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The level energies and the electromagnetic properties of heavy transitional nuclei ' ' " ' Os
are studied using a semimicroscopic model. In this model the nucleus is assumed to be y rigid but

soft in the P degrees of freedom. The asymmetry parameter y is determined from the ratio of the

experimental energies of the first 2+ and second 2+ states assuming a rigid asymmetric rotor model.
The symmetry parameter P for each J is obtained from the minimization of energy approximately

projected from a triaxially symmetric intrinsic wave function. The pairing +Q Q interaction of
Baranger and Kumar is employed to obtain the intrinsic wave function. Within our y-rigid model,
and without explicitly introducing the hexadecapole term in the Hamiltonian, it has been possible to
get good agreement with experiment for the calculated level energies of the ground band, y band,
and E =4+ band, the B(E2) values, electromagnetic moments, and E2 and E4 matrix elements.

The success in describing the properties of each of these nuclei taking only one value of y suggests
that these nuclei may have rather stable triaxial shapes.

NUCLEAR STRUCTURE Variation after angular momentum projection,

Qs, level energies, B(E2) values, electromagnetic moments, E2 and

E4 matrix elements, stable rigid triaxial shape.

I. INTRODUCTION

The Os nuclei span a complex shape transition region
between the well deformed rare-earth nuclei and the dou-

bly closed shell nucleus Pb. Hence this region has been
the subject of many experimental and theoretical studies.
These nuclei have a large number of low spin states below
2 MeV excitation energy. Of particular interest are the
low-lying E =2+ and 4+ bands which lie very low in en-

ergy for these nuclei. It would be worthwhile to study the
properties of the ground band and these excited bands,
especially their electromagnetic properties, which particu-
larly have been of recent interest. ' Another interesting
aspect that is worth investigating is the nature of triaxiali-
ty for these nuclei. Different models predict them to have
varying degrees of triaxiality. A brief discussion of some
of these models will be given.

Collective model calculations with the complete Bohr
Hamiltonian have been performed by Baranger and Ku-
mar. In their model, the six inertial parameters and the
deformation potential energy are calculated within the
pairing +Q Q interaction. Their model has been quite
successful in describing the low spin states (J(4) of the
ground band, y band, and p band with few adjustable pa-
rameters. They predict a prolate to oblate shape transition
in this region. They found the deformation potential to be
shallow and soft to y deformation. Similar shallow defor-
mation potentials have also oeen obtained from other
semimicroscopic calculations and the microscopic
Hartree-Fock-Bogoliubov (HFB) calculation.

Recently the interacting boson approximation (IBA)
model of Arima and Iachello was applied to these nuclei'
and found to be remarkably successful in predicting their
level energies and E2 properties. This model predicts a
rigid rotor (SU3) to O(6) transition from Os to Pt nuclei.
Since the y-vibrational model of Wilets and Jeans has
the closest geometrical correspondence to the O(6) limit of
the IBA, it has been argued that these nuclei are y soft.

There is equally convincing evidence in favor of nonaxi-
al collective motion. Lee et al. have found that the re-
sults of Coulomb excitation of ' ' Pt are consistent with
the asymmetric rotor model description, whereas the y-
soft models predict higher population for the y band.
Hence they concluded that these nuclei behave like rigid
triaxial rotors. Meyer-ter-Vehn and Toki and Faessler
have also arrived at similar conclusions from the study of
odd A nuclei. They found that the unique parity spectra
of odd A nuclei in the transitional region can be satisfac-
torily explained by taking one value of y for the neighbor-

ing even-even core, which implies that the core is y rigid.
Our present calculation complements the work of

Meyer-ter-Vehn. Here we show that the level spectra and
the electromagnetic properties of the even-even Os nuclei
can be well explained by taking one value of y for each
nucleus. We take into account the softness of the nucleus
in the p degrees of freedom by varying p for each J until
the projected energy is minimum. In Sec. II, we give a
brief outline of the model. The results of our model are
given in Sec. III. Section IV contains the conclusions of
the present study.

29 1486 1984 The American Physical Society



y-RIGID MODEL FOR HEAVY TRANSITIONAL NUCLEI. . . 1487

II. THE MODEL $(p, y)=g(U;+V a;, a;., )
I

0& .

A. The interaction and approximate angular momentum
projection

The details of the model have already been published. '

The only difference here is that the nucleus is assumed to
be y rigid and hence the value of y for each nucleus is
held fixed. For completeness we give here a brief outline
of the model. We take the pairing +Q.Q Hamiltonian of
Baranger and Kumar having the form

c'r 7 Cg

—z&Xt w~ 2 &~
I
Qp"'

I
y&&5

I
Qp" IP&

aPy5

)(c&cpcscr

The symbols have the same meaning as in Ref. 10. In or-
der to treat the field effects and the pairing effects self-
consistently and on the same footing, one should solve the
general HFB equations. But because of the simple form
of the interaction taken above, essentially one has to per-
form the Nilsson-BCS calculation which is described
below.

The Nilsson Hamiltonian for a triaxial system is given
by

hD ——h;—a,ficoPcosyr I'2o(P, P)

a;, creates a particle in the Nilsson state
I
i,r &

In order to project out good angular momentum states,
we assume the total Hamiltonian to be separable into an
intrinsic part H; and a rotational part H„

H=H;+H, .

The rotational Hamiltonian has the usual form

(6)

The nuclear stationary states
I
aJM & can be written as

I
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The energy eigenvalue equation we have to solve is

Hr AxJx+A J +AzJz .

Here A„,A~,A, are, as usual, the inverse of twice the mo-
ment of inertia. Substituting A„=A —5 and A» =A +5,
we have

H =H, +AJ2+(A, —A)J,2 ——,'5(J2++J2 ) .

~ ~psinyr [~22(@0)+ ~2—2(@ 4)]
2
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fm being the oscillator energy and h; the spherical single
particle energy. The deformed eigenvalues and eigenfunc-
tions are obtained by solving the eigenvalue equation

K'

Using Eq. (8), the matrix element of the Hamiltonian can
be written as

hD I
i, r&=g;

I
i, r& .

The deformed eigenfunctions have the structure

IE,r&=pc,'
I
jm& .
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(3)

(4)
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Then a BCS transformation is performed over these de-
formed eigenvalues by solving self-consistently the ap-
propriate gap equation and the number equation for pro-
tons and neutrons separately. This gives the wave func-
tions U and V and hence the intrinsic wave function
p(p, y). The intrinsic wave function has the form

Since H; =H H„ from Eq. (—6), we have

—Ay&4 I
~y'I 0& A. &41J'I 0& .—

Using Eqs. (10), (12), and (13), we finally get
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where

A ) ——[(J—K)(J+K+1)(J K —1)(J+K+2)]'—

A2 [(J+K)(J K+1)(——J+K —1)(J——K+2)]'~2 .

B. Scheme of calculation

(i) For a given nucleus the value of y is extracted using
the experimental energies of the first 2+ and second 2+
states assuming the asymmetric rotor model of Davidov
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and Filippov. ' According to this model, the value for y
is given by the expression

f= 3sln
1 3

Vy /2
(y +1) (15)

The different force parameters like single particle ener-
gies, pairing force strength, quadrupole strength, etc. , are
taken from Ref. 11. Following Baranger and Kumar, we
have chosen a core consisting of 40 protons and 70 neu-
trons. N =4, 5 harmonic oscillator shells are taken as ac-
tive shells for protons and N =5,6 oscillator shells are
taken for neutrons. A multiplying factor is used to renor-
malize all the calculated level energies. This renormaliza-
tion factor is obtained by fitting the calculated J=4+ lev-
el with experiment. Such a prescription has been suggest-
ed by Warke and Gunye' and has been used by us' be-
fore. However, there are some differences of opinion re-
garding the physical interpretation of this factor. Wheth-
er the renormalization factor takes care of the effect of
the core or whether it takes care of some additional effects
not included in the model has been the main cause of the
difference. To test whether the renormalization factor
takes care of the effect of the core, Kumar and Gunye'
performed calculations for ' W and ' Pt with and
without the assumption of the inert core. Their calcula-
tion was based on the microscopic variational projection
formalism employing a pairing plus Q Q interaction
Hamiltonian. The energy spectra obtained with the as-
sumption of the inert core were found to be quite spread
out compared to the experiment. One has to use a renor-
malization factor to compress the spectra. Then they car-
ried out the investigation in a large configuration space by
considering all the nucleons in the nucleus explicitly

where y =E2/Ez, E2 and Ez being the energies of the
first 2+ and second 2+ states.

(ii) Then for a given value of P, the Nilsson Hamiltoni-
an [Eq. (2)] is diagonalized within the model space and
then the BCS transformations are performed by solving
the gap equation and the number equation self-
consistently. This gives the BCS wave functions U; and
V~ and hence the intrinsic wave function P(P, y).

(iii) The moments of inertia are calculated using the
cranking formula. Then the Hamiltonian matrix [Eq.
(14)] is set up and diagonalized.

(iv) The value of P is then changed and steps (ii) and
(iii) are repeated until the energy is minimum for each J
state of the ground band. The levels of the y band and the
K =4+ band are the higher states coming from the diago-
nalization of the energy matrices at the above minimum.
This is done to guarantee the mutual orthogonality of the
wave functions.

The B(E2) values and the electromagnetic moments are
calculated using the same formula as in Ref. 10. The E2
and E4 matrix elements are calculated using the expres-
sion

MI I t(2II+1——)' (afIf
~

~M(E2)
~

~a;I;) . (16)

III. RESULTS

without the assumption of an inert core. They found the
energy spectra to be compressed, in agreement with exper-
iment. From this they concluded that the renormalization
prescription adopted is justified and that the renormaliza-
tion factor approximately simulates the effect of the core.
They also found that in the calculation without the as-
sumption of the core, the electromagnetic properties are
reproduced taking only the bare nucleon charges. On the
other hand, Pomorski et al. have studied the properties
of the inertial functions using the cranking approximation
based on a modified harmonic oscillator potential and
have found that the renormalization factor cannot be in-
terpreted as being due to the core contribution. They sug-
gested that it should be ascribed to interactions not includ-
ed in the model. This is in disagreement with the results
obtained by Kumar and Gunye described above. It has
been suggested that this conflict between the two interpre-
tations arises because of the large differences between a
stretched and an unstretched basis. In our calculation the
values of the renormalization factor for ' Os, ' Os, ' Os,
and ' Os are 0.59, 0.53, 0.52, and 0.48, respectively. In
the above calculation of Guyne and Kumar' a similar
factor (-O.SS) is required for ' Pt in order to compress
the spectra obtained with the assumption of the inert core.
We have taken the effective charge of the proton to be
ez ——1+1.7Z/A and of the neutron to be e„=1.7Z/A.
The experimental values are taken from Refs. 2—4 and
14—18.

A. Level energies and wave functions

In Tables I—I&, we present for the four nuclei the ex-
perimental and theoretical energies, the equilibrium values
of P, the component of the wave functions A~x, and the
static quadrupole moment and magnetic moment for the
levels of the ground band, the y band, and the K=4+
band. For ' Os, the value of y is taken to be 25.21; for

Os, y =22.28; for ' Os, y = 19.16; and for ' Os,
@=16.52. We have calculated the level energies up to 2.5
MeV excitation energy because at higher excitation ener-
gies, the adiabatic assumption [Eq. (6)] is expected to be
less and less valid. In the diagonalization of the energy
matrices [Eq. (14)], the lowest energy level for each J is
identified as belonging to the ground band. The higher
spin states are classified into the y band and the K =4+
band on the basis of their energies. For example, the diag-
onalization for the J=4+ state generates three levels. We
identify the lowest 4+ state as belonging to the ground
band, the second 4+ to the y band, and the third 4+ to the
E =4 band. The levels of the y band are represented by
primes and those of the K=4+ band by double primes.
An analysis of the different components A~x of the wave
functions shows that the low spin states of the ground
band have K=0 as the dominant component. However,
as we go to higher spin values, the K =0 component goes
on decreasing and the mixing increases. For example, in

Os, the J=2+ state has 93.5% of the K =0 and only
6.5% of the K =2 component. For the J=4+ state, the
K =0 component decreases to 69%%uo. The decrease in the
K =0 component at higher spin values for '9 Os is so
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TABLE I. '9~Os: level energies (MeV) of the ground band, y band, and E =4+ band, the corresponding equilibrium values of P,
the components A~x of the wave functions [Eq. (9)], the quadrupole moment (QM) in e b and the magnetic moment (MM) in pN of
various states. E,„p and E,h refer to experimental and theoretical energies. The quantities in the parentheses give the experimental
values. The levels of the y band are represented by primes and of the E =4+ band by double primes. For this nucleus the value of y
has been taken to be 25.21.

Level
J

Eexp
(MeV)

Ea
(MeV)

Wave function Azz
K=4 K=6

QM
(e b)

MM
(p~)

0+
2+

4+
6+
8+

10+
2'+

3I+
4t+
5t+
6+
7I+
8'+
9I+
4tt+
5lt+

+
7tt+

0.0
0.206

0.580
1.088
1.708

0.489

0.690
0.910
1.143
1.362
1.713

1.069
1.362

0.0
0.231

0.580
1.005
1.507
2.088
0.447

0.650
0.924
1.082
1.540
1.609
2.195
2.212
1.243
1.560
1.808
2.159

0.138
0.158

0.180
0.196
0.208
0.220
0.158

0.158
0.180
0.180
0.196
0.196
0.208
0.208
0.180
0.180
0.196
0.196

1.0
0.967

0.827
0.736
0.679
0.638

—0.255

0.0
—0.560

0.0
—0.610

0.0
—0.536

0.0
0.049
0.0
0.295
0.0

0.255

0.559
0.658
0.689
0.697
0.967

1.0
0.811
0.962
0.540
0.871
0.234
0.775

—0.169
—0.272
—0.524
—0.485

0.055
0.160
0.250
0.317

0.167
0.272
0.576
0.485
0,765
0.605
0.894
0.962
0.786
0.826

0.011
0.042
0.081

0.068
0.076
0.268
0.180

0.148
0.287

0.002
0.011

0.021
0.020

0.000

0.0
—0.729

( —0.8+0.3)
—0.371
—0.296
—0.263
—0.241

0.729
(0.8+0.3)

0.0
—1.685
—0.601
—1.345
—0.550
—0.799
—0.465

2.055
0.601

—1.164
—0.776

0.0
0.590
(0.60)
1.191
1.814
2.453
3.111
0.588

0.883
1.224
1.501
1.865
2.136
2.506
2.785
1.178
1.493
1.871
2.163

much so that for the J= 10+ state, the wave function has

only 40.7% of the K=0 but 48.6% of the X =2 com-

ponent. Even then we identify it as belonging to the
ground band. As we go from ' Os to ' Os, we find that
for a given J the mixing of wave functions decreases. For

example, the J=2+ state of ' Os has almost 100%%uo of the
E =0 component, whereas for ' Os the J=2+ state has
93.5%%uo of E =0. Similarly, the J=10+ state of ' Os has
79% of E =0, whereas for ' Os it is only 40.7%. Similar
behavior is also obtained for the y band and the %=4

TABLE II. ' Os: same as Table I. The value of y for this nucleus has been taken tobe 22.28.

Level Eexp
(MeV)

Ea
(Mev)

Wave function
%=4 %=6 K =10

QM
(e b)

MM
(PN)

0+
2+

4+
6+
8+

10+
2I+

3t+
4t+

5I+
6'+
7t+
8'+
9t+
4II +
5lt+
6"+
7lt+
Slt+

0.0
0.187

0.548
1.050
1.667
2.358
0.558

0.756
0.955
1.204
1.474

1.163
1.446
1.836

0.0
0.198

0.548
0.986
1.508
2.115
0.496

0.681
0.889
1.092
1.485
1.625
2.199
2.251
1.521
1.804
1.945
2.300
2.595

0.160
0, 172

0.190
0.206
0.220
0.228
0.172

0.172
0.190
0.190
0.206
0.206
0.220
0.220
0.190
0.190
0.206
0.206
0.220

1.0
0.991

0.910
0.811
0.744
0.698

—0.135

0.0
—0.415

0.0
—0.579

0.0
—0.621

0.0
0.011
0.0
0.079
0.0
0.246

0.135

0.414
0.578
0.649
0.679
0.991

1.0
0.907
0.990
0.775
0.953
0.583
0.889

—0.076
—0.142
—0.254
—0.304
—0.488

0.022
0.086
0.160
0.225

0.074
0.142
0.251
0.303
0.517
0.451
0.997
0.990
0.961
0.943
0.813

0.008
0.016
0.036

0.012
0.025
0.083
0.076

0.072
0.135
0.202

0.000
0.003

0.008
0.004

0.009

0.000

0.0
—1.124

( —0.98+0.08)
—0.907
—0.755
—0.716
—0.700

1.124
(0.9+0.4)

0.0
—1.536
—0.953
—2.325
—1.145
—2.102
—1.108

2.443
0.953

—0.127
—0.675
—1.773

0.0
0.591
(0.56)
1.202
1.832
2.477
3.118
0.614

0.904
1.234
1.522
1.894
2.168
2.563
2.827
1.253
1.552
1.S98
2.206
2.588
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TABLE III. "Os: same as Table I. The value of y has been taken to be 19.16.

Level
I

Eexp
(MeV)

Et
(MeV)

Wave function
K=4 %=6 K =10

QM
(e b)

MM
(PN)

0+
2+

4+
6+
8+

10+
2'+

3I+
4t+
5I+
6+
7I+
8'+
9/+
4tl +
5"+

0.0
0.155

0.478
0.940
1.514
2.170
0.633

0.790
0.966
1.181
1.425
1.686

1.279

0.0
0.160

0.478
0.896
1.390
1.967
0.579

0.731
0.882
1.091
1.328
1.531
1.957
2.121
1.956
2.191

0.178
0.188

0.200
0.220
0.230
0.238
0.188

0.188
0.200
0.200
0.220
0.220
0.230
0.230
0.200
0.200

1.0
0.998

0.974
0.912
0.845
0.790

—0.062

0.0
—0.228

0.0
—0.409

0.0
—0.533

0.0
0.002
0.0

0.062

0.228
0.408
0.531
0.602
0.998

1.0
0.973
0.998
0.907
0.990
0.823
0.971

—0.033
—0.063

0.005
0.030
0.070
0.115

0.032
0.063
0.101
0.143
0.198
0.238
0.999
0.998

0.000
0.003
0.009

0.002
0.005
0.012
0.018

0.000
0.000

0.000
0.000

0.000

0.0
—1.401

( —1.33+0.09)
—1.529
—1.414
—1.312
—1.272

1.401
(0.83+0.45)

0.0
—1.184
—1.175
—2.355
—1.637
—2.862
—1.782

2.713
1.175

0.0
0.591
(0.5)
1.188
1.794
2.394
2.989
0.658

0.936
1.232
1.521
1.835
2.127
2.436
2.726
1.359
1.628

band. Almost all the levels of the y band have X =2 as
the dominant component, whereas E =4 is the dominant
component for the IC =4+ band.

The calculated level energies of the ground band and y
band agree well with experiment. For almost all the lev-

els, the experimental energies are reproduced within 10%%uo.

The y bandhead energies are also well reproduced for all

four nuclei. We have performed the calculation up to
J=10+ for the ground band and up to J=9+ for the y
band. As is clear from Fig. 1, the relative spacings of the
different levels of the ground band and y band are excel-

lently reproduced. As an example, we see that experimen-

tally, the 2'+ state of the y band lies above the 4+ state of
the ground band for ' Os and ' Os. For Os, the two
levels are almost degenerate, while for ' Os, the 2'+ state
lies below the 4+ state. This is reproduced in our model,

except for ' Os, where the calculated 2'+ state lies 52 keV
below the 4+ level, whereas in experiment the 2'+ level
lies 10 keV above the 4+ level.

Experimentally a E =4+ band starts between 1 and 1.6
MeV for all four nuclei. In our calculation, we also have
a EC =4 band which can be compared with the above band.
For ' Os we predict the %=4 band to start at 1.243
MeV, which is only 0.174 MeV higher than the experi-

TABLE IV. ' Os: same as Table I. The value of y for this nucleus has been taken to be 16.52.

Level
I

Eexp
(MeV)

Eth
(MeV)

Wave function
X=4 K=6 SC=ao

QM
(e b)

MM

(PN)

0+
2+

4+
6+
8+

10+
2'+
3I+
4t+
5I+
6+
7t+
8'+
9I+

10'+
4t t+
5II+

0.0
0.137

0.434
0.869
1.421

0.767
0.910
1.070
1.275
1.491

1.560

0.0
0.139

0.434
0.845
1.346
1.929
0.749
0.883
0.996
1.197
1.357
1.588
1.897
2.140
2.576
2.636
2.845

0.200
0.206

0.216
0.234
0.244
0.252
0.206
0.206
0.216
0.216
0.234
0.234
0.244
0.244
0.252
0.216
0.216

1.0
1.0

0.994
0.974
0.936
0.889

—0.029
0.0

—0.111
0.0

—0.228
0.0

—0.353
0.0

—0.457
0.000
0.0

0.029

0.111
0.228
0.352
0.455
1.0
1.0
0.994
1.0
0.973
0.998
0.932
0.994
0.878

—0.015
—0.029

0.001
0.008
0.023
0.046

0.015
0.029
0.046
0.066
0.088
0.114
0.141
1.0
1.0

0.000
0.001
0.002

0.000
0.001
0.002
0.004
0.007

0.000
0.000

0.000
0.000
0.000

0.000

0.000

0.0
—1.604

—1.962
—2.041
—1.968
—1.891

1.604
0.0

—1.027
—1.333
—2.149
—1.921
—2.813
—2.200
—3.220

2.989
1.333

0.0
0.555
(0.63)
1.103
1.630
2.154
2.672
0.684
0.929
1.179
1.444
1.673
1.946
2.162
2.449
2.646
1.427
1.647
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FIG. 1. Comparison of energy spectra between experiment and theory.

mental value. For ' Os, our calculated bandhead energy
of this band is about 0.358 MeV higher. But for ' Os and

Os, our predicted bandhead energies are about 1 MeV
higher than experiment. Possibly for these two cases the
bandhead energy can be lowered by taking a slightly
higher value of y. Both for '9 Os and ' Os, for which the
4" and 5" levels are experimentally identified, the relative
spacing between these two levels is well reproduced. This
E =4+ band in ' ' Os has often been described as a two
phonon (four quasiparticle} y-vibrational band. Bagnell
et al. ' recently observed that this level is very strongly
populated by the single proton transfer reaction

Ir(t,a)' Os. This is completely unexpected if the 4"+

state were a pure two phonon (four quasiparticle) state.
They suggested that this state has a significant one pho-
non (two quasiparticle) component. In our calculation we

interpret this band to be the % =4 band of a triaxial y-
rigid rotor.

B. Equilibrium values of P

We obtain the equilibrium values of p for each J by the
minimization of energy following the variation after angu-

lar momentum projection (VAP} approach. These values

are given in Tables I—IV. In our model, for a given J, the
ground band, y band, and X =4+ band have the same in-

trinsic structure and hence the sanM value of p. This is a
consequence of the adiabatic assumption [Eq. (6)]. As a

result, the 2+ level of the ground band and the 2'+ and
3'+ levels of the y band have the same value of P. Simi-
larly the 4+ level of the ground band, the 4'+ and 5'+ lev-
els of the y band, and the 4"+ and 5"+ levels of the IC =4
band have the same value of P. We see that the equilibri-
um value of P increases with the increase of spin. This is
a result of the centrifugal stretching. Kumar and
Baranger have calculated the rms values of P and y for
different values of J in their dynamical calculation. Our
values of p are usually smaller than the values given by
them.

C. Electromagnetic moments and B(E2) values

The static quadrupole moment of the different levels of
the ground band, y band, and %=4+ band are calculated
using the effective charge e~ = 1+1.7Z/2 for protons and
e„=1.7Z/2 for neutrons. Their values are given in
Tables I—IV for the four nuclei. Experimentally only the
quadrupole moment of the first 2+ and second 2+ states
are known. Baktash et a/. have given a comparison be-
tween different experimental and theoretical results for
the quadrupole moments of these two states. There are
large fluctuations between values given by different exper-
iments with large error bars. For example, the experimen-
tal quadrupole moment of ' Os for the 2+ state is
—0.97+0.03 e b from rnuonic data, —0.53+0.10 e b from
Coulomb excitation data and —0.7+0.3 and —0.8+0.3
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e b from particle y-coincidence data. We predict its value
to be —0.729 e b, which is closer to the value obtained
from particle y-coincidence data. We have quoted in
Tables I—IV those experimental results which are closer
to our theoretical values. In our model we predict the
quadrupole moment of the 2+ and 2'+ states to be equal
in magnitude and opposite in sign.

The magnetic moments of the different levels are given
in Tables I—IV for the four nuclei. Our values agree quite
well with those given by Bafanger and Kumar for the lev-

els calculated by them. Experimentally only the magnetic
moment of the J=2+ state is known for each of these nu-

clei. The agreement with experiment is quite satisfactory.

The B(E2) values are calculated using the same effec-
tive charge as for the quadrupole moment. Their values
are given in Table V. The quantities in parentheses
represent the experimental values. Though we have calcu-
lated all possible transition probabilities, we have given
only 35 of them. We see that the agreement for both the
interband and intraband transitions is satisfactory. Except
for ' Os, the B(E2,0+~2'+) is well reproduced in our
calculation. The rigid asymmetric model is often criti-
cized ' for its inability to fit the B(E2,0+—+2'+) value
simultaneously with B(E2,0+~2+). We see that our y-
rigid model is successful in describing these two interband
and intraband transition probabilities simultaneously. The

TABLE V. B(E2, i~f) in e b (quantities in the parentheses refer to experimental values).

0+

0+

2+

2+
2+

2+
2'+
2'+
2I+

2'+
3I+
3I+
3I+
3I+
3I+
4+

4+
4+
4+

4+
4I+
4I+
4I +
4t+
4I+
4II+
5I+
5I+
6+
6+
6+
6I+
6I+
8+

2+

2'+

2'+

3I+
4+

4I+

4I I +
3I+
4+
4I+

4II +
4+
4I +
4II+
5I+
5II+
4I+

4II+
5I+
6+

6'+
4II+
5I+
5II+

6+
6+
5II+

6+
7I+
6+
7I+
8+
7I+
8+

10+

186ps

3.236
(3.11+0.11)

0.227
(0.244+0.024)

0.117
(0.107+0.011)

0.116
1.769

(1.69+0.12)
0.016

(0.026+0.006}
0.0001
1.654
0.014
0.694

(0.99+0.35 )

0.137
0.103
1.068
0.066
1.012
0.071
0.146

{0.176+0.053)
0.0001
0.059
1.716

(1.64+0.25)
0.001
0.024
0.852
0.076
0.041
1.114
1.385
0.463
1.298
0.146
0.033
1.872
0.540
0.053
1.997

188ps

2.654
(2.75+0. 15)

0.223
(0.250+0.022)

0.177
(0.146+0.013)

0.117
1.513

(1.41+0.11)
0.002

{0.020+0.004)
0.0003
1.388
0.029
0.549

(1.05+0.35)
0.157
0.192
0.778
0.089
0.854
0.072
0.196

(0.159+0.032)
0.001
0.036
1.536

( 1.68+0.26)
0.002
0.037
0.755
0.096
0.058
0.863
1.161
0.257
1.127
0.142
0.011
1.749
0.506
0.038
1.872

190pS

2.226
(2.55 +0.25 )

0.178
(0.220+0.020)

0.292
(0.245+0.022)

0.096
1.293

(1.o7+o. 1o)
0.007

(0.019+0.004)
0.002
1.185
0.046
0.415

(0.878+0. 180)
0.167
0.337
0.444
0.127
0.737
0.058
0.210

(0.362+0.072)
0.004
0.009
1.444

(1.50+0.23)
0.005
0.072
0.683
0.123
0.033
0.704
0.995
0.082
1.029
0.096
0.002
1.619
0.474
0.011
1.758

192pS

1.800
(2.21+0.22)

0.086
(0.215+0.019)

0.434
(0.361+0.032)

0.051
1.106

(0.98+0.09)
0.016

0.008
1.033
0.032
0.346

(0.312+0.062)
0.142
0.407
0.187
0.182
0.650
0.029
0.157

(0.367+0.184)
0.009
0.001
1.322

(1.26+0.25)
0.001
0.177
0.580
0.132
0.007
0.583
0.861
0.005
0.935
0.082
0.012
1.478
0.513
0.002
1.600
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study of different B(E2) values shows that the intraband
transitions are larger than interband transitions by an or-
der of magnitude, as expected. For ' Os and ' Os, we
see that the calculated B(E2,2+~4'+) almost goes to
zero. Such a sharp drop in B(E2,2+ +4—'+) has also been

predicted by Baker, ' which he explained as due to the E2
matrix element M42 changing sign. In our calculation
also we see that M42 changes sign for ' Os.

The transition probabilities provide a test of the nuclear
wave functions and hence the model used. Because of our
good agreement with experiment for the transition proba-
bilities, it seems that our y-rigid model is satisfactory.

D. E2 and E4 matrix elements

E2 and E4 matrix elements are calculated using formu-
la (16). In the calculation the effective charge of the pro-
ton is taken to be e~ =1+1.7Z/A and of the neutron to be
e„=1.7Z/A. To give the detailed matrix elements for all
four nuclei would require a lot of space. Hence we present
the detailed matrix elements only for ' Os. For the other
three nuclei we present only some selected matrix ele-
ments. The E2 and E4 matrix elements for ' Os are
given in Table VI. Experimental E2 matrix elements are
also given. As far as E2 matrix elements are concerned,
we see that except for the Moz element, all other matrix
elements are reasonably well reproduced in our calcula-
tion. Baker et al. performed an IBA calculation for

'9~Os and obtained E2 matrix elements in agreement with

the experiment. Most of our calculated E2 matrix ele-

ments agree quite well with those given by them in their
IBA calculation. However, there are some discrepancies.
For example, the value of M&4 in our calculation is
—28.2 efm, while the IBA calculation gives the value

17.02. Experimentally its sign has not been properly
determined. Its experimental value is given to be +16.3.
Baker et al. have found that this matrix element plays a
very small role in the excitation of the 4'+ state. There is
some disagreement with their predicted matrix elements

involving the 4" state. However, as pointed out by them,
the IBA model with only s and d bosons is not sufficient
for the description of this level. The experimental value

of M44 has been given as +182 efm . It has been pointed
out by Baker et al. that this is an old value; more recent
experimental work has shown that M24 =M44. By tak-

ing M&4 ———125 efm and M44 ——125 efm, they found
that the experimental data for the 2' level could be better
reproduced. This experimental fact that M24 -M~ is

remarkably well reproduced in our calculation. We find
the values of these two matrix elements to be

Mzq ———131.5 efm and M44 =118.8 efm . These are
very close to the 125 efm taken by them.

The calculated E4 matrix elements are given in Table
VI. For the cases involving 0+, 2+, 2'+, 4+, and 4'+

states, the majority of our E4 matrix elements agree in
trend with those given by Baker et al. in their IBA calcu-

TABLE VI. Calculated E2 matrix elements, calculated E4 matrix elements, and experimental E2
matrix elements for ' Os.

0+
2+
2'+
4+
4t+
4tl

0+

0.0

2'+

Calculated E2 matrix elements (efm~)
—134.2 29.4 0.0

96.2 147.3 —235.2
—96.2 40.0

49.2

4I+

0.0
—28.2

—131.5
+ 118.8

223.4

4II+

0.0
—20.4

84.2
—29.2
126.3

—272.5

0+
2+
2'+
4+
4I+
4tt+

0.0
Calculated E4 matrix elements (efm )

0.0 0.0 —932.3
—1281.4 —62.9 782.9

—29.7 1382.7
—400.3

297.4
—728.4
—711.3
1175.3

—167.3

—109.9
—244.8
—32.1

355.0
668.3

—880.3

0+
2+
2t+
4+
4I+

0.0
Experimental E2 matrix elements (efm )

—145 +1 46.4+2. 1 0.0
105.5 +39.6 134.4+6.0 —221.4+21.2

—105.5+39.6

0.0
+16.3

+(125+56)
+(182+129)
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TABLE VII. Hexadecapole deformation parameters for ' Os.

State

4+
4t+
4t t+

Expt

—0.02

—0.014

Present
result

—0.023
0.007

—0.003

IBA'

—0.031
0.006
0.0002

Other
theoretical

results

—0.09"

—0.025'

'Reference 2.
"Reference 16.
'Reference 14.

lation. They found that the coupled channel data for the
4" state can be better fit by taking M04-= —485 efm .
We predict it to be —109.9 efm, while the IBA gives the
value 7.6 efm .

Even though we have not taken the hexadecapole term
in the Hamiltonian explicitly, we can still follow the usual

practice of parametrizing the E4 matrix elements by in-

troducing a P4-deformation parameter

M = RP4.
4~

The experimental values of p4, our calculated values, and
the values given by different theories are presented in
fable VII. We see that p4 for the first 4+ state predicted
by our theory agrees quite well with the experiment. The
experimental result for the 4' state is not available. Our
model as well as the IBA model predicts similar values of
P4 for this state. For the 4" state our calculated P4 is
-4.4 times smaller than the experiment.

In Table VIII, we compare with experiment the matrix
elements M02 M02' M22, and M22 and the hexadecapole2 2 2 2

deformation parameter P4 extracted from the E4 matrix
element M04 for all four nuclei. We see that there is
overall agreement with experiment. As pointed out be-

fore, the element MO2 for ' Os shows deviation from ex-

periment by 30%%uo, whereas for the other three nuclei this
element is very well reproduced. The asymmetric rotor
model is usually critized ' for its failure to fit the ele-

ment Mo2 simultaneously with M02. We see that in our
y-rigid model, except for ' Os, there is fairly good agree-
ment with experiment for both matrix elements. The re-
sult for ' Os could possibly have been improved by start-
ing the calculation with a slightly smaller value of y. The
extracted P4 deformation parameters also agree quite well
with experiment, except for ' Os, where it is underes-
timated by a factor of 3.

In Ref. 10, we had performed a similar calculation for
Os and ' Pt. In that calculation both /3 and y for each

J state were obtained by the minimization of energy. The
equilibrium values of P for ' Os are almost the same as in
the present study. Only three members of the y band and
one member of the K=4+ band were calculated. The
K =4+ bandhead was lying very high. However, the rest
of the calculated levels, the electromagnetic moments,
B(E2) values, etc., were in good agreement with experi-
ment, as in the present case. In that study also we had
some evidence regarding the y rigidity of these nuclei.

IV. CONCLUSION

We see that our y-rigid model has been quite successful
in describing the level energies and the electromagnetic
properties of the four transitional nuclei ' ' ' ' Os.
The value of y for each nucleus is extracted from the ratio
of the first 2+ and second 2+ states assuming the rigid
asymmetric rotor model of Davydov and Filippov. ' The
value of P for each J is obtained from the minimization of
energy approximately projected from a triaxially sym-
metric intrinsic wave function. This variation of P from
one J state to another takes into account the softness of
the nucleus. The triaxial intrinsic wave functions are ob-
tained using the pairing +Q Q interaction of Baranger
and Kumar. Good angular momentum states are approxi-
mately projected assuming the total Hamiltonian to be
separable into an intrinsic part and a rotational part.

We have calculated the level energies up to J=10+ for
the ground band and up to J=9+ for the y band. The
relative spacing of the different levels of these two bands

TABLE VIII. The E2 matrix elements and the hexadecapole deformation parameter. The quantities

in parentheses represent experimental values. The experimental values are taken from Refs. 2, 15, and

16.

Nucleus

1860s

M02
2

—179.9
( —177+1)

2M 02~

+47.6
(49.4+2.5)

Mpp
2

+211.6
(217.7+S.3)

2
M2p

+76.3
(73.1+3.8)

—0.030
( —0.099)

188O —162.9
( —169+1)

+47.2
(50.0+2.3)

+ 184.9
(193.9+5.3)

+94.02
(85.4+3.9)

—0.029
(—0.031)

190Os —149.2
( —157+1)

+42.2
(46.9+2.2)

+ 148.2
(155.7+8.0)

+ 120.8
(110.7+5.1)

—0.026
(—0.04)

192Os —134.2
( —145+1)

29.4
(46.4+2. 1)

96.2
( 105.5+39.6)

147.3
(134.4+6.0)

—0.023
(—0.02)
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are reasonably well reproduced. The y-bandhead energy
for each nucleus also compares well with experiment. The
E =4 band is well described by

' ' Os. But for
Os, the E =4 bandhead energy lies higher than the

experiment by —1 MeV. Quadrupole moments, magnetic
moments, and B(E2) values are calculated for the dif-
ferent levels and compared with experiment. Except for

Os, our y-rigid model has been able to describe the
transition probabilities B(E2,0+~2+ ) and

B(E2,0+—+2'+) simultaneously, in agreement with exper-
iment. The calculated E2 and E4 matrix elements also
compare well with experiment.

Thus our semimicroscopic model is able to describe the
level energies and the electromagnetic properties of these
four nuclei taking one value of y for each nucleus. This
suggests that these nuclei may have a rather rigid triaxial
shape. This agrees with the experimental finding of Lee
et al.
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