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Seven elastic scattering angular distributions have been measured for the system ' 0+ Si
around the first resonant structure observed in the 9, =180' excitation function at 21.1 MeV

center of mass energy just above the Coulomb barrier. Optical model, Regge pole, and phase shift

analyses have been performed. These complementary analyses show that several partial waves con-

tribute to the backward rise and the oscillatory behavior of the elastic scattering angular distribu-

tions. The 21.1 MeV resonant structure can be interpreted in terms of several overlapping reso-

nances. Tentative spin assignments are made for these states.

NUCLEAR REACTIONS Elastic scattering of 'Si(' 0, ' 0). Seven angular
distributions measured between 18.67 and 22.29 MeV, angular range 25' to 176'

c.m. Optical model, Regge pole, and phase shift analyses.

I. INTRODUCTION

Elastic scattering of the Si+' 0 system has been al-
ready extensively studied over a wide range of energy
from the Coulomb barrier at 17 MeV up to a center of
mass energy of 65 MeV. ' An excitation function at 180'
c.m. angle and several angular distributions have been
measured. The excitation function is characterized by
regular 1-MeV wide resonance structures on which are su-
perimposed a finer structure of roughly 200 keV width.

The angular distributions are qualitatively reproduced
by optical model and/or Regge pole analyses except at
very low incident energy. A weakness of optical model
analysis is that the parameters, which define the already
very sophisticated potential shape, fluctuate rapidly with
the incident energy. These fluctuations are in disagree-
ment with the concept of mean field. Therefore, it can be
considered that the erratic behavior of such a potential
hides other phenomena such as resonances of a composite
system. It has turned out that it is impossible to correlate
a given spin, tentatively extracted from one angular distri-
bution, with a given bump seen in the excitation function.
This means that a bump is not a well-defined resonance of
the composite system.

Analysis based on statistical fluctuation of the scatter-
ing matrix with respect to a background given by a dif-
fractional madel has been successful and shows that possi-
bly many overlapping resonances contribute to the sophis-
ticated shapes of the angular distributions, in particular,
at high incident energy: 31.82 and 35.00 MeV center of
mass energy. In this picture, it is at present not clear
how these many overlapping resonances would add up
coherently to results in the relatively regular broad struc-
ture observed in the large angle excitation function.

In light of such puzzling results, we have decided to
study in more detail the first structure of the 180' c.m. ex-
citation function located at 21 MeV center of mass energy,
just above the Coulomb barrier where simple phenomena
can be expected owing to low excitation energy in the
composite system and also owing to the few partial wave
numbers involved in the elastic scattering. In addition to
a previous angular distribution already measured by the
Brookhaven National Laboratory (BNL) group, ' we have
measured seven other angular distributions between 18.67
and 22.29 MeV center of mass energy in order to study
the resonant mechanism and the hypothetical possibility
of spin assignments for such a structure.

After the description of the experimental procedure, we
shall present an optical model, Regge pole, and phase shift
analyses of the data. These three different analyses, more
or less complementary, allow us to understand that reso-
nance phenomena are present but that more than one reso-
nance is necessary to explain the shape of the eight elastic
scattering angular distributions measured in this narrow
energy region.

II. EXPERIMENTAL PROCEDURE

Seven angular distributions have been measured from a
pure Rutherford region (8, =25') up to 176' center of
mass angle, using the inverse reaction ( Si beam on a ' 0
target) for the backward center of mass angles
(8, & 100'). In the backward angle range, we have used
the Si beam af the super FN tandem Van de Graaff of
Saclay and a 100 pg/cm self-supporting SiO target. The
' 0 recoil nuclei were detected at forward angles by a
QDDD magnetic spectrometer. In front of the gas
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counter, which was located at the focal plane, Havar foils
were installed in order to stop the Si scattered particles.
This setup has been already described in a previous paper.
The forward angle angular distributions were measured
using the 0 beam and a 30 pg/cm enriched Si target
on carbon backing. Particles were detected using at very
forward angles a collimated position sensitive solid state
counter giving seven angles simultaneously and, for the in-
termediate angles, a AE-E solid state telescope in order to
achieve a better energy separation between the first 2+
and g.s. of the Si target nucleus. In both experiments,
two solid state monitors, placed left and right with respect
to the beam axis, were used in order to correct beam align-
ment instability. Between the backward and forward data,
there was a 10' overlapping region for normalization. The
absolute values were obtained by the normalization on the
pure Rutherford value at forward angles. The energy
given in the paper corresponds to the target center using
the Northcliffe and Schilling tables to correct for energy
loss. Charge state corrections for the yields obtained
from the QDDD spectrometer are done using the tables of
Marion and Young.

In Fig. 1, the 0, =180' excitation function for the
' 0+ Si is presented and the seven energies at which new
elastic angular distributions have been measured are indi-
cated by arrows. These angular distributions together
with the angular distribution measured previously at 21.1
MeV (Ref. 1) are shown in Fig. 2. All of the angular dis-
tributions present oscillatory behavior at backward angles.
It is also observed that the angular distribution corre-
sponding to the minimum of the excitation function at
E, =19.5 MeV has a deep minimum near 0, =180'.
This observation has been the subject of an earlier report.

III. DISCUSSION

OPTICAL MODEL CALCULATIONS
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A. Optical model analysis

The dashed curves in Fig. 2 are six parameter fits ob-
tained assuming a volume Wood-Saxon optical potential
for both the real and imaginary parts. The resulting po-
tential parameters are listed in Table I. This analysis is
done with the automatic-search code EcIs of Raynal. The
starting value for the real potential depth was very large
in conformity with potentials obtained from a double fold-
ing procedure. The general qualitative agreement with
the data is good; however, at low energy the calculated an-
gular distributions fail to reproduce the weak oscillatory
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FIG. 1. Excitation function at 180' center of mass for the
Si+' 0 elastic scattering measured just above the Coulomb

barrier. The arrows indicate the energies where angular distri-
butions have been measured. The data points are from a group
at Brookhaven National Laboratory (Ref. l).

FIG. 2. Experimental elastic scattering angular distribution
of the ' O+ Si system. The solid curves are optical model fits
using a deep transparent potential with surface correction terms;
the dashed curves are for the same types of potentials but
without correction terms. These results are from the ECIS FOR-
TRAN code of Raynal (see the text).
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TABLE I. Optical model parameters.

(MeV)

18.67
19.03
19.5
20.12
20.83
21.1
21.56
22.29

y28

1.94
4.22
4.12
2.17
2.60
7.58
6.89
9.28

V
(MeV)

554.8
676.6
677.0
769.8
689.5
683.1
768.9
744.3

v
(fm)

7.076
6.290
6.290
5.836
6.236
6.270
5.872
6.032

av
(fm)

0.331
0.422
0.423
0.480
0.438
0.452
0.468
0.448

8'
(MeV)

392.8
511.6
520.0
494.3
453.5
974.5
726.0
246.2

Rg
(fm)

0.796
0.845
0.839
0.831
0.871
0.882
0.849
0.915

aw
(fm)

0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025

18.67
19.03
19.5
20.12
20.83
21.1
21.56
22.29

2.49
3.41
5.81
3.93
4.23
6.55
9.02

18.83

100.9
139.5
88.34
86.94
86.94
77.20
77.60
77.59

6.649
5.621
6.484
6.530
6.526
6.822
6.833
6.842

0.515
0.670
0.552
0.583
0.583
0.539
0.503
0.504

49.36
176.50
89.03
89.59
89.59
46.80
51.02
35.02

3.387
3.050
2.875
2.890
2.890
2.925
2.865
2.977

0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025

N
1x=—gN

g
2

~exp theo
; 10% error bars.

ACr'e„p

structure at large angles. The calculated distributions just
go through the average of all the data points. To repro-
duce the oscillatory behavior at the highest energies, it
was necessary to use a very large transparency. The ra-
dius of the imaginary part is only about 1 fm as compared
to 6 fm for the radius of the real part of the potential. Let
us also note that the diffuseness parameter for the
imaginary part is extremely small compared to the incom-
ing local wavelength. This transparency and small value
of the diffusivity is directly responsible for the backward
rise and oscillatory behavior of the angular distributions.
A very large transparency of the potential near the barrier
was also deduced from a recent optical model analysis
based on a slightly corrected double-folded potential.
Other solutions with a depth nearer to 100 MeV for the
real part of the potential have been tried and provided
poorer fits as can be seen by the tabulated values of P~ in
Table I. However, the resulting transparency of the shal-
lower potential is comparable to that obtained with the
deeper potential.

Contrary to what might be expected, the very large
transparency results nevertheless in reasonable reaction
cross sections. The calculated cross sections are plotted in
Fig. 3. These reaction cross sections are roughly 20%
higher than the experimental fusion cross sections mea-
sured for ' 0+ Si in the same energy range. This is
consistent with the expected contributions from inelastic
scattering and direct transfer to the reaction cross sec-
tions.

In order to improve the overall quality of the fits, two
corrections of surface derivative Wood-Saxon form were
added for the 700 MeV real depth family of potentials.
The value of the fitted parameters are presented in Table
II and the corresponding angular distributions are shown
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FIG. 3. Total reaction cross section: The points are given by
the optical model calculations and are compared to the sharp
cutoff predictions of the diffractional model.

in Fig. 2 by a solid line. The quality of the fits is indeed
improved. We do not understand at present the meaning
of such terms which vary so rapidly with energy. It has
been speculated that the surface correction terms are ow-

ing to some coupling effects between the elastic channel
and the inelastic excitation of the first 2+ state in Si .
Alternatively, the fast variations of the optical model pa-
rameters might also mask resonance phenomena belonging
to the formation of a composite dinuclear system.

The real and imaginary effective optical model potential
with surface correction terms at 21.1 MeV is plotted in
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E,
(MeV)

Volume real part'
Vo Rv av

(MeV) (fm) (fm)

TABLE II. Optical model parameters.

Surface real part'
V) R) al V2 R2

(MeV) (fm) (fm) (MeV) (fm)

Volume imaginary part
a, W Rw aw

(fm) (MeV) (fm) (fm)

22.29
21.56
21.1
20.83
20.12
19.50
19.03
18.67

7.27
3.63
3.94
3.45
2.02
4.35
2.56
1 ~ 83

675
696
693
693
674
682
632
632

6.34
6.24
6.23
6.21
6.33
6.33
6.61
6.61

0.422
0.422
0.437
0.437
0.437
0.442
0.422
0.422

—244
—241
—242
—203
—270
—302
—313
—311

6.19 0.089 0.196 8.95
5.89 0.087 0.400 7.66
5.90 0.091 0.736 7.64
5.88 0.059 —8.210 6.08
5.99 0.080 0.446 6.48
5.99 0.113 1.455 4.957
6.41 0.091 1.549 9.03
6.41 0.092 0.309 8.98

0.362 931
0.458 1045
0 454 785
0 535 899
0.194 909
0.222 1709
0.035 1886
0.257 1845

0.948
0.853
0.826
0.795
0.852
0.838
1.035
1.030

0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036

V(r)= —V,
r —R,

1+exp
aU

—+4a;V;—d'dr r —R;1+exp
a;

W(r) = —8' 1

wr R
1+exp

aw

Fig. 4 for the partial waves I=0 to 20 with a step of 5. As
stated above, features common to all of the potentials are
very large transparencies and a small value of the diffuse-
ness parameter for the imaginary part. The location of
the imaginary potential with respect to the inner part of
the centrifugal barrier explains that in spite of its very
large transparency, this potential is still strongly absorbing
for the partial waves smaller than the grazing wave which
at this energy is approximately is= 10. The necessity to
maintain a strong absorption for I &lg explains why for
the shallower potentials the radius of the imaginary poten-
tial becomes significantly larger than for the deeper poten-
tials (see Table I).

To evaluate the importance of inelastic excitation, a
coupled channel analysis has been performed in which the
ground state and 1.78 MeV 2+ states were coupled in a
harmonic vibrational mode. The potentials resulting from
an automatic search are given in Table III and a typical
example of a fit is provided in Fig. 5. It turns out that the
fits are worse than in the case of pure elastic scattering
analysis, but the important conclusion is that the coupled
channel calculation does not change at all the qualitative
aspect of the optical potentials: compare Tables II and
III. This means that in the present analysis, the coupling
does not play a predominant role in explaining the reso-
nance behavior experimentally observed in the excitation
function.

Argand-Cauchy plots of the scattering matrices for the
700 MeV deep potentials of Table II, corresponding to the
best fits solid lines of Fig. 2, are presented in Fig. 6. The
behavior of the S-matrix elements is highly irregular.
However, the Argand-Cauchy plots seem to often contain
the kind of loops which could be a signature of relatively
narrow (i.e., near the real axis) Regge poles in the S ma-
trix. As already shown in the literature, the large trans-
parency associated with deep real potential gives rise to

such poles. To study the importance of isolated narrow
poles in explaining the structured angular distributions at
larger angles, the next subsection will present an analysis
where such poles are taken explicitly into account.
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FICz. 4. Plot of the real and imaginary part of the effective
optical model potential with surface correction terms for the
partial waves l=0, 5, 10, 15, and 20. Let us note the large trans-
parency of such a potential.
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TABLE III. Coupled channel parameters.

E (MeV)
c.m.

V
(MeV)

Rv
(fm)

av
(fm)

Vi
(MeV)

Optical model parameters
R) a) V2 R2

(fm) (fm) (MeV) (fm)
a2

(fm)
W

(MeV)
Rw
(fm)

aw
(fm)

21.56
21.1
20.83
20.12
19.5

696
693
693
674
680

6.23
6.23
6.23
6.33
6.33

0.422
0.437
0.437
0.437
0.438

—242
—201
—194
—219
—280

5.89
5.89
5.89
6.01
5.99

0.089
0.116
0.112
0.121
0.114

0.40
6.27
2.03
9.79

—12.6

7.66
6.73
7.21
6.95
5.47

0.458
0.454
0.374
0.224
0.717

622
723
723
885

1616

0.882
0.886
0.886
0.846
0.824

0.021
0.021
0.021
0.039
0.064

E (MeV)
c.m.

V
(MeV)

Rv
(fm)

Potential coupling parameters
av

(fm) (MeV)
Rw
(fm) (fm)

21.56
21.1
20.83
20.12
19.5

4.84
10.44
4.76
2.97
5.84

605
700
662
584
634

6.24
6.11
6.10
6.63
6.26

0.501
0.466
0.485
0.542
0.539

96.0
88.7
73.5

108.0
113.0

6.12
6.11
6.11
6.31
6.32

0.038
0.032
0.028
0.051
0.038

0.643
0.348
0.417
0.615
0.554

B. Regge pole analysis

This analysis has been performed using the nuclear
scattering amplitude, with the usual notations, in the fol-
lowing expression:

SI ——S(BG)+
/ —lp—iI (1)

2

(2)

f~(8)= g (2l + 1)e '(1 Sl )Pl(cos8—) .
2k (

The scattering matrix elements Sl are parametrized as fol-
lows:

with the following Frahn and Venter parametrization for
the background (BG) (Ref. 1D)
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FIG. 5. Coupled channel calculations of the elastic scattering

and first 2+ inelastic scattering of Si, using the harmonic vi-
brational model with a P2 ——0.643.

FIG. 6. Argand-Cauchy plot of the total S-matrix elements
of the optical model fits (solid curve) of Fig. 2.



152 M. C. MERMAZ et al. 29

10

28S (160 160) REGGE POLE ANALYSIS

I
'

I
'

I
'

I
'

I
'

I
'

I
'

I

}

Si(" 0," 0) REGGE POLE ANALYSIS

0.1

0.1 b
0.01

001, I, I, I i I s I & I, I s I

20 40 60 80 'I00 120 140 160 180

e,.m. ~4ev j

0.001
20 40 60 80 100 120 140 160

Bc m (deg j

180

FIG. 7. Regge pole calculated angular distributions (solid
line). The dashed curve corresponds to the SI(BG) background
matrix elements alone of the diffractional model. The corre-
sponding parameters are listed in Table III.

with

FIG. 8. See the caption of Fig. 7.

St(BG)= [1+exp(ls —l)/b ]

+ip [1—+exp(ls —l)/b, ]

A=kd 1—
kR

1
27)

kR

—1/2

(6)

The amplitude D (l) and the width I (l) of the pole are ex-
pressed as follows:

D(l) =Do[1 ReSt(BG)]

I (l) =I [1—R,S}(BG)].

The quantities between brackets are just the usual
damping function used in order to avoid spurious
angular-distribution oscillations owing to high orbital an-
gular momentum cutoff in the computation. The quanti-
ties Pt and lo are, respectively, the phase and orbital an-

0

gular momentum of the pole. The grazing angular
momentum lg and the width 5 are related to the radius
and the diffusivity parameter through the two following
semiclassical formulas, where R and g are, respectively,
the radius and Sommerfeld parameter:

1/2

lg ——kR 1—
kR

R =ro(Ap +AT )

In Figs. 7 and 8, the results of the Regge pole analysis
for the angular distributions, measured on the first
minimum and first maximum of the 180' c.m. excitation
function, respectively, are presented (see Fig. 1). The
dashed curve is owing to the background term alone of the
scattering matrix while the solid line represents the full
calculation including the Regge pole. The seven parame-
ters ro, d, ILt, Po, Do, I o, and lo have been searched simul-
taneously in order to produce the best fits to the data.
The values of the parameters are listed in Table IV.

In Figs. 9 and 10, the results of the Regge pole fits for
the intermediate energies around the first structure of the
excitation function, which are identical to the calculations
in Figs. 7 and 8, are presented. The corresponding param-
eters are given in Table IV. The quality of the fits is ex-
cellent with, perhaps, the exception of the lowest energies
where the phase of the last oscillation is not perfectly
reproduced. In fact, at the two lowest energies, 18.67 and
19.03 MeV, the width I o is extremely small and the calcu-
lation is equivalent to a single l= 3 resonance. The excita-
tion function has no clear resonant structure in this energy
region, but just a small shoulder owing to the very fast
variation with energy of the background (see Fig. 1). For
all the other energies, the widths are much larger and
show that several partial waves, three to four, contribute
to the oscillatory pattern of the angular distribution. The

TABLE IV. Regge pole analysis parameters. Lg: see formula (5); 6: see formula (6).

E,
(MeV)

18.67
19.03
19.50
20.12
20.83
21.1
21.56
22.29

Lg

5.55
6.96
7.87
8.42
9.83

10.17
12.30
12.74

Lp

3.0
3.0
8.05
7.05

10.11
10.14
11.73
12.16

220. 1

289.0
76.6
56.91
49.67
35.71

182.56
67.60

0.03
0.07
2.50
1.123
2.56
2.426
1.91
2.29

0.01
0.03
1.09
0.32
0.73
0.79
0.34
0.67

rp

1.634
1.643
1.634
1.605
1.604
1.605
1.650
1.622

0.430
0.448
1.09
0.32
0.367
0.797
0.773
0.342

p/4A

0.11
0.39
0.56
0.40
0.41
0.36
0.23
0.34

0.85
1.38
1.34
0.92
0.57
1.09
2.01
2.65
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FIG. 9. See the caption of Fig. 7.

C
0

difference of behavior is also evident in Figs. 11 and 12 in
which the Argand-Cauchy plot for the total S-matrix ele-
ments is presented.

Another type of Regge pole analysis has been per-
formed. The diffractional model parameters of Frahn and
Venter have been determined at 21.1 MeV, corresponding
to the maximum in the excitation function, by fitting only
the Fresnel pattern at forward angles. The resulting pa-
rameters are ro 1.643 fm, d=0——.600 fm, and @=2.197.
These parameters called BG-1 have been kept constant for
the remaining part of the analysis and only the four pa-
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FIG. 11. Argand-Cauchy plot of the total S-matrix elements
of the Regge pole analysis of Figs. 7—10—parameters are given
in Table III.
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FIG. 10. See the caption of Fig. 7.

rameters of a simple pole have been adjusted in order to
best fit the complete angular distributions; the results are
presented in Table V. The values of 7 are still very ac-
ceptable and the fits are indeed very good. It has turned
out in this latter analysis that the background angular dis-
tributions are lower at backward angles than those of the
former analysis. The Regge pole parameters are similar to
those of Table IV. The corresponding Argand-Cauchy
plots are displayed in Fig. 13. The lines are very smooth
since the S-matrix curves are calculated also for nonin-
teger values of the orbital angular momentum I. The
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FIG. 12. See the caption of Fig. 11.

loops are very apparent. The physical meaning of Regge
pole analysis is that the structure located at 21.1 MeV
center of mass energy is described by resonances of several
partial waves near the grazing wave. These poles are also
qualitatively present in very transparent and deep poten-
tials. Except perhaps at the lowest energies, singIe partial
wave resonances cannot be isolated: they do not provide
acceptable fits.

C. Phase shift analysis

E~~ =20.83 NeV

L0-10.17

Lo

E~~ =19.03 MeV

L0=2.91

Lo

0

E~~ =18.67 NeV

L0=2.91

'l.

Re (S(I)

For the phase shift analysis, the scattering matrix ele-
ments have been written as

Sl ——SI(BG)+5SI,
with

where the real numbers aI and pI are, respectively, the am-
plltudc and thc pllasc of tllc dcvlatloll of Sl fl'o111 a stall-

FIG. 13. Argand-Cauchy plot of the total 5-matrix element
of the Regge pole analysis performed with a common back-
ground for all energies. See Table IV for the parameters.

dard background at a given energy.
The phase shift analysis of the low energy angular dis-

tributions has turned out to be very uncertain since there
are several ambiguities. First of all, it is impossible to
determine the background from the forward angle Fresnel
pattern: different background intensities provide possible

TABLE V. Regge pole analysis parameters.

18.67
19.03
19.SO

20.12
20.83
21.1
21,S6
22.29

S.89
6.96
8.1S
9.S1

10.86
11.17
12.11
13.24

2.91
2.91
8.19
8.20

10.17
10.26
11.89
12.18

276.4
29S.S
108.8
9S.9
70.07
S3.1
89.1

117.4

0.42
0.34
2.S7
0.88
2.00
1.97
2.S1
1.9S

0.17
0.16
O.S7
0.20
O.S0
O.S4
O.S9
0.43

1.643
1.643
1.643
1.643
1.643
1.643
1.643
1.643

0.6
0.6
0,6
0.6
0.6
0.6
0.6
0.6

0.133
0.1SO

0.166
0.181
0.194
0.196
0.203
0.209

1.S6
3.02
S.14
2.4S
3.6S
4.0
2.82
3.06
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FIG. 14. Phase shift analysis fit (solid curve); the dashed
curves are for a common background BG-1 and the dotted-
dashed curves for a background adjusted at each energy on the
whole angular distribution. (See the text. )
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backward angular distributions. Consequently, there is a
strong uncertainty in the determination of resonance term
magnitudes. Linked to this first problem, two different
contiguous terms SI or SI+I with opposite phase produce
very similar fits. Furthermore, an angular distribution in-
volves at least two resonant partial wave terms making the
ambiguities extremely large.

The procedure we have used was to try to find the best
fits with the minimum numbers of resonant terms aie
for a given background amplitude. This procedure is ob-
viously quite arbitrary. As previously used for the Regge
pole analysis, two different kinds of backgrounds were
used: The first one, BG-1, was fixed by fitting the for-
ward angle Fresnel pattern at 21.1 MeV center of mass en-

ergy, the second one was fixed by fitting at each energy
the whole angular distribution with the diffractional
model alone. Figures 14—17 present the best fits to the
data obtained with these backgrounds by adding two or
three resonant terms; the final results, the solid curves, are
the same for both background amplitudes. Of course, the
resonant amplitudes and phases which produce the fits are
different. The corresponding modulus of total S matrix
for the two different kinds of background are plotted in
Figs. 18 and 19. We can see on these last two figures that

FIG. 16. See the caption of Fig. 14.

I

28gj(160160)
A' P 9

PHASE SHIFT ANAlYSIS

0.1

at low energy, a l=3 resonance is present as in the
Regge-pole analysis. At higher energy, around 21 MeV,
on the top of the first maxima of the excitation function
very good fits are obtained with resonance terms such as
1=6, 8, and 11, but, unfortunately, 1=6, 8, and 10 will
also produce good fits. As noted previously, assuming
resonance terms in other partial waves produces less good
but still acceptable fits. Evidently, better fits can be ob-
tained by adding still additional resonant terms. On the
other hand, fits with only one resonant term are very poor:
two resonant terms are always needed. These various
points are illustrated in Table VI at a center of mass ener-
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FIG. 15. See the caption of Fig. 14. FIG. 17. See the caption of Fig. 14.
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FIG. 18. Modulus of the total scattering element of the phase
shift analysis of Figs. 14—17. FIG. 19. See the caption of Fig. 18.

TABLE VI. Phase shift analysis parameters. E, =21.1

MeV BG

0.21

0.16

1

(rad)

—0.56 9.46

11.80

gy of 21.1 MeV for the background BG-1. Several fits of
the angular distribution are provided for different com-
binations of resonant terms M~, the quality of the fit can
be judged by the+ value.

6
8

11

10
11

0.25
0.15

0.17
0.13

0.30
0.17

0.12
0.16
0.16

0.32
0.27
0.26

0.15
0.24
0.09

0.04
1.98

—0.70
0.33

0.46
0.68

—0.18
0.84
1.10

1.61
1.75
0.67

0.22
0.73
0.04

2.80

4.33

2.11

2.71

IV. SUMMARY

The three phenomenological analyses presented herein
are complementary and self-consistent. The experimental
angular distributions can be qualitatively reproduced by
an optical model calculation having deep and transparent
potentials which exhibit poles. The one Regge pole
analysis succeeds also in reproducing the elastic scattering
data showing that, in the first structure observed above
the Coulomb barrier in the excitation function, several l
values contribute to the oscillatory shape of the angular
distributions, Phase shift analysis corroborates this last
statement and shows that ambiguities in the position of
the background scattering allows only tentative spin as-
signments for the resonant structure.

In conclusion, it appears that a dinuclear system is
formed during the collision with a short lifetime and with
no definite angular momentum. This dinuclear system ex-
hibits overlapping resonances with spins that may be
slightly lower than the grazing partial waves.
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