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The two-rotor model of deformed nuclei which predicts an isovector collective M1 state owing to
orbital motion is reformulated by a different quantization procedure. This new formulation leads to
an eigenvalue equation for the intrinsic motion which is identical to that found in the interacting bo-

son approximation. The close correspondence to the vibrating potential model is also stressed. The
values of the excitation energy and 8{M1) strength are now in reasonable agreement with the esti-

mates of those models.

NUCLEAR STRUCTURE Two-rotor picture, deformed nuclei, collective
isovector orbital magnetic excitations.

I. INTRODUCTION

A few years ago a two-rotor model of deformed nuclei
had been considered. ' In such a model, protons and neu-
trons are assumed to form separate rigid bodies of ellip-
soidal shape. The restoring force generated by their rela-
tive displacement can give rise, classically, either to rela-
tive rotational oscillations or to a configuration where the
nucleus rotates as a whole, while the proton neutron sym-
metry axes stay at a fixed angle, as shown in Fig. l.

The model, which has been studied for simplicity only
for N =Z, predicts collective states only in the region of
heavy deformed nuclei. In such a region for 3=180 and
deformation parameter ~5~ -0.25, there are two @=1
states with I= 1,2 at about 12 MeV with B(M 1)t
—15(e/2 m), and B(E2)t -0.6 W.u. , respectively.

A collective state interpreted in terms of the two-rotor
model has been predicted in the framework of the vibrat-
ing potential model (VPM) (Ref. 2) and the interacting bo-
son approximation (IBA) (Ref. 3). In both cases the ener-

gy of the Ml state is much lower than the one estimated
in Ref. 1.

One of the motivations of the present paper is to inves-
tigate the origin of such a discrepancy. In this connec-
tion, we reconsider the quantization procedure of the
two-rotor model.

In Ref. 1, to be referred to as I, the classical Hamiltoni-
an has been quantized after the transformation to intrinsic
frame variables. Now it is known that quantization in a
different system of coordinates gives rise, in general, to
different results. Since the model is to be considered an
approximation to a nuclear Hamiltonian expressed in
terms of the fixed-frame nucleon coordinates, it is more
appropriate to quantize in the fixed-frame variables and
then to transform to intrinsic frame variables.

As shown in a preliminary report, this latter procedure
leads to results which are qualitatively similar but quanti-
tatively different from the previous ones, and closer to the
predictions of the VPM and the IBA.

We also extend the model to the case N&Z in order to
account for the neutron excess and discuss our numerical
estimate of the restoring force constant. While the first
effect turns out to be negligible, we find that there are
large uncertainties in the estimate of the restoring force
constant inherent to the semiclassical nature of the model.

In Sec. II we illustrate the new quantization procedure
whose derivation is given in Appendix A. In Sec. III, we
solve the eigenvalue problem; in Sec. IV we evaluate tran-
sition probabilities and the Ml form factor; in Sec. V, we
discuss the numerical estimate of the restoring force con-
stant and compare the new version of the two-rotor model
with the VPM and the IBA. We use A'=c= 1 u.

II. THE MODEL

If relative translational motion is neglected, the classical
Hamiltonian of the two-rotor model is

I (P) + I (n) + y~p (2.1)

FIG. 1. Classical motions in the two-rotor model: {a) rota-
tion around the g axis; (b) rotational oscillatiou around the g
axis.

where I 'p', I '"', Wp, and W„are the angular momenta
and moments of inertia of protons and neutrons, while V
is the potential energy.
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and rewrite H as

n p

where

(2.3)

4W~„
(2.4)

Wp+W„
We assume the potential to depend on the angle 8 be-

tween the symmetry axes g(P), g(") of the proton and neu-
tron ellipsoids

cos(28) g(P).g( ) (2.5)

It is therefore natural to introduce this variable along with
a set of other variables necessary to identify g(p), g(").
These variables may be the Euler angles a, (O, y of the in-
trinsic frame defined by

sin(28)
g(p) g(n)

2sinO

g(p)+ g
(n)

2 cosO

It is now convenient to introduce the total angular
momentum I

I(P)+I( )

(2.2)
I (P) I ( )

The correspondence Ig(p), g "I =Ia,p, y, OI is one to one
and regular for 0 & 8 & n/2

The variables (g(P), g("))=(a,P, y, O) are not sufficient to
describe the configurations of the classical system. How-
ever, they describe uniquely the quantized system owing
to the constraints

(p) (n)
I(p) I~——n)

——0, (2.7)

-a
S~——i, Sz ———cotOI~, S~———tanOI& .BO' (2.8)

Following the alternative procedure mentioned in the
Introduction, we first quantize by replacing I and S by
their Cartesian operator realizations and then perform the
change of variables (g(P), g("))—+(a,P, y, O). This change
of variables is a unitary transformation provided the sca-
lar product in the new variables is defined by

appropriate to rigid bodies with axial symmetry. These
constraints are automatically satisfied if we take
wave functions depending on g

' ),g
(") only.

In I we have first expressed the Hamiltonian through
the classical components of I and S along the intrinsic
axes, and then quantized it by replacing such components
by their operator realizations. The latter are well known
for I, while for S they resulted to be

&g
~

p'& = f d(z f dp»np f dy f d(28)sin(28)1(*(a(OyO)((('(apyO) . (2.9)

The properties of this transformation are given in Appendix A. We show there that the transformed S operator coin-
cides with (2.8), while the transformed Hamiltonian is

(2.10)

HI —— cot OI~+ tan OI„— —2 cot(28) + tanOI&I„co—tOI„I&+iI—
&

2 2 2 2 J n
—~p

$82 8 4&p W„

HI for N =Z differs from the intrinsic Hamiltonian of I by the term

1 8
cot(28)

(2.11)

III. THE EIGENVALUE PROBLEM

The general expression for the eigenfunctions is
' 1/22I+1

SIMa
8m

(3.1)

where o stands for all necessary quantum numbers.
These eigenfunctions must satisfy the constraints

&g"( )+1M =&g"'(~)+1M =+1M (3.2)

owing to the fact that configurations of the system differing by a rotation of n around the g axis are indistinguishable.
The other symmetries imposed in I are absent for N&Z.

In Appendix 8 we derive two sets of relations. The first one is

4'm (8}=(—1) CI z~(8} .

Using this relation we can rewrite the eigenfunctions as

(3.3)
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1/22I+1 1
[~MX +(—) ~M r—C]@aCo(8) .

16m z) 0 1+5zp

The second set of constraints relates the values of the 4's in the regions 0 & 8 & ~/4 and m./4 & 8 & m/2,

(3.4)

400 ——8 =400 (8),
2

——8 = —@n (8»
2

@22o 8 z @22o(8) 7+3/ @20o(8) i
2

(3.5)

——8 =42i (8),

@20o 8 +3/2@22o(8) 2 @20o(8)

It is therefore sufficient to solve the eigenvalue problem for 0&8&m./4. The solution of the eigenvalue problem is sim-
plified by the following transformation, which eliminates the term linear in the 8 derivative from the Hamiltonian (2.10),

def

(UNIK )(8)=&»n(28)@IX (8) = f'IK (8» (3.6)

H'= UHU '= . cot OIl+tan OI — —[2+cot (8)] .

W„—Wp+ T(cotO+tanO)(I~I&+I&I~) iI~ +—V(8) .
4&„&p

We assume an harmonic approximation for the potential

(3.7)

V(8)= ~

—,'CO', 0&8&—,
7T

—,C ——0, —(0(—,
2

' 4 2

(3.8)

as imposed by the geometry of the system and we consistently expand H' in powers of 8 up to second order

1 1 2 1 8 1 2 1 2 2 ~n ~P 1 1 8 7T

g~ ~ 4 gg~ ' ~ " 4W„W„2 0
(I ——) — —2 + —,CO + 8 I + ——+8 (IgI +I Ig) iIg, 0&—8& —.

ac '

Let us introduce the definitions

(3.9)

8,=(~C)-'", x=
t9p

Omitting the constant term —1/W, H' can be rewritten

(3.10)

2

H =
2 0I —

2 + 2 (Ig —
~ )+x +Tp)80x I& +0)80 T x + Op (IgI& +I&Ig) —l'Ig4 pp ~ ~p

Bx x W„+Wp x Bx
(3.11)

According to the estimates made in I for a heavy nu-
cleus (see also Sec. IV) 80-0.03, so that [(Jr„—W~)/
(W„+.W~)]80 is of the order of l%%uo, and we can neglect
the last term in the Hamiltonian

g 1 ~ 1 2 1 2
2

H'= , pI —,+, (I&—,)+x, 0&x &——
X X 0

(3.12)
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which coincides with that obtained by Dieperink in the
framework of the IBA. This Hamiltonian does not con-
tain any coupling between states with different X. In the
region m/4&8&m/2 states with different IC are instead
coupled, because in that region, writing [(m/2) —8]/8p
=y, we have

with eigenvalues

erc„——co(2n +I(. + 1) .

The total eigenfunctions are

1/2

(3.15)

2

c)3 3
(3.13)

+lmSCn =

(3.16)

n!
(n +I(. + 1)8p

1/2 ' I(. +(1/2)

8p

—(1/&)(8/e()) ~ rc( 8r /8p) (3.14)

Constraints (3.5) can be shown to be in agreement with
the above approximate expression of the Hamiltonian. In
this approximation the nucleus still has axial symmetry.

Note, however, that the terms we have neglected in H',
while small with respect to the intrinsic excitation ener-
gies, are comparable to the rotational energy, so that devi-
ation from pure rotational spectrum might be expected.

The eigenfunctions of H' are

We remark that states with n =1, I('=0, correspond to
the classical vibrations shown in Fig. 1(a), while states
with n=O, %=1, correspond to the classical rotations
shown in Fig. 1(b).

IV. TRANSITION PROBABILITIES
AND M1 FORM FACTOR

The electromagnetic radiation excites only states with
quantum numbers I =EC=1, n=O and I=2, %=1, and
n=O, through Ml and E2 multipoles, respectively. The
n= 1, E=O states have, in fact, a negligible strength of the
order of 8p.

A. M1 transition

The Ml operator has the following form:

~(M1,p)=/3/4m JdF—[g~p~(r)+g~„(r)][r && v~(r)]&
2

='(/3/4n[gpIp~. '+g„Iq"']=Mp(M 1,p)+Me(M l,p),
2m

where v~(r) is the proton velocity field,

(4.1)

Mp(M 1,(M )= ,
'
v'3/4@I~(g p—+g„)

2m

is the isoscalar part which is 8 independent, and

(4.2)

~()(M 1,(M) = ,' &3/4nS„—(gp
—g„).

2m
(4.3)

is the isovector part which is 8 dependent.
Equation (4.1) shows that the Ml transition is entirely owing to orbital motion. Furthermore, Eq. (4.3) shows that the

M1 transition operator does not depend on X—Z explicitly.
The only nonvanishing reduced amplitude is

m/2 d e(I=E=1,n =0~ ~Mr)(M1, I( =1)~ ~I =X =n =0)= iv'3/16m —f d8sin(28)4»p(8) 4ppp(8)(g —g„)0 d8 ~ "2m

=i v'3/16m8p '(g~ —g.„)
2m

where we used Eqs. (3.14) and (3.5) to evaluate the integral.
The transition probability is therefore

(4.4)

r 2

8 (M 1)t= 8p (g~ —g„)
16m. " " 2m

2

~cp(g, —g )'
16m- ~ " 2m

(4.5)

which coincides with the expression obtained in the framework of the VPM by Lipparini and Stringari.
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B. E2 transition

The E2 operator is

~(E2,p) =e f d r p~(R o
' r ) r Yzz(r )

=e rpp r r Yzz R~r =e z„' 2v exp —iOI~ 2p (4.6)

where

Qz„' ——f dr p~(r)r Yz&(r) .

For an ellipsoidal shape Qz„——Qzo5. To first order in 8 and [(m /2) —8], Eq. (4.6) becomes

M(E2,p) =Mo(E2,p)+Ms(E2, p),
where

(4.7)

(4.8)

Mo(E2, p)=eQg 5 oS 8——+ 20 exp i I—
~
—2p S ——8(p) ~ ~

7 p 4 4 4
(4.9)

Me(E2, p)= —ieQz~o'V3/25
&

8S 8——+ ——8 S ——8p 4 2
(4.10)

and

S( )
1 x (0
0, x&0.

Using Eqs. (3.14) and (3.5) we get
~ (p)

m/4

(I=2K=1,n =Oil~( &= )II =&=n =0&=—ieQz~o2v 3 d89210(8)8qooo(8)= —iv 3Q~z~o'8oe .

The E2 transition probability results

(4.11)

B( E2)t=3 Qzo 8oe =3Qzo
&co

(4.12)

C. The M1 form factor

The expression of the orbital part of the M1 operator for electron scattering is, in Born approximation,

T',„'(q)=— f dP[r && Vj &(qr) Y»(r)][p~(r)v~(r)] .
2

Introducing the angular velocity I (p'/Wp ——Q, we can relate vp to I ' ' through the relation

(4.13)

(4.14)

After performing the angular integrations in Eq. (4.13), approximating p~(r ) by a spherical density p~(r ), we get

( )
A.

(T
&& (q)=5~&~ ~iv'4n/3 dr r pz(r)j~(qr),

P

(4.15)

as a consequence of the fact that 0
~ ~

g. We have checked that the first order correction in the deformation is of the or-

der of 1%.
The only nonvanishing matrix element of the above operator is

(I=IV =1, n =O~~T &z'(q)~~I=K=n =0&= v'm/3 f—drr p(r)J'&(qr)
&00

= —v'm/3v'co/W f dr r p(rj)&(qr), (4.16)

where we have introduced the nuclear density p(r ) with normalization

rpr =A. (4.17)
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V. NUMERICAL ESTIMATES AND RESULTS

In I we have determined the value of the restoring force
constant C by extending the procedure adopted by
Goldhaber and Teller. This procedure starts from the ob-
servation that when 8 is larger than a critical value 8c,
—,
'
phu (8C ) neutron-proton pairs do not interact any

longer, causing an increase of the nuclear potential energy

V(8c) = —,
'
phv (8c)vo (5.1)

where Uo is the neutron-proton interaction potential, and
hv(8&) is the volume filled by protons or neutrons only as
a consequence of the relative proton-neutron rotation,
whose expression is

hu (8)= —", R '
~

5
~

8 . (5.2)

C=26A 5 MeV . (5.3)

Following such a procedure, the value of C does not de-
pend on N —Z, provided pz(r)=Z/Np„(r). The value of
C could depend on X—Z if protons and neutrons had a
different form for the density. If, for instance, protons
had a smaller radius, C would decrease. In view of the ex-
perimental uncertainty in proton-neutron radii we do not
evaluate this effect.

Assuming rigid-body values for W~ and W„, we obtain

C
4NZ Wp+W„

1/2
C

Wp+W„

1/2

In I, C was determined by imposing —,CO~
= —,

' phv(8c)vo. Since hv(8) is not quadratic, however, in

contrast to the harmonic form assumed for the potential,
by equating forces rather than energies at 8=8', we
would obtain a value of C smaller by a factor of 2. The
latter is a generally adopted criterion so that we must
'divide by 2 the value obtained in I for C, getting

bl (0

X
LL

-5
IO I

O. l

I I l I I I

0.2 0.5 0.4 0.5 0.6 0.7q(fm )

FIG. 2. The M1 form factor of ' Gd for a Fermi density dis-
tribution {full line) and a hard sphere density distribution {dotted
line).

APPENDIX A

clear surface should be noted.
A comparison with the VPM and the IBA shows that

our estimates of the excitation energy as well as of
B(M 1)& are larger. We should stress that we have
developed a semiclassical model where by assumption the
coupling of the present collective mode with other modes
is ignored. Now, Suzuki and Rowe, and more explicitly,
Lipparini and Stringari have found that the coupling of
this Ml state with quadrupole surface vibrations reduces
its frequency by a factor of 2. Our formula (4.5) shows
that B(M1) is proportional to the excitation energy, so
that it should be proportionally reduced, as confirmed in
Ref. 6.

=42
~

5
~

A '~ MeV . (5.4)

2

Owing to the combined effect of the new quantization
and of different evaluation of C, the excitation energy is
reduced by more than a factor of 2 with respect to I.

The electromagnetic transitions are accordingly modi-
fied

In this appendix we perform the change of variables
(g'~', g'"')~(a, P,y, 8) and derive the expression of the
transformed operators. We will omit the vector and ver-
sor symbols from here on for simplicity.

Let us denote by (e;), i=1,2,3, a fixed right-handed
orthonormal (RHON) frame in a three-dimensional space,
and by SO(3) the group of proper rotations. A rotation of
an angle y around the unit vector n will be indicated by
R„(p) [if n =ek we simply write Rk(y)], and its action on
a vector y is given by

B(M 1)i=0.035
~

5
~

2 ~ (g„—g„) (5.5) R„(qr)y =(n y)n +cosy[n (n y)n]—+sinyn &(y . (Al)

For any rotation R the unit vectors V; defined by
1/2

ZB(E2)t=0.32 ~5~3 e fm (5.6) V;=Re; (i =1,2, 3) (A2)

We note that only the B(E2)t depends explicitly on
N —Z. The Ml form factor of ' Gd is shown in Fig. 2
for a hard sphere of radius R = 1.2A '~ and a Fermi densi-
ty distribution of parameters R =1.2A ' and a=0.54 fm.
The practical insensitiveness to the diffuseness of the nu-

form a RHON frame, and, conversely, any given RHON
frame ( V;) uniquely defines a rotation R though Eqs. (Al)
and (A2). Hence, (A2) gives a one to one correspondence
between the group SO(3) and the set of RHON frames
( V; ).

As it is well known, one can specify any frame (V;),
and hence, the rotation defined by it, by means of the



1502 G. De FRANCESCHI, F. PALUMBO, AND N. Lo IUDICE 29

Euler angles (a,P,y), which can be chosen so that

R (a,P, y )e; = V (a,P,y) =R3(a)Rz(/3)R3(y)e;,

0&a&2~, 0&P&~, 0&y &2m .
(A3)

f f(RS)dp(R) = f f(SR)dp(R)

R pR VSESQ3
(A4)

According to (A3), (a,P) are simply the polar angles of V3

with respect to (e; ).
The correspondence between (a,P, y) and V, (a,P, y) is

one to one if the angles are restricted to vary in 0 &a & 2m,

0&P&m, and 0&y &2m He. nce, apart from exceptional
cases, (A3) gives a parametrization in terms of (a, /3, y) of
the rotations

RUSSO(3).

We recall that on the group
SO(3) an invariant measure dp(R) exists

In terms of a,P,y, the measure is dp(a, P, y )

=sin((3dadPdy and the transformations R —+SR, R~RS
of SO(3) into itself become

(a, /3, y) ~(a', P', y') if R (a', /3', y') =SR (a, /3, y ),
(a,P, y)~(a", /3", y") if R(a",/3", y")=R (a,P,y)S,
so that the invariance of the measure in (A4) means

a sin y a', ',y'= a sin y a", ",y"

= f da f d/3sin/3 f dy f(a, /3, y) .

We finally note that from (A3) any unit vector g of polar angles 8~4~ can be obtained as

g=R (g)e3 R3((/)~)—R—2(8))e3

The measure dp(g) =sinO+8+@~ is rotationally invariant in the sense that

f f(S()dp(g)= f f(g)dp(g) VSESO(3) .

(A5)

(A6)

We want to use as variables, instead of the two unit vectors g(p), g("), the angle 28 between them and the Euler angles

(a,p, y ) of the intrinsic frame (g, g, g). To this end, we consider the correspondence r: (g(p), g'") )

—+[8(g' ', g'"'),R(g'P', g'"')] defined by

cos[28(g(P) g(~))] g(P).g(n)

R(g(P) g(&))e V (g(P) g(~)) g (g(P)+g(n))
2cosO

R(g(P) g(&))e V (g(P) g(~)) ~ (g(P) g(n)}
2 sinO

R (g(p) g(&) )e V (g(p) g(n) } g g(p) + g(n)
sin(28)

Through Eq. (A3) the above equations define the Euler angles (a, /3, y), which we will denote simply by R.
It is easy to see that apart from 8=0,m/2, r is a one to one correspondence. Its inverse r ' (O,R)~(g' ', g'"') is

g' '(O, R) =cosOV3(R)+sinOVz(R),

g'"'(O, R) =cos8V3(R) —sinOV2(R) .
(A8)

Our aim is now to relate wave functions and operators from the (g(p), g(")) representation, in which our Hamiltonian has

been defined, to those in the (O,a,p, y) or, equivalently, (O,R) representation. Using (AS), if F(g(p), g(")) is a wave func-

tion in the (g(p', g'"') representation, the corresponding wave function in the (O,R) representation is

( VF)(O, R ) = F[g'P'(O, R),g'"'(O, R) ] .

The inverse transformation, if G (O,R) is a wave function in the (O,R) representation, is

( V
—1G)(g(P) g(n)) G [8(g(P) g(n)) R (g(P) g(n))]

V will be a unitary transformation if we define the scalar product in the (O,R) representation as

(G),G2)= f G') (O,R)G2(O, R)p(O, R)dOdp(R),

where dp(R) is the invariant measure on SO(3},and p(O, R) is a (non-negative) function to be chosen so that

f ~

F(g' ', (""')
~

'dp(g' ')dp(g'"')= f ~

(VF)(O,R)
~

'p(O, R)dOdp(R)

(A9)

(A10}

In the present situation, it is possible to determine p without going through the evaluation of the Jacobian of the



REFORMULATION OF THE TV'-ROTOR MODEL 1503

transformation r. Observe, in fact, that we must also have

G,R p,R pR = V G ~, "
p ~ p

= f dp(g&) f ~(V G)(g]' g")~ dp(g")

f dp(g(]')) f ~
( V ]G)(g(])),Sg'"')

~

2dp(g(")), (Al 1)

where S is any rotation in SO(3).
In the last step we used the rotation invariance of dp(g'"'). Note that S is allowed to depend on g( ', as it actually will.

Let (8~, (t)~) and (8„,$„)be the polar angles of g(]') and g("), and

p' '=R3((()~)R2(8~)e3 S——(p~)e3

It follows from (A7) that, calling 8s ——8[(' ',S(g' ')g("']

cos(28+) =g'~'[S(g' ')g'"']

[S( g(P )
)& ][S(g(P )

)g((2) ]

=e, g(")=cos8„.

In other words, with the choice we made of S(g(]')), the angle 28 between g(]') and S(g(]'))g(") is precisely the azimuthal
angle 8„ofg("). Using this, our formula (Al 1) becomes

f ~

G(8,R)
~

]()(8,R)d8dp(R)= f dp(g'"') f d8„sin8„ f d(t)„~ GI8[g']', S(g']'}g'"'],R[g']",S(g']'g'"']I
~

'Ir 2' O„= f dp(g(~)) f d8„sin8„ f dP„G,R[g'~', S(g'~')g(")] .
2

= f d(28)sin(28) f dp(g(]')) f dP„~ 6[8,R [g(]'),S(g(('))g("']J
~

%e will show in a moment that

R [g'~'eS(g']')g'"'] =R3((}t)p)R2(8p)R3(P„)R(8),
where R (8) is a rotation depending on the intrinsic angle 8. Taking this result for granted, we have

f (G(HR)( p(HR)dddp(R)= f d(28)eiee(28) f dd fdH e(eH„f dd (G[HR(H, H, H„)R(8)](

where

R ((I))p, 8p, p„)=R3((t)p)R2(8p)R3(p„) .

As ()I)~, 8~, and P„vary over their allowed ranges, R describes the full group SO(3). Furthermore, sin8~d8&dg~dg„ is just
the invariant measure on SO(3}for the parametrization we are using. Hence

f ~
G(8,R)

~
p(8, R)d8dp(R)= f d(28)sin(28) f dp(R)

~

G[8,RR(8)]
~

= f d(28)sin(28) f dp(R)
~
G(8,R)

~

We have used in the last step the invariance of dp(R) to get rid of R (8). This shows that p(8, R)=2 sin(28).
The assertion we used in this proof must now be verified. From (A7),

R [g'])' S(g'])')g'"']e = 1 [g(])'+S(g'])')g'"']
2cosO

R [g(p) S(g(p)g(22)]e [g(p) S(g(p))g(ee)]1

2 sinO

with g(~)=S(g( ')e3 and 8=8„/2. Hence

R[g' ',S(g' 'g'"']e3 ——S(g' ')R3((t)„) [e3+R2(28)e3] .=S(g' ')R3(p„)V3
2 cos9

R [g,S(g' ')g" ]e2 ——S(g ~ )R3(p„) . [e3 —R2(28)e3] =S(g ~ )R3(p„)Vp .
2sin8

The vectors V3, V2, and V'] ——V2 && V3 are orthonormal and hence can be written as V]'r ——R(8)e)r. Finally,
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R [g("),S(g()'))g(")]=S(g(~')R, (P„)R (8)

=R3(gp)Rp(Op)R3((P„)R(8) .

We now want to transform the operators I(~',I("), to the (O,R) representation. This can be done most easily if we
remember that I' ' (I'"') are the generators of rotations on the vectors g'~) (g'")). To be precise, if R„(y) is a rotation of
an angle qr around the unit vector n, we have, on suitably regular functions of g(~), g("),

[( in —I'~') F](g'~', g'"') = F[R„'(q))g'~', g'"']
~ & 0 F[R——„'(y)g'~', g'"'],

[( in I—'"')F](g'i' g'"') =F[g'r ',R„'(y)g'"'],
where the dot will be used to indicate (B/By)

~ ~ o from here on. If I,=I'~'+eI'") and e=+1, it follows that

[( in—.I,)F](g'i', g'"') =F[R„'(p)g'r ',R„(ep)('"'] .

%ith the notation used in the paper, I
~

——I, the total angular momentum operator, and I
&

——S.
It turns out that the calculations are simpler if we specialize the axis n introduced above to be one of the unit vectors

Vx (g(i'), g(")) of the intrinsic frame. We consider then the operators i V~ I—, whose action on F(g(~),g(")) is

[( i Vx I—,)F](g'"',g'"') =[Vx-(g'~', g'"')],[( ie„ I,)—F] (g'~', g'"') =F[R& '(&(,) ~„))(y)g'~',Rz '(~~) ~„))(ey)g'"'], (A12)

the Vz(g(~), g("))'s being defined in (A7). If Vis the unitary transformation introduced in (A9) and (A10), we must evalu-
ate

[V( iV~ I,—)V 'G](O,R)=[(—iV)r.I, )V 'G][g(~)(O,R),g(")(O,R)]

where

=(BIB') o(V 'G)[R ',
, (q))g(~)(O, R),R ' )(&y)g'"'(O, R)]

—G[8()r)(e q7) a()r)(e ) P( )(e y) y(K)(e y)] (A13)

cos[28' '(e, (p)] = [Rv '(I()(y)g' '(O, R)] [Rp '(I()(ey)g'"'(O, R)],
and where a' '(e, (p), P' '(e,y), and y' )(e,p) are the Euler angles of the frame

V (e,(p) ='V~[Rv (s)(g)g ~ (O,R),Ry (s)(e(p)g (O, R)]

(A14)

(A15)

In deriving the previous relations use has been made of (A9) and (A10), and, of course, of the definitions (A7) and (AS).
If we indicate temporarily as i Vz I, the o—perators V( i Vx I, ) V —we have from (A13), on suitably regular func-

tions G(O, a,P,y),

[( i V)r I,)G]—(O, a,P,y) = G(O, a, P, y)8' '(e, gr)+ (O, a, /3, y)a' '(e,y)+ G(O, a, (8y)P' '(e, y)a

+ G(O, a,P,y)y' '(e, y) .
By

(A16)

This formula explicitly gives the operators i Vx I, as differen—tial operators with respect to 8 and the Euler angles, once
the a' '(e,y), . . . , etc., are known.

It is easy to relate the derivatives of Eq. (A16) to V; . Recalling, in fact, the definition (A3) and using (Al) one gets

e3.V3 =cosP,

e, .V3 ——cosa cosP,

e3 V, = —sinPcosy .

Applying these relations to the vectors of the transformed frame V '(e, q)) (A15) we obtain the following:
. (E)

P (e)= — . e3 V3 (e),
sin

1 . (K} . (IC}
[ei.V& (e)+cotPcosae3 V3 (e)],sina sin

~ (z) . (K) . (E)
( ) —e. . [e3 Vi (e)—cotPcosye3 V3 ( )]e

sinP siny

(A17)



(Note that, clearly, a( )(e,0)=a, . . . , etc.) The evaluation of 8' '(e) and V; (e) is straightforward. From (Al),
R„(y)y = n—Xy. Using this and (A7) and (AS), we obtain from(A14) and (A15),

8' '(&)=-,'(1—&)5»),
. (E}

1

V3 (e)=——,(1+@)V» X V3 ——,(1—e)tan8( —5») V3+ V» X Vp),
. (E)

Vp (e)=——,
' (1+@)V» X V2 ——,(1—e)cot8(5») Vp+ V» X V3), (A18)

. (E)
V) (e)= ——,'(1+e)V»X V) ——,(1—e)[(cot8—tan8)5»)V)+tan8[V» —(V» Vp)Vp] —cot8[V» —(V» V3)V3]J .

[We have written V» instead of the complete notation
V»(a, P,y). ] From these formulas we can draw, by in-

spection, the following conclusions:

8' '(@=1)=0, V; (a= 1)=—V»X V;,

8' '(e= —1)=5»), V; (e= —l)=0, (A19)
- (2) . (3)

V, (e= —1)= —cot8V; (e= 1), (A20)
. (3) . (2)

Vi (e= —1)= —tan8V; (e—1) .

Since, for fixed values of a, P, and y, the relations (A17)
~ (E)

are linear in the V; (e)'s, we have immediately from
(A16), using (A20),

V3.I ) ———tan8V2 I),
V2.I ) ———cotOV3.I(,
V].I ] ——i

In the notation used in the main text, I& ——I, I
&
——5,

V3=$, Vz ——g, and V) ——@this means

g S=—t a8ng. I, g.S= cot8( I,—g S=i= a
ae

Inserting (A19) into (A17) and also using our definition
(A3) of the Euler angles, we could easily derive from
(A16) the explicit form of the operators i V»—I (angular
momentum operators of a three dimensional rotator re-
ferred to the intrinsic frame) reported in many textbooks.
This result, however, has not been used in the paper. It is,
on the contrary, worth to note that from (A19) and (A20)
the commutation relations [V» I,(V„),] and [V» S,(V„)„]
[(V„),=e, V„] can be derived. The latter are needed to
transform to the (8,a,P,y) representation the operators
I'p', I'"' appearing in the Hamiltonian of the model. In
fact, it is easy to see that

. (K)
[ i V» I„—(V„)„]=[V„()e]„.

From (A19)

[V» I, V„]= EV»—XV'„,

from which all other commutators can be derived, since
V3-S, Vz.S are proportional to Vq I,V3.I, and, of course,
V) S=i(B/B8) commutes with the V»'s whose depen-
dence is only on the Euler angles.

We have g» (V».I) =I and

S = g(V» S) +(tan8 —cot8)( —iV).S)

=tan 8(V I)+cot 8(V3.I) — —2cot(28)2 2 . 2 a
88 a6

I S = g ( V» I)( V» S)= —tan8( V3 I)( V2 I)—cot8( Vz.I)( V3 I)+i V) I

It follows that

Ho I + t——an 8I„+cot 8I~ —2cot(28)— +
a' a J .—~p

88
—tan8IgI —cotOI Ig+ ~7( 88

Using [(V» I),(V„ I)]= iV»X V„—I, implied by (A22) and [I»,I„]=i@»„„I„,the second bracket in Ho can also be
rewritten as

,' (tan8+ cot8)(IgI„—+IqI~) (tan8 cot8)Ig—+—iIg— (A24)

APPENDIX 8

As explained in the paper, we must require that the wave functions of our system satisfy

(0 y)(g(p) g(n)) y ( g(p) g(n)) y (g(p) g(n))

(0 y)(g(p) g(~)) F(g(p) g(~)) y (g(p) g(ll))
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here we use the notation O~, O„ instead of R ~~ (~),R ~" (n ).
Since O&O„=O„O& and Oz ——0„=1, we can impose the equivalent conditions

OF OpO F F OpF F (82)

and with the help of the unitary transformation V defined in (A7) and (A8}, it is easy to find the action of the operators

0 and O~ on the wave functions in the ((9,a, f3,y ) representation

(OG)(8, a,P,y)=(VOV 'G)(8, a,P, y)=G(O, II.',P', y'),

where the transformed Euler angles (a', P', y') are defined by

R (cr,',p', y')=Ry
( p r)(m )R (a,p, y)=RE(~ p r) (m)R (a,p, y)

and

= [R (a,P, y )R, (rr)R '(a, P, y )]R (a,P, y ) =R (a,P,y )R, , (m ) (83)

(O~G)(0,a, P,y) =( VO~ V 'G)(8, a,P, y) =G ——H, a",P",y"

where

R (a.",p",y"}=Rv,( rr z)( , n)Rv, ( —r3&)
—R~, (~ rr z)( , m )R (a—,,py) =R~(a.,p, y)R (a,,py) =R (a,py)R~,

Rp —R3(2m)R2 —R3(2m) .
2

(84)

We use here R (a,p, y ) and VK(a, p, y) as defined in (A3). Since the Hamiltonian of our model commutes with the total

angular momentum I =I((')+I("), its eigenfunctions must be of the form

0 ~ P y }=g ~MK(I P y)NIK(~»

where we suppressed the additional quantum number o in prK, since it does not play any role here. We choose for the

&MK functions the definition given in Ref. 9

~MK(& P y ) = [PIM» (& P y )CIK]

where

I ar3 I pI2— i rr3— —
(86)

Here D (R) is the spin-I representation of the rotation R E SO(3) and the VIM are standard basic vectors in the space of
the said representation.

From (86) it is easy to derive the equations

(I,u'K}(~,p, y)= g(qrM, I,qr:}*&'„K(~,p,

[(V,'I)uMK](~, p, y)= V(~,p, y) (I&MK)(~,p, y) = &(HAIK, I, HAIK )&MK(~,p, y), (87)

giving, respectively, the actions on the &MK of the fixed and intrinsic frame I components of the total momentum. The

symmetry conditions on + are

0%=%, 0,%=% .

Using (85),

y ~MK(+ f y)OIK(0) +(~ + f y} (O P)(~ ~ ~ y} +(~ + P y } y ~MK'(+ P y )@IK'(0)

= y [eIM» (~' P' y')CIK ]*ERIK'(~)= y [WIM» (& 0 y )Dg(~)IIK']*PIK'(~)
K' K'

= $ [WIM»'« fI y W~IK]*[PIK»((~WIK']*PIK (~»
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Hence, 04=4 is equivalent to

NIK(8) = Q (Arc e 'VIK )*@IK(8) (B&)

Similarly, it is seen that 0~g =g means

@IK(8)=g(VIK e
—i(3/2)nr3 r(n/—2)I2 —((3/2)nr3 ~ 1T'e e IK' IK'

2
(B9)

It is very easy to solve Eq. (B8). In fact,

ei (n /2)(K K')dr —
( ) ei (n /2)(K —K')( 1 )I K'5 —

( 1 )I5
1

where we introduced the functions

i PI~
drcK (P) =(&rrc e PIK )

following Edmonds' and the results reported there

dKK ( n. ) =dK—K (m ) =( —1) 5K
I I—K'

for integer spin I. Equation (BS) becomes, therefore,

@IK(8)=(—1)'C'I -K(8) .

(B10)

(B1 1)

rtrK(8)= g(VIK e

Equation (B9) is easier to be solved when treated simultaneously with (B8). To begin with, we note that, exploiting the
reality of the dKK (p) functions, ' Eqs. (B8) and (B9) can be written

'PIK )AK (8»
K'

I (3/2)nl3 —((n/2)I2 i (3/2)mr3, 77
IK VIK e 'e e 0'IK C'IK'

K' 2

(B12)

Using the well-known relations

e+.I;m.I;g„.I —iRn ™
e e e =e

er(8)=e

with R„(8)y given by (A1), and the fact that, for integer I
e' ~" =1, Eqs. (B12) can be expressed more compactly as
vector equations,

'@l(8),

XIK(8)=e ' XIK(8)

XIK(8)=O

for odd K values, and

Xrrc(8)= g( —1) 5K Ke ' '
XIK ——8

2

i (w/2)I& —i (n /2)I2 i —(w/2)I3-
@I 8 =e 'e 'e '@r ——8

2

i (m/2)I) —i mI3=e e C
2

—im.I& i (m /2)I
&=e e I 2

(B13)

otherwise. Since

Xl 2„+,(8}=OVn,

we can rewrite this as

XI,2„(8)= ( —1)'+"Xr 2„——81t

Let us now have

'Xr(8'},

iver&

i( n /2 )I&——

2

(B14)

where

These in turn can be recasted in the more tractable form
Xr =Xr +Xr(&) ( —1)

Xr' (8)= —, Xr(8) + eXI ——8
2

so that

From (B14) we infer that

(B15)
X," ——8 =~XI("(8) .

2
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Substituting in the previous equations, we get the final
form of the symmetry conditions on the vector XI,

XI', 2.+I(8)=o

XI'2„(8)=e( —1) +"XI" 2„(8) .

It is then possible to parametrize the general solution, e.g.,
as follows:

XIK(8)=0, E =2n + 1,

Xro(8) =Cio(8),

XI,2„(8)=~„(8)+b„(8),

n)1,
X, ,„(8)=(—1) +"[a„(8)—b„(8)],

where a„(8) [b„(8)]are arbitrary functions of 8 which are
even (odd) under the transformation 8—+(m./2) —8,
whereas CIQ(8) is any function satisfying

Clo ——8 =(—1) Clo(8) .
2

With the help of (815) we recover

that is

41K(8)—dKQ CIQ(8)+ g . dK 2„—[a„(8)+b„(8)]+(—1 ) "dK 2n [a„(8)—b„(8)]
2 ll 2 7l 72,—Pl (816)

We can derive from those results reported in Ref. 10, the following two relations, valid for integer spin I:

d K,K
7T

2 2
(817)

dK; K2—=( 1)'+ dKK— (818)

Using (817) in (816) enables one to check that our solution of the symmetry conditions obeys (811) as it must. On the
other hand, using Eq. (818), we can write

~'IK'(8) =dKo
2

CIo+ g dK, 2& I [1+(—1) "]&„(8)+[1—( —1) +"]b„(8)I . (819)
n)1

We specialize this formula to the values I=O, 1, and 2
needed in the paper. Recalling that f22(8) =d 211 C20(8)+2d 22b1(8),

2

Cro —8 =( —1) CIo(8)
2

we have

421(8) d 10 C20(8)+2d22 ul(8) ~2 2

I =0: Nm(8)=doo —Cm(8)=000 ——8
2 2

$20(8) doo C20(8)+2d02 b1(8) '
2 2

(820) From (818),

+1K(8) dko Clo(8)
2

From (817),

d —=077
00 2

2d 20 2

2
02 2

—d —=02
20 2

2
20

1 'IT 1 7T
d10 = —d 10

with d IQ(m. /2) being different from 0 [see, e.g. , Rose (Ref.
11)]. Hence

d2 2 2' 22 2
1

4

Let us use the explicit formula for the d functions given
in Rose" (taking care of the difference in the definition
used by Rose with respect to the ones used by us),

2
(821) d20 = T~V3/2 doo2 2 2
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We then obtain

@22(8) a l(8) 022 2

RIld

@22(8) g +3/2C20(8)+ 2 b1(8)

tI)2p(8) = —
2 C2p(8)+V3/2b1(8) .

(B22)

——8 = —,V 3/2C2p(8) ——,b1(8),

$20 —8 = —T~C2p(8) —&3/2b1(8)

Finally, expressing C20(8) and b1(8) by means of $20(8)
and tI)22(8), we have

T

422 8 2 422(8) 2 +3/2420(8) ~

2

This shows that $22 and $20 are independent wave func-
tions. Furthermore, since C20(8) is even and b, (8) is odd
with respect to 0~(a/2) —8, we obtain

'(( 20 8 +3/2022(8) 2 420(8) '

(B23)
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