQT(A)5pg(t) . (3.7)

Here vToT rToT is ta——ken as the sum of the representative
estimates of the respective kernels. The kinetic frequen-
cies vKqN are well known; for the remaining contribu-
tions we select the same approach that gives rise to
them. ' ' It consists of linearizing the loss (positive)
term in the kernels. %"e obtain the expression

&&osc(A) = g I ~a„ I
'~5(& —rom„)

X I (1—Pp}f I P(eq)14p—

(3.12)&&a.5 (2k,q+q ) Pic,q-
2&l

A similar form is valid for vosc(k ). We recognize in
(3.12} the combined effect of both energy and momentum
conservation, that restricts the participation of "deexcit-
ed" fermion states to those lying in the plane

with c, an average sound velocity of the fermion environ-
ment, we find for vosc(p) the expression,

&osc(k )=g
I ~-„--„ I

[I—p~

+(1—p~)[I —p„«q)]4 I ~ k, =mc, /A' —q/2 . (3.13)

At this point a feature of the model shows up as fol-
lows. Since the transition vertices Vzz must satisfy
momentum conservation, we actually have k, =mc, /A+q/2, (3.14)

The z axis is taken as parallel to the phonon momentum
q. Furthermore, for the excited" particles it must hold,

A~p —A(A@5( q k~p) (3 9) the presence of the delta symbol in Eq. (3.12) must be un-
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0.8

0.4-

IV. QUANTITATIVE ANALYSIS OF THE MASTER
EQUATION

We are now solving the master equation (2.15) that
gives the evolution of the occupation probabilities of the
oscillator levels. The transition rates 8'+ and 8' in
Eqs. (2.16) take the form,

p'+ 2n—g f dk„k„~ A,(k„,q)
~

p(k&)[1 —p(k„,q)],

(4.1a)

8' =2m-'g' f dk„k„~ A,(k„,q)
~
'p(k„,q)[1—p(k„)] .

(4.1b)

0.5 1.0 1.5

k„(s m)

FIG. 7. Integrand of the transition rate 8'+ as a function of
temperature (in MeV) and radial momentum (in fm ').

derstood as indicating a limiting situation, corresponding
to perfectly elastic nucleon-oscillator collisions. The
better energy is conserved during the interaction, the
larger the collision frequency whose elastic limit is sym-
bolically written down in Eq. (3.12). It further indicates
that the oscillator will be ignored by those fermions lying
outside the planes (3.13) or (3.14) in momentum space.
The dynamics of these planes is fairly interesting, since it
takes place with an infinite total collision frequency, or
zero relaxation time. It means that while the rest of the
heat bath remains in the thermodynamic state previous to
the particle-phonon collision, these fermionic planes are
instantaneously thermalized, acquiring without delay an
equilibrium temperature that could be related, using a bi-

dimensional Fermi gas model, to the excitation energy
given up by the oscillator. Overall thermalization of the
fermion system takes place via particle-particle collisions
with a finite relaxation time,

+KIN(~ ) VKIN(~ ) (3.15)

The sudden equilibration of the momentum space subsets

(3.13) and (3.14) is a model characteristic related to the
appearance of a sharp resonance. The energy-conserving
distribution 5(Q —co- ) is the time integral of an

k +q, k

uncorrelated propagator for the combined system. If the
spreading width of the harmonic mode were included in
the form of a lifetime b, ' for the evolution kernel U«
[see Eqs. (2.6)—(2.10)], a Lorentzian function of width 5
would take the role of the energy-conserving filter. In
such a case, of course, vosc(A) would remain finite, al-

though larger for those fermions with momentum point-
ing to the planes discussed above.

A quantitative comparison between the kinetic frequen-

cy vKqN and the oscillator-induced correction vzsc de-

pends upon the magnitude of the coupling strengths A,~z.
Since in this work, it stands as an arbitrary parameter,
further statements are deferred until the model is applied
to a semirealistic situation, i.e., a finite nucleus.

e„=e(k, =0.8 fm ')

=32.55 MeV . (4.2)

In our calculations, the Fermi energy is 38 MeV.
The transition rates 8'+ and 8' are displayed in Figs.

8 and 9, respectively, as functions of both temperature and
phonon energy. They have been computed using a
Gauss-Legendre algorithm combined with a convenient
truncation of the semi-infinite energy domain. The
overall behavior reproduces the features expected on quali-
tative grounds. While the general trend of 8'+ is to de-
crease with increasing temperature and smaller phonon
energy, 8' shows the complementary behavior. The ra-
tio W /W+ is predominantly governed by the tempera-

These expressions arise after integration of the momentum
and energy conservation filters, under the simplifying as-
sumption that the transition strength A, is isotropic. The
only remaining integration variable is the radial momen-
tum component in the interacting subsets (3.13) and (3.14).
Although the general derivation of the transition rates al-
lows for the overall time dependence of the fermion densi-

ty, the analysis of vToT(p) in the preceding section estab-

lishes that the participating p(k&),p(k ) are static ones,
corresponding to thermal equilibrium of a Fermi gas at
temperature T.

Calculations are performed for the case k=cte. This
implies that all computed frequencies are given in units
MeV (10 ' sec) '/

~

A,
~

. Assuming a phonon disper-
sion relation (3.11) for acoustic modes in the nuclear fluid,
we evaluate the transition rates 8'+ and 8' for a range
of phonon frequencies that represents a typical fringe of
giant dipole resonance (isovector) energies, i.e., from 13 to
18 MeV. A wide interval of temperatures is selected in or-
der to dispose of an ample scope of the behavior of the in-

teresting quantities. As an example, the integrand of Eq.
(4.1a) is displayed in Fig. 7, as a function of radial
momentum k„(in fm ') and temperature T (MeV). It
corresponds to a phonon energy fiQ= 13 MeV. We see
how the filter shape of this integrand is modified in a
drift-plus-diffusion fashion with increasing temperature;
while the width grows from about 0.4 to 0.8 fm ', the
centers slightly move between 0.75 and 0.85 fm '. Tak-
ing an average value for the energy associated to the peak,
we find,
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FIG. 10. Mean frequencies v and V' (in 10 ' sec ') defined
in Eqs. (8.6) and (8.7) as functions of time (in units of the oscilla-
tor period T =2m. /0). The temperature is 5 MeV, the phonon
energy is 13 MeV.

FIG. 12. First three components of the boson density vector
as a function of a dimensioned time for the case T=5 MeV,
A'0 = 13 MeV, and

~

A,
~

= 1 MeV.

(ii) the mean frequency V(0), (iii) the perturbed mean fre-
quency V'(0), and (iv) vE(0). These quantities are plotted
as a function of temperature, and correspond to fgQ=13
MeV. It can be observed that, within the resolution of the
vertical scale, all these parameters coincide at T=1 MeV.
In particular, the eigenvalues are A,2 ——97.52, A.4 ——97.72,
and A,5 ——97.84 in their corresponding units. The curves
diverge from these points with increasing temperature, al-
though the mean frequencies 7 and v ' remain between the
eigenvalues k4 and A, 5 over almost the whole range. Since
V(0) and v'(0) give indication about the initial evolution
trend of p and the perturbation 5p, respectively, it is
worthwhile noticing that for the selected initial condition,
the largest expansion weights correspond to the eigenvec-
tors number 4 and 5. This is indeed the case for tempera-

140.—

$Mev (10 'sec) 'g

tures up to 8 MeV; for larger temperatures, the contribu-
tion of these eigenvectors progressively decreases, causing
the change in the slope of the curve v(0). A further illus-
tration of the influence of the initial distribution on the
dynamics is given by vE(0), that measure the initial decay
tendency. It is seen from this figure that it remains, with
the mean frequencies and the fourth and fifth eigenvalues,
within a range of about twenty units along the vertical
scale for temperatures below 3 MeV. The negative slope
causes vE to depart from the other quantities for higher
temperatures, reflecting the fact that the larger amount of
population demanded by highly excited eigenstates slows
down the initial rate of energy loss.

Finally, the evolution is displayed in Fig. 12 where the
first three components of the density vector are shown as
a function of time. They have been computed for A'Q= 13
MeV and T=5 MeV. The exponential growth of po(t) is
clearly appreciated as well as the decay of p&. The com-
ponent pz is seen to grow to a low maximum and drops
quickly to zero, while the remaining components cannot
be shown in the current scale.

120
V. DISCUSSION

100

80

60

&0

20-

T (M eV)

FIG. 11. Second, fourth, and fifth eigenvalues (ordered ac-
cording to increasing magnitude) of the generator of motion M
and the starting mean frequencies v, v', and vE as functions o'f
temperature for fiQ = 13 MeV.

In the preceding section we have presented typical pa-
rameters and gross features of the time evolution of the
phonon density vector. To this aim we have explicitly
solved the previously derived master equation, whose tran-
sition rates have been computed on microscopic founda-
tions. As shown earlier in this work, these transition rates
8'+ and JY depend on time and temperature through
the fermion one-body densities that weight the availability
of particle-hole pair states, required to host the result of
phonon decay (or, to feed quanta creation in the conjugate
process). Furthermore, the equilibrium distribution of
phonons at temperature T is (see Appendix)

W (T)
p„' '(T)=C (5.1)

where W+ are chosen at their asymptotic values, if time
dependent. In the present work, 8'+ are constants since
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the sharp-resonance approach (namely, the selection of a
free propagator in intermediate states) freezes the evolu-
tion of the fermionic reservoir (see Sec. V). Equation (5.1)
is just the canonical equilibrium distribution at tempera-
ture T, thus the ratio W /W+ is proportional to the
Boltzmann factor exp( fiQ—/T). This proportionality is
verified under calculation, as already mentioned in con-
nection with Figs. 8 and 9.

One could wonder about the minimum in W+(T) for a
fixed value of A'0 that can be observed in Fig. 8. It takes
place between 6 and 7 MeV, for every phonon energy. In
order to explain the necessity of such minima, we will
consider the high temperature limit (Boltzmann limit),
T»eF. In this case, the Fermi distribution is just the
classical one and the Pauli exclusion principle is not ac-
tive. Thus we can write,

E'p —6'F

p( k&)[1—p( kz+ q )]=exp (5.2)

P'+ ——exp
PECS ]+ 2q 2mT 2mg'

~

A,
~

'I, (T),

(5.3)

where

I,( T) = I dk„k„exp

PlT= exp(eF /T) (5.4)

Equations (5.3} and (5.4) show that both transition rates
increase with temperature while their quotient approaches
unity from below. For all values of T, W remains
smaller than 8'+ due to the Boltzmann ratio. This im-
plies that the collective excitation associated with n quan-
ta at t=0 will necessarily decay towards the equilibrium
eigensolution; an external pump would be required to pro-
voke any other kind of evolution. Now, since the low-

temperature behavior of W+ is governed by a negative
slope dW+/dT, due to the Pauli-controlled decrease of
the values of its integrand (Fig. 8), it is clear that a
minimum will take place in order to reach the high-
temperature asymptote (5.3). We remark that in the
present discussion, the concepts of high and low tempera-
ture are relative to the fermionic environment with typical
temperature eF. Of course, the nuclear regime always cor-
responds to a degenerate Fermi gas ( T &&ez) and for situ-
ations of physical interest, temperatures are confined to a
small interval around 1 or 2 MeV. The calculations un-

dertaken in this work just illustrate the smooth behavior
of the quantities that rule this type of irreversible evolu-
tion.

A glance at expressions (2.16) for the transition rates may
convince the reader that in the limit (5.2), they become
proportional to the exponential factor containing the ener-

gy in the participating planes k, [Eqs. (3.13) and (3.14)],
the proportionality factor being the radial integral, identi-
cal for both W+ and W . Then

2

The problem of time evolution of the boson density has
been reduced, after solving the spectral problem for the
generator of motion, to calculating an expansion of the
form (4.3). It has been shown that the evolving density
vector can be always written as

p(t)=p '+5p(t), (5.5)

where p' ' is the equilibrium distribution at the given tern-
perature and 5p(t} the decaying part whose amplitudes de-
pend upon the initial conditions. It is clear from Eq. (5.4),
as well as from the examination of the mean frequency
v'(t), that the long-time behavior of 5p(t) is approximate-
ly exponential with a decay constant A,2, namely the small-
est nonvanishing eigenvalue of the evolution matrix. One
could thus regard r~ ——A, z

' as the half-life of the excited
collective mode; in such a frame, A, z just represents the
width of the resolvent in energy space and should be pro-
portional to the observed damping width of the harmonic
coordinate.

VI. SUMMARY

In this work we have undertaken a study of the coupled
dynamics of a boson system, consisting of a number of
quanta that measure the excitation of an oscillator, and a
multifermion system that provides a heat bath. Such a
configuration is intended to give a rough representation of
a collective mode in a large nucleus that decays via in-
teraction with the nucleons; we choose then a boson-
fermion coupling of the standard nuclear form. Starting
from the Liouville equation of motion, a reduction pro-
cedure permits us to describe the combined dynamics
through two coupled equations that relate the oscillator
and the fermion density vectors. A further reduction of
the fermionic dynamics in a usual kinetic fashion ' al-

lows one to formulate the problem in terms of two cou-
pled equations for the boson and the single-fermion densi-
ties. The latter is a modified kinetic equation, bearing the
effect of the coupling through one extra contribution to
the collision frequency. In other words, the presence of
the oscillator produces a broadening of s.p. lines, in addi-
tion to that (usually low in nucleonic systems) due to two-
particle collisions.

In order to fix the ideas with a solvable example, the de-

tails have been worked in a weak-coupling scheme; the
collision superoperator, the collisional derivatives, and
their close-to-equilibrium expressions have been analyti-
cally evaluated. It has been shown that the replacement of
the intermediate propagator by an unperturbed one gives
rise to a sharp-resonant effect, whose consequence is to
provoke instantaneous thermalization of the fermionic
subsets that participate in energy and momentum conserv-
ing collisions with the oscillator. This property permits us
to write a simple master equation for the evolution of the
boson system, considering that the fermion partners build
up a heat reservoir in equilibrium at a given temperature
T. This constitutes a question of vector evolution under a
non-self-adjoint generator and can be tackled solving the
spectral problem exactly. The solution and discussion of
this eigenvalue subject have given rise to the preceding
two sections in this work.
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We must remark here that the smooth-behaved results
displayed in Secs. IV and V correspond to an oversimpli-
fied situation; an infinite fermion system in thermal
equilibrium inducing Brownian-type motion on a struc-
tureless oscillator. In order to describe a configuration
that could better simulate the coupling of a nuclear collec-
tive mode to the remaining degrees of freedom, several
limitations of this model should be raised. Rather than
attempting a detailed microscopic calculation of the col-
lisional derivatives, it should be interesting to consider the
possibility of including, in an approximate way, some real-
istic effects. It is likely that one could reasonably simu-
late (a) the finite nuclear size in the manner of distortions
on the Fermi sphere, (b) the boson-fermion correlations re-
lated to the microscopically coherent nature of the nuclear
quantum, (c) the finite resonance width that accounts for
a finite collision frequency for the fermions, and (d) the
coupling to low-energy, surface collective modes as mass

renormalization. We believe that the present simplified
model, for which the elements of the general theory have
been explicitly computed, provides a reference frame into
which refinements could be inserted to adjust some of the
features of the physical situations.
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APPENDIX

We look at the spectral problem

MV"=A, V" (A 1)

with the nonsymmetric tridiagonal matrix

(A2)

Tr(MV) =0 . (A3)

Consequently,
N

Tr(MV")=A, g g VI", =0.
@=1

(A4)

In other words, the eigenvectors of the matrix M associat-
ed with nonzero eigenvalues are traceless vectors.

On the other hand, it can be seen that the determinant
det(M) is equal to zero; this implies A,

&

——0 is an eigen-
value. The corresponding eigenvector is the equilibrium
solution p' ' and can be straightforwardly obtained with
the ansatz

that generates the motion of the boson density according
to the master equation (4.5). This matrix is trace nullifier,
i.e., for any vector V,

(A5)

where Ca is a normalization factor. Operating with M
upon p' ' easily shows that

W
CX= (A6)

in correspondence with the exact stationary solution of the
master equation for systems in detailed balance discussed
in Ref. 45.

As one writes down the coefficients of the secular equa-
tion det(M —A,I)=0, one finds that the corresponding
polynomial of Nth degree reads

P~(A, ) = —A,P~ i (A, ),
with P' the secular polynomial for the (N —1)-
dimensional matrix,

—(IV + W+) 8'+
—(W + W+) W+

W —(IV +IV )

W —(IV +IV+)

(A8)
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We recognize the major difference between M and M'.
Indeed while the former corresponds to a linear chain con-
taining J(i nodes and fixed, reflecting walls at n =1, n =N,
the latter describes the same situation with absorbing
walls, since M' is not trace conserving as a generator of
motion. In other words, if p=M'p, d(Trp)/dt does not
vanish at all times. The advantage here is that the eigen-
value problem for M' is known and the solution reads

A,,= —(W + W+)+2(W W+)'/ cos

Vi (s) ~k/2 X ~

k

$7T
sin

kssr
cos

(A10)

A simple expression can be found for the traceless eigen-
vectors of M with the ansatz

Vk' ——A, sin +B,cos(g) . ks~ ksm
(Al 1)

Placing (Al 1) into the spectral equation (Al) allows deter-
mination of 2, and 8„that must be adjusted to satisfy the
boundary conditions for reflecting walls contained in the

($ =1, . . . , N —1) . (A9)

It is straightforward to verify that the corresponding
eigenvectors are

first and last components of the vector (M —A,,I)V". We
easily obtain,

(s) (k+1)/2 ~ ks'tr k/2 . (k —1)sm.
Vk ——a sin —a sin

N N
(A12)

N

k=1
(A14)

These eigenvectors are computed with the same procedure
as the V's, giving

vt(s) (k —i ) /2—~ k$1T —k/2 ( k —1 )$m
(A 15Vk ——a sin —a sin

The scalar product V~"V" is then used to normalize
both vectors. In particular, the adjoint equilibrium solu-
tion is

t(o) t'( j ) —k
Pk = Vi =Co& (A16)

and this, as well as p' ', are instead normalized according
to the Liouville space metrics,

Trp' '=Trp~' '=1 . (A17)

It is well known (see, for example, Ref. 45) that the
eigenvectors V "of the adjoint problem

V"'M =X,V"', (A13)

are orthogonal to the V's, namely
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