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For Zr and Pb a microscopic one-particle-one-hole plus two-particle-two-hole calculation ex-
amines fluid dynamical predictions about a collective twist resonance in finite nuclei at E-453
MeV. A spin flip mode which strongly competes with the twist in experiments is heavily fragment-
ed, thus allowing experimental detection of the twist.

I. INTRODUCTION

One of the more exotic nuclear resonances that has been
speculated upon' is the nuclear twist. Its motion can be
visualized as a rotation of the different layers of a Fermi
fluid against each other, the angle of rotation (around the
z axis) being proportional to the z coordinate of the layer.

Such a motion is expressed most easily through an
operator of the form

A

TT=o=&3/2 g z, l, = g [r; X l t]z,m=o

acting on the corresponding ground state. For spherical
nuclei TT 0 excites states with the quantum numbersJ,T =2,0 which in principle are detectable by inelastic
electron scattering as M2 resonances. Since the elec-
tromagnetic spin flip operator

S, =v'l5/2~1J, N g 2 ' 2

X[r;X o;]~ (2)

II k(r, t) =m Ip pkn (r, p, t)d p (3)

in the fiuid must be nonisotropic. This implies that the
partition function n (r, p, t) contains a second rank tensor
part in the momentum variable p.

contributes about 80% to the electromagnetic M2 sum
and since twist as well as spin flip states are expected to be
located around the same excitation energy, the twist mode
is believed to stand in the shadow of the spin fiip excita-
tions. One purpose of this paper is to reexamine these
findings with a microscopic particle-hole calculation,
which will allow more definite statements on the position
of individual levels as compared to the sum rule approach
in Ref. 2.

In a fiuid dynamical description the velocity field of the
twist mode is purely rotational. Such a motion is only
possible if there are tangential restoring forces effective in
the fluid. In order to allow for tangential forces the pres-
sure tensor

II. FLUID DYNAMICAL APPROACH

The Landau theory assumes that changes in the parti-
tion function n ( r, p, t) are driven by quasiparticle energies
e and a collision term (see, e.g., Ref. 7). We are interest-

P
ed in small deviations 5n from the ground state solution
no These chan. ges occur for momenta near the Fermi
momentum. We set

Bno
5n = v(r, p, t),

BEp
(4)

such that the restriction of the momenta in 5n to the Fer-
mi momentum is expressed by the derivative Bnolt)e~
[which actually is -5(e~ —e~)].

Neglecting the collision integral and all surface terms,
which we will later replace by a suitable boundary condi-
tion, the equation of motion for v is given by

In a fluid where particles suffer frequent collisions
among each other the pressure tensor will be diagonal and
isotropic because frequent collisions will enforce a spheri-
cal momentum distribution. Therefore the existence of
the nuclear twist will indicate the propagation of a col-
lisionless mode, which can be viewed as transverse zero
sound.

Since frequent collisions are a mechanism to attenuate a
transverse zero sound wave, the particle-hole calculation
we present includes the effects of 2p-2h states (in the same
way as in Ref. 3). This should enable a realistic prediction
of whether a microscopic theory allows for the propaga-
tion of spinless transverse excitations in a finite Fermi sys-
tern.

The paper is organized as follows. In Sec. II we derive
some features of zero sound modes from solutions of (a
truncated) version of the Landau theory. We present the
solutions for a spherical basis which to our knowledge is
new. These allow us to understand many features of the
numerical microscopic calculation outlined in Sec. III.
Section IV presents and discusses the numerical results for
the nuclei Zr and Pb. A comparison to the data on
M2 strength distributions from the Darmstadt LINAC
group ' is also included.
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—v(p, r, t)+ p V.v( p, r, t) =0 .
dt m' v(P, r, t)=v(P, r, t)+ g YxM(p)

KM 2K+1

m* is the effective mass at the Fermi surface X f YxM(p')v(P', r, t)dP'. (7)

1-
Vp&p= „p f«p=pF .

m

V abbreviates the change of the partition function plus the
changes induced by the particle hole interaction
(parametrized by the Fx ),

Solutions of (5) are readily obtained for the infinite matter
case as plane waves. '

For our purposes the solutions of (5) in a spherical basis
are more useful and may be obtained by either direct cal-
culation or by projection of the plane wave solutions of
definite rotational transformation properties. Both pro-
cedures yield

1+m( —)
E L J

v„z™(r,p, t)= g [e '"'+( —) + e' ')ax(s)v'(2K+1)(2L+1) 0 i jL(qr)
K,L

+ I YK (P) + Yt. ( r ) )J,M =p

where J specifies the multipolarity, m the parity, and q the wave number of the excitation. jt (x) is a spherical Bessel
function and the tensorial product && in (8) denotes coupling to a spherical tensor of rank J,M with the appropriate
Clebsch-Gordan coefficients. M =0 has been chosen for the sake of a simple expression for real v. The frequency tp is

related to the wave vector q and the sound velocity s via

1
N = PFSgm*

The amplitudes ax. (s) are the eigenvectors of the infinite eigenvalue problem

(9)

F
V'(K —m)(K+m) 1+ ax.

&
(s) —(2K +1)satt (s)+V'(K —m + 1)(K+m +1) 1+ ak+i (s) =0

2K —1 2K+3
(10)

given in Ref. 4 and s is its eigenvalue. These amplitudes and the sound velocity do not depend on the parity and the
multipolarity of the excitation.

The index m labeling the solutions in (8) and (9) distinguishes different kinds of modes, where the two lowest m =0, 1

will be of interest to us. Consider the transition density of an excitation

p ' (r) f v
q (r, p, t)dp,

which apart from a factor is just given by the K =0 term of the sum (8). Because of the 3-j symbol only m =0 contri-

butes to the zeroth moment K =0, so m =0 is the only mode of the system involving a change in density; this must be

identified with a longitudinal excitation.
Similarly by looking at the transition currents

1+ L+1 1 L J
j ' (r)- f pv„q™dp-a&(s) g &2L+1 0 i jL(qr)YJt p(r),

L

(12)

we see that only m =0 and m =1 give nonvanishing con-
tributions (the YJL p are vector spherical harmonics as de-
fined, e.g. , in Ref. 8). The m =0 current is irrotational
and its divergence yields the transition density. This can
be seen by taking the zeroth moment of Eq. (5) which
yields a continuity equation. The m =1 current is diver-
genceless and shows a nonvanishing curl. Therefore the
m =1 modes correspond to transverse excitations of the
fluid. The transition currents (12) are related to the pres-
sure tensor defined in (3) by the Euler equation. This fol-
lows by taking the first moment in p of Eq. (5). Higher
modes m & 1 have no change in density nor any flow of

2j,(qr)
j (r )-j2(qr)Y2qp- r X Vz

z(qr)
(13)

I

matter, and are beyond the scope of this work.
It is worthwhile mentioning that the transverse m =1

modes allow for unnatural parity excitations: for m =1,
the condition ( —)

+ + =1 is no longer enforced by the
3-j symbol in (8) which then allows ( —) &n. Therefore
the Landau theory also describes propagation of unnatural

parity modes, an example of which is the twist. With
J =2 its transition density vanishes and the currents
follow via (12) as
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The connection to the operator defined in (1) is made by
displacing the ground state wave functions by an amount

s(r) with s= —j.
Let us now turn to the zero sound velocities which

occur as eigenvalues of Eq. (10). For zero sound or trans-
verse zero sound to propagate, the eigenvalues $ must be
real, a condition depending on the actual numbers for the
Landau parameters Fx. Such information is hardly avail-
able from nuclear excitations. It has, however, been
shown rather convincingly in a series of papers by
Holzwarth and collaborators' ' that a "fluid dynamical"
truncation scheme gives an excellent account of many nu-
clear excitation phenomena. This truncation scheme im-
plies that all higher moments ax. (s) vanish for E &2 (the
"hydrodynamical" first sound follows from vanishing mo-
ments for K & 1). The resulting velocities are

m coR . m NR

PF$ PF$
=0.

With (14) and F2 ——0,
1

mR m* ro

-453 '~ MeV, (17)

the system. Furthermore, (15) will mix longitudinal and
transverse modes if both can coexist in a particular excita-
tion. Obviously (15) involves the moments K=0 and
E =2 only.

For the case of the twist modes Eq. (15) [using (8) and
(9)] determines the eigenvalue co via

s =[—„(9+5Fo+—,F2)(1+—,F&)]' for m =0,

s'=[ —,'(1+—,'F~)(1+—,'F2)]' for m =1,
(14)

which is independent of Fo. Other modes such as natural
parity monopole and quadrupole excitations may be ob-
tained in a similar way and coincide with the fluid
dynamical results of Ref. 9.

III. MICROSCOPIC APPROACH

II.R = J (p R)pn(r, p, t)d3p„z ——0. (15)

Such a condition cannot be fulfilled for arbitrary wave
vectors q and thus it determines the eigenfrequencies of

where the transverse sound velocity s' is independent of
Fo. Fo is related to the compressibility of the fluid, F& is
related to the effective mass of the quasiparticles, and F2
seems to be negligible for nuclear excitations.

Apart from the truncation, which might find its justifi-
cation in the fact that we are dealing with a finite system,
everything said so far applies to the infinite case as well,
since we have neglected the surface terms. We replace
these by requiring a boundary condition: All forces acting
on the surface of a sphere of radius R must vanish. Here
we assume that all particles are confined to the inside of
the sphere. This means that the pressure tensor in the
direction of any radially oriented surface element must
vanish at r =R,

In contrast to the fluid dynamical approach of the
preceding section the microscopic formalism is less in-
volved since we are just asking about the response of a nu-
cleus to the twist operator. This is given most simply in
terms of the response function

Sg(~)= g ~

(X
~ g ~

0)
~

'5(~ —E„)

= ——I (0i Q+( —H+ ~)-'Q
i 0)

1

associated with a given one-body operator Q, which would
be the twist operator in this specific case. As in Ref. 3 we
attempt to calculate S~ by matrix inversion in the full
space of lp-lh and 2p-2h states. This can be achieved by
partitioning the matrix. Since Q will mainly connect the
ground state to the 1p-1h states we only need the inverse
matrix in the much smaller space of 1p-1h states alone

Sg(co) = ——Im(0
~

Q+(1 P)(co Ho V—+i g —V—P(co—Ho —
V +inst) —'PV) '(1 —P)Q

~

0) .
1

(19)

P is a projector on the np-nh states with n & 1.
Since the density of 2p-2h states in Pb is around 1000/MeV we think it is quite safe to neglect the interaction V

among these states. This, of course, is a considerable simplification because now P(to Ho+irt) P is d—iagonal and
may readily be inverted.

The microscpoic calculation therefore inverts the complex matrices

C; =(1 P)(co; —Ho —V +i 5)——VP(co; Hp+ i52)PV)( 1 P)— — (20)

for a discrete set of energies Icg;I with finite widths 5,
and 52, and multiplies the inverse with the vectors Q and
Q+. In order not to miss any peaks located between the
mesh points, co;, 5t, and 5z must be finite and of the order
of the mesh size. In principle we could choose 52&5~
compensating for the fact that we have neglected the in-
teraction among the 2p-2h states. 52&5, acknowledges

I

our uncertainty about their actual position by distributing
them over an energy range of order 52. In the calculation
presented here, however, we will choose 62 ——5~ because
the twist is actually far away from the 2p-2h states, so the
exact position of the higher configurations will be of no
importance. A diagrammatical decomposition of the in-
teraction term coupling the higher configurations to the



1478 B. SCH%'ESINGER

ReM1(co)~Re[M;(co) —M (e )j+(p —e ) . (22)

Such or similar procedures clearly are essential for a
correct description of states whose positions are dominat-
ed by single particle energies. The "unperturbed Hartree-
Fock" energies e; appearing in (22} and representing II in
(19) and (20) are approximated by the empirical energies e;
divided by a state independent mass m" /m =0.85. This
was found to be a fair approximation, and limits the nu-

merical efforts involved in the calculation.
What the manipulations on the single particle energies

actually do is to make a guess on the unperturbed single
particle energies. This guess is used in the propagators of
the second order term. Together with the on shell part of
the self-energy insertions, these unperturbed energies add

up to the empirical ones.
The calculation performed uses a density dependent

zero-range force for V in (20}

one-particle-one-hole states distinguishes three classes of
contributions: bubbles, ladders, and self-energy insertions.
The first two link particle and hole lines together, whereas
the self-energy insertions M;(m) are attached to a particle
or a hole line alone. Therefore the latter also add to the
unperturbml single particle energies e; in the neighboring
nuclei,

e; =e; +ReM~(e;),

where, in principle, e; now should correspond to the ex-

perimentally (or empirically) determined energies. Any
realistic calculation needs single particle energies close to
experiment in order to be successful. Practically, howev-

er, the fulfillment of (21) poses a formidable task unlikely
to be accomplished. Condition (21) is enforced in this cal-
culation by subtracting a constant term from the self-

cncrgy 1nscrtlons

Fig. 2 displays the response to S, given in the Introduc-
tion by (2). Figure 3 shows the total electromagnetic
response to the M2 operator,

M2= T,~+S,~ . (25}

l

lo 2o

Each figure contains three curves and one smaller inset.
The bottom graph in each shows the strength function for
the case of no residual interaction at all, i.e., the Hamil-
tonian governing the motion is just made from single par-
ticle energies. The middle section displays the case where
the residual interaction between lp-lh configurations only
is taken into account, whereas the upper curve gives the
result of the full calculation coupling 2p-2h to the lp-lh
states. All three curves cover the energy range of 0—10
MeV. The inset in the top graph shows the result of the
full calculation in the 1p-1h+ 2p-2h space over the ener-

gy range 0—30 MeV; because of the larger mesh size there,
a larger width has been chosen resulting in a smoothing of
the strength functions. All curves are normalized to the
total electromagnetic strength in the interval between 0
and 30 MeV which is 8 =3.7X10 p~ fm and almost ex-
hausts the M2 sum rule.

Thc most striking fcatufc exhibited by ouI' Icsult 1s thc
sharp concentration of the twist strength around 7 MeV
excitation energy (Fig. 1). This is very close to the 7.6
MCV predicted by the 453 '~ law derived in Sec. II.
Furthermore, the concentration of twist strength is al-

V = IP Voo+(1 —P) Voo+ ~1 r2[S Voi+(1 —P) Voi1I

& 2 ( 1 —P 12' 12 +( r 12)

The parameters are Voo ——53.6, Voo ———438. 1,
Vo1

——160.9, and Voi ——169.9 (all in MeV frn ), which are
fairly close to the corresponding parameters in Landau-
Migdal-type interactions (note, however, that the force is
antisymmetrized here since higher configurations are ex-

plicitly taken into account). The interaction in (23) to-
gether with the single particle energies described earlier
give the position and width of giant resonances in Zr
and Pb up to a typical error of 1 MeV.

IV. NUMERICAL RESULTS

Despite the large amount of numbers involved in the
microscopic calculation, t4e most useful information re-
sides in a single curve. So, Figs. 1—3 show our main re-
sult for the strength function in Pb for three different
operators. Figure 1 displays the response to

T, =v'10/3mpN g —,
' (1+r; )[r; X 1;]2,

E (MeV)

FIG. 1. Response of 2o~pb to the twist operator [Eq. !&4}Jin

units of the total electromagnetic strength 5 =3.7& 10 p~fIn .
The bottom part has no interaction; the rniddle part has interac-

tion between 1p-lh only, and thc top part has InteractIon be-

tween 1p-1h+ 2p-2h; the inset shows the same response over a
wider energy range.
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FIG. 2. Same as Fig. 1 for the spin fhp operator [Eq. (2)].

ready present in the single particle energies alone, with no
residual interaction at all. Adding a residual interaction
among the lp-lh states has only little effect on the
strength function and, actually, we have varied the
strength and also individual components of the interaction
over a large scale without moving the twist from its un-
perturbed position. Clearly this just reflects the findings
from the fluid dynamical description that the energy of
the twist does not depend on the Landau parameter Fo.
Coupling the 2p-2h configurations to the lp-lh states fi-
nally breaks the twist into two pieces, one at 7.2 MeV and
one at 7.9 MeV. As far as the twist is concerned the mi-
croscopic calculation fully corroborates the fluid dynami-
cal predictions.

Therefore let us examine the chances of detecting this
mode, where we will now have to worry about the fact
that the spin flip excitations will entirely hide the reso-
nance peaks coming from the twist, since they contribute
80% of the sum rule. Although the mean position of the
spin flip modes is approximately at 7 MeV as predicted in
(Ref. 2), their spread in energy is so large that the reso-
nance peak from the twist is higher than any spin flip
strength around 7 MeV.

The fragmentation of spin flip strength is already
present with no residual interaction at all. The introduc-
tion of an interaction among the lp-lh states tends to con-
centrate the spin flip modes around 7 MeV, but this ten-
dency is actually reversed, once the coupling to 2p-2h con-
figurations is added. The inset of Fig. 2 and Table I
shows that 30% of the spin flip strength resides above 10
MeV. In fact, the amount of fragmentation of spin flip
strength is most probably even underestimated because we
have not included any mechanism usually used to explain
fragmentation and quenching of magnetic strength, such
as isobar-hole excitations. ' Such mechanisms only affect
the spin flip modes. Also, since we have used the bare g
factors for the spin part of the M2 operator, we probably
have overestimated the total M2 strength coming from
this operator: Meson exchange effects are expected to
quench these factors. " Finally, the effective Go resulting
from the antisymmetrized zero range interaction used here
is too small. Any finite range interaction, which we had
to discard because of computational limitations, would
shift the spin flip states to higher energies. There they
would suffer even more fragmentation since the density of
2p-2h states is higher there. All these mechanisms would
of course enhance the relative importance of the twist to
the M2 strength around 7 MeV.

The electromagnetic response calculated clearly reveals
the contribution of the twist to the electromagnetic

TABLE I. Percentage of the sum rule strength from different
operators and for different energy ranges. Experimental number
is from Ref. 6.

I I I 1 I j I I

E (Mev)

FIG. 3. Same as Fig. 1 for the electromagnetic M2 operator
[Eq. (25)].

Energy
range

[0,30]
[0,10]
[6,8]

Twist

18%
14%
10%

Spin
flip

65%
41%
20%

Electromagnetic

92%
65%
39%

Experiment
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strength function. The two prominent peaks at 7.2 and
7.9 MeV in the full calculation are just the two twist peaks
sitting on a spin flip background. So, in contrast to the
findings in Ref. 2, the twist mode in Pb does not stand
in the shadow of the spin flip. The reason for this is the
enormous fragmentation of spin flip strength already
present in the single particle energies.

Let us try to understand how this comes about numeri-

cally. There are 86 1p-1h states in our basis which can
couple to J =2, 38 of them are proton ph states. Look-

1Ilg Rt the ovcI1Rp of these ph states with the twist Inodc,
we should not be surprised to find that ph states with high
angular momentum give the biggest overlap:

(1) Slllce zlzz 1s R loco opel'ato1' lt will OIlly collIlect pRltl-
clcs to holes 1I1 adjacent shells.

(ii) Since I, does not change the angular Inomentum,
only states with 6/ =1 are connected by zI, .

(iii) Since no spin flip is involved, bj= 1 is favored over
Aj =0,2 for b 1 = 1.

(1v) A simple calcllla't1011 actually yields

I+1 2
(0~zl,

~
([n,l+1],[n, l] ') )= g( —) (n, l, m

i
zl,

i
n, l + l, m )

l(l +1)(l +2)(2l +3)
15

(26)

for oscillator functions, showing that high angular
momentum states RIc wcightcd by a factoI' —I .

Table II shows the most important particle hole states
involved in the twist motion, their single particle energy,
and theiI' relative weight. Incidentally, the single particle
energies for the most important configurations (denoted
by an asterisk in Table II) are experimentally measured
energies. Combining this with the fact that a residual in-
teraction does not affect the position of the twist, this
feature certainly contributes strongly to the significance of
the results (single particle energies from the Skyrme in-
teractions are rather different from these). Despite the
fact that only a few ph configurations are important for
the twist motion, they involve most of the 82 protons be-
cause of the high angular momenta involved.

In contrast to the twist motion, the spin flip operator
does not weigh high angular momentum states because it
is missing the operator (,. Therefore the spin flip is
dispersed over all 86 possible ph states, which also are
spIcRd over a much 1RI'gcr cncI'gy Iangc.

These features also explain why our calculation in the
case of Zr does not show any concentration of twist
strength, which is the reason why we do not pI'esent any
figures for this nucleus. Primarily Zr is not heavy
enough to allow for the twist which, in the language just
used, means that there are not enough states of sufficient
high angular momentum available in Zr. Furthermore,
the single particle energies available are not given by ex-
perirnent. This means that the uncertainties on the results

TABLE II. ph configurations participating in the twist
motion.

I

for Zr are much larger than in the case of Pb. Finally
the gap between particle and hole states is much smaller
than in the case of lead, resulting in a heavier fragmenta-
tion of the strength function due to 2p-2h configurations.
These three features make it very unlikely for Zr to
show a sharp resonance in response to a twisting field.

Let us finally mention the experimental findings on M2
strength from Refs. 5 and 6 which has been measured in
the energy range of 6—8 MeV. The total strength there is
reported to account for 25% of the sum rule. This is
smaller than the 39% obtained here, but, as mentioned al-
ready, we have Qot introduced any mechanism to quench
the M2 spin flip strength. These could easily account for
the difference (the effective g factors used in the calcula-
tion accompanying the measurements in Ref. 5 reduce the
spin flip strength by a factor of 0.58). Comparing indivi-
dual peak positions calculated here with the measurements
shows an embarrassing good agreement, which probably is
accidental: The two largest peaks are found at 6.9 and 7.9
McV, thc onc Rt 7.9 McV being slightly smaller, display-
ing a double hump structure. Smaller peaks are seen at
6.5 and 7.5 MeV.

The calculation of Knupfer et al. accompanying the
measurements in Ref. 5 gives two major peaks around 7.5
and 9 MeV. Unfortunately, the results in Ref. 5 do not
distinguish between orbital and spin fhp excitations, mak-
ing a comparison rather meaningless. We could guess that
the 7.5 MeV state in Ref. 5 is predominantly twist,
whereas the 9 MeV peak concentrates spin flip strength.
The latter peak would be less pronounced in our case be-
cause of fragmentation due to the two-particle-two-hole
coupling and because of less concentration due to a weak .

Go.

1~ I3/2
1A 9/2

*&fu2
2j5n

1"&i/2

1g7/2
2d 5/2

2d3/2

ph energy

7.2
7.7
6.8
7.4

Relative
weight

0.46
0.31
0.11
0.11

V. CONCLUSION

We have examined the question whether a microscopic
description of nuclear excitations confirms semiclassical
predictions on a collective twist motion. To this end we
have derived specific properties of the excitation from the
Landau theory Rnd have shown that they also pertain on R
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microscopic level. Our main result is that Pb shows in
response to the twist operator two very sharp resonances
which are located at 7.2 and 7.9 MeV. The position of
these states is entirely fixed by experimentally measured
single particle energies because the residual interaction
does not affect the position of transverse zero sound
modes. According to our microscopic calculation the nu-
cleus of Zr is not heavy enough to exhibit a twisting
motion.

We have also investigated the possibility of detecting
the twist experimentally through electron scattering.
Despite its overwhelming contribution to the M2 sum, the
competing spin flip mode is so heavily fragmented that it
cannot obscure the resonance peaks of the twist in an (e,e')

scattering experiment. Therefore it seems safe to conclude
that any major peak in the M2 response of Pb around
7.5 MeV is mostly due to the twist.

The prominent peaks in the electromagnetic M2

strength calculated agree —most probably accidentally—
perfectly with experimentally measured peaks in the ener-

gy range from 6 to 8 MeV. In order to confirm twist
strength in experimentally observed peaks, a detailed
study of the q dependence of these peaks would be neces-
sary. We intend to investigate this point theoretically.
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