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Boson expansions based on the random phase approximation representation
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A Qcw boson cxpanslon theory bRscd on thc random phase approximation 1s p1cscntcd. Thc bo-

son expansions are derived here directly in the random phase approximation representation with the

help of a technique that combines the use of the Usui operator with that of a new bosonization pro-

ccdulc, called thc term"by-term boson1zat1on method. Thc pI'cscnt boson cxpanslon thcoIy 1s coI1-

structed by retaining a single collective quadrupole random phase approximation component, a
truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well

as non-Hermitian boson expansions, valid for even nuclei, are obtained.

I. INTRODUCTION

Some ten years ago, Kishimoto and Tamura' reported
on a formulation of the boson expansion theory (BET), to
use for the analysis of nuclear collective motions. (These
two papers will be henceforth referred to as KT-I and
KT-2.) The formalism was worked out, to a large extent,
as a compact reformulation of earlier work by Sorensen,
but with a few important extensions and modifications.
Sorensen's BET was derived for a fermion system which
was constructed by 11slIlg tile Ta111111-Dancoff app1ox1111a-
tion (TDA). We may thus call it a TDA-based BET.
What was done in KT-1 was to reconstruct a similar BET
in a more compact form, with an extension from the
fourth to the sixth order. In KT-2, where a very practical
version of BET was worked out, however, an important
new step was added. It was to perform a random phase
approximation (RPA) transformation upon the TDA-
based BET, thus obtaining what may be called an RPA-
based BET.

To perform this transformation was crucially impor-
tant. (For a discussion of the RPA, and its superiority
over the TDA, see e.g., Ref. 4.) As is well known, TDA
predicts too weak collectivity, which reflects, e.g., in too
wide spacings of the calculated levels. This trouble was in
fact experienced by Sorensen, as well as by l.ie and
Holzwarth, who also constructed a TDA-based BET by
using the method of Marumori, Yamamura, and Tokuna-
ga (MYT), rather than the commutator method used in
Refs. 1—3. On the other hand, such trouble was not en-
countered in our RPA-based BET. As shown in KT-2,
and 1n a number of publlcatlons that foHowed, we were
able to fit spectra of a variety of collective nuclei, without
making any fudging of the calculated spacings. See Ref. 8
for a summary of the numerical results.

The procedure of performing the TDA-to-RPA
transformation adopted in KT-2 was, however, rather
lengthy and complicated. It also contained in it a few
steps, which could not be justified much beyond plausibili-
ty arguments. (See Secs. 3—5 and 7 of KT-2 for the de-
tails of this procedure. ) Thus, although we believe even to
date that the method used there was basically correct, we
have also felt for a long time that it was desirable to

derive an RPA-based BET directly, without going
through the TDA-based BET. It is the purpose of this pa-
per to present a method to solve this long standing prob-
lem.

Recently, Kishimoto and Tamura (KT-3) (Ref. 9) car-
ried out a major reformulation of BET, with the purpose
of putting our previous work' ' ' on a firmer basis, and
also to prepare for their further extension. In doing this,
we switched from the commutator method' to the MYT
method, and obtained results that were very general and
flexible so that one could bosonize essentially any fermion
system, so long as the latter was given in the TD represen-
tation (TDR).

More recently, Tamura' noticed that one of the key
steps that characterized the MYT method could be avoid-
ed and replaced by a new procedure, called the term-by-
term bosonization (TTB) method; as was shown in Ref.
10, the bosonization procedure, e.g., of KT-3, can be sim-
plified significantly by the use of this method.

The essence of the TTB method is to recognize first
that the fermion matrix elements of any operator have a
certain tensorial structure, and can (in general) be reduced
to a finite sum of irreducible tensors. Each term of this
sum can, however, be easily replaced by the matrix ele-
ment of a boson operator. If these operators are summed
up, the result is nothing but the boson expanded form (bo-
son image) of the original fermion operator. In other
words, once the irreducible tensor reduction of a fermion
matrix element is completed, the ensuing bosoruzation
procedure can be readily carried out with the use of the
TTB method.

When a very general TDR space is taken, as it was in
KT-3, the above first step, i.e., the reduction of the fer-
mion matrix elements to their irreducible forms, remains
rather lengthy, and the TTB method does not help very
much in simplifying it. However, if we truncate the TDR
space so as to retain only one kind of collective com-
ponent, matters change drastically. It is well known that,
under the above truncation, the boson expansion converges
very fast (see, e.g. , KT-3), and thus the expansion can be
terminated at a lower order. What was noticed in Ref. 10
was that, under the same truncation, the fermion matrix
elements, notably the norm matrix elements, themselves
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can be expanded similarly, i.e., they can be treated pertur-
batively, thus making the procedure of the irreducible-
tensor reduction very easy to carry out. This fact, com-
bined with the use of the TTB method, makes the whole
procedure of the bosonization extremely simple and trans
parent.

In Ref. 10 we have demonstrated this for the TDA case.
In the present paper we apply the same procedure to solve
the problem mentioned above, i.e., to carry out the direct
(perturbative) bosonization of a fermion system in the
RPA representation in the case when the sole quadrupole
collective RPA component is retained.

We may remark at this stage that an earlier work by Al-
money and Borse" is, in a sense, closely related to what
we have done here. However, our work goes significantly
beyond theirs, as will be explained after we present our
formalism. There were also other authors who worked on
constructing theories that went beyond the lowest RPA,
i.e., the harmonic RPA. The earliest version of such an
attempt was called higher RPA (HRPA). ' The new ver-
sions' ' appear to have closer similarity to what we do
here, at least in that the boson technique is used, one way
or another. Nevertheless, their approach to the problem
differs significantly from ours. Somewhat crudely speak-
ing, it appears more appropriate to regard them as an im-
proved version of HRPA, rather than as an RPA-based
BET, as it is understood in the present paper.

We define first in Sec. II A the various fermion quanti-
ties, including the RPA pair operators, and then give the
comn1utation relations they satisfy. We en1phasize there
the differences between these commutation relations and
the corresponding ones that are satisfied by the TDA
operators, pointing out the reasons why the direct con-
struction of the RPA-based BET could be so much harder
than that of the TDA-based BET. In Sec. II 8, we then
introduce the RPA product space, i.e., the space spanned
by states constructed by multiplying the powers of the
RPA pair operators upon the RPA vacuum, and show
how to evaluate perturbatively their overlap integrals. In
Sec. IIC, the results of Sec. IIB are used to construct,
again perturbatively, orthonormal RPA states. As seen,
the norm matrix cannot be constructed uniquely due to
the presence of an unfixed parameter called z. However, it
is shown in Secs. II C and III C that different choices of z
simply specify different representations, all of which are
related by unitary transformations, and all of which are
thus physically equivalent. The bosonization, with the use
of the TTB method, of the fermion system constructed in
Sec. II is then carried out in Secs. III A and III B, respec-
tively, for the Hermitian and non-Hermitian cases. As
seen, the boson expansions obtained there are indeter-
minate due to the presence of the unfixed parameter z, ori-
ginating from the fermion norm matrix. However, since
the fermion representations are equivalent under a unitary
transformation, so are the resulting boson expansions.
This means that we have complete freedom in the choice
of z. Such freedom is then used in Sec. IIIC in order to
simplify the form of the boson expansions obtained in the
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II. FERMION DESCRIPTION

A. Definition of the fermion quantities

We start with a fermion system that is described in
terms of the quasiparticles in the BCS theory. Denoting
by dJ~ and dJ~ the quasiparticle creation and annihilation
operators, we shall define the pair creation and scattering
operators as

B' ~. = & j(i mlJ2 m2l~s)d. . .dJ
m )m2

CJ J ip = P (jim iJzmz I ~P)dj&m d.
m&m2

(2.1b)

where (ji m ijzm 2 l
A p ) is a Clebsch-Gordan coefficient,

and

The RPA operators may then be defined as

(a) f (a)
(lite 2 g JiJ2( PJ~ J2A, J~Jiip PJ~J2ijiJ'2ip),

J~J2

Clip CEJA 0 DJ)J2 Q +~J(J2
(2.2)

In (2.2) g and P are the RPA amplitudes that satisfy the
usual orthonormal and completeness relations (see, e.g.,
Ref. 15).

For future convenience let us define here a few abbrevi-
ations; a=IakpI and p=Ij, jzkq). By using (2.1) and
the properties of the RPA amplitudes, we can evaluate in
a straightforward manner the commutation relations for
the RPA operators. They are given as

[B„Bb]=5,b
—Q P,'~b 'C~, - (2.3a)

p

(2.3c)
g g

yg~(p —)( t

p

(2.3b)

(2.3d)

The coefficients that appear in (2.3) are defined as

(p+) -(J,J,k+)P- b =(Azp+Abpb
l
kq)P& b

with

(2 4)

(2.5)

preceding subsections. We also show there that, in the
RPA-based form, Dyson's (non-Hermitian) BET has lost
most of its attractive features, which it had in the TDA
case, namely its finiteness and exactness. Furthermore,
the non-Hermitian boson expansions turn out to be some-
what more complicated than the Hermitian expansions.
In Sec. III D we discuss a few additional features pertain-
ing to the RPA-based BET, and finally in Sec. IV we
summarize the present paper.
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Q'~b ' (——A,,p, kbpb
~
kq)Q, b'

with

(2.6)

- JiJ2'+ - - (a) (P) J&
—J2+k (a) (P)Q ab =~a~b g I Ajj2kkj &,jAb —( } ~j &j24jj&X Pj&jjb] ~(J2Jla~bikj )Djj ~Djj& .

J

Also

(2.7)

(2.8)

In (2.5) and (2.7) the operator I'j j exchanges the indices

j& and jz in the expression that follows it.
There are three features that we want to emphasize

about the commutation relations (2.3): (i) the [8,8t]
commutator has the same structure as does the one ob-
tained in the Tamm-Dancoff (TD) case; however, the
coefficient P'j' ' is somewhat more complicated; (ii) un-
like in the TD case, the commutators [C,B ] and [C,B]
consist of two terms, showing that the scattering operator
is not diagonal in the RPA phonon numbers; (iii) the RPA
creation operators 8 do not commute among themselves.
Needless to say, if we set the RPA amplitudes /=0, then
Q'j'-+'=0, and (2.3) reduces to the commutation relations
for the TD case.

As stressed in Sec. I, we consider, in the rest of the pa-
per, the case in which the RPA system is truncated to re-
tain only a single collective component of the quadrupole
nature. Under such a truncation, the RPA index a stands
only for the magnetic quantum number. Also, the quanti-
ties defined in (2.5) and (2.7) become somewhat simpler
and can be rewritten as (where A, =2 and c stands for "col-
lective")

As in the TD case, ' we begin by introducing the basis
states

,
(&.)" ~0&—= a. B. .a. ~0&,

(2.10)

and call the space they span the RPA product space. In
(2.10) we have introduced an abbreviation a to mean
(when it appears in combination with the number n) that
a = Ia&az, . . . , a„I. In the following we use this abbrevi-
ation consistently. We also use a

&

—= I a&, . . . , a„],
a 2

=
I a 3, . . . , a„j, and so forth. We shall also use

b,bj, b2, . . . , in the same way. On the other hand,
d, e,f,g, . . . , will be used to denote a single index, rather
than a set of them. (When a~,a2, . . . , appear without a
bar, they also denote individual indices. )

The central problem for the construction of an ortho-
normal fermion basis is the evaluation of the overlap ma-
trix with elements given by

(2.11)

X W(j2j, A,A,;kj)Djj Dj,

X 8'(j 2j)A,A, ;kj)Djj Djj

(2.9a)

(2.9b)

This matrix is nondiagonal, not only with respect to a and
b, but also with respect to m and n (In the T. D case, ' the
corresponding matrix was diagonal in the pair number n,.)
This is due to the presence of the second terms in the
right-hand side (rhs) of (2.3b) and (2.3c}. These terms also
force m and n to have the same parity.

In evaluating (2.11) explicitly, it is very important to
note that Cz does not annihilate the RPA vacuum;

From (2.9b) we see that the quantity Q,'j'b+' (Q,'j'b '),
which appears in (2.6), is nonvanishing only for even (odd)
k values, and it is symmetric (antisymmetric) under the in-
terchange of the indices a and b (i.e., of p, and pb}. Note
that this property holds only when we have solely one
RPA component of even multipolarity, as we do here.

B. The RPA product space and the overlap matrix

One of the major tasks in the formulation of the present
paper is the construction of an orthonormal fermion basis,
which will be carried out in the following subsection.
Quantities necessary for this purpose are presented in this
subsection.

Cp ~
0&&0, and (0

~ Cp&0. (2.12)

In the following we take this into account. Nevertheless,
we set everywhere

(0
i C,'i O&=0. (2.13)

In Sec. IIID we discuss the consequences of approxima-
tion, (2.13), and show that, up to the order at which we
choose to work, it is consistent with the perturbative treat-
ment of the other terms in the theory.

By using (2.3) we can readily evaluate the overlap ma-
trix element (2.11). The algebra is straightforward, but
quite lengthy, and is given in Appendix A. The final re-
sult for (0 „),.b can be written as



(i) m(3)

( ( )
m(aj~ n(bj Wa b b b ~g b ti nm+2

(i) (3)
n(bj m(aj b;a a a ~g b ~n, m —2 ~

v m(m —1) (m —2)

In writing (2.14) we have introduced the new quantities
I' and W which are defined as

(2.15a)

Note that 1;~.sb and Wb. ,~s have the following symmetry
properties:

~ef;gh ~fe;gh ~ef,"hg»

~I;kg = ~I;egf .

(2.15b)

(2.15c)

However, due to the noncommutativity of the 8~ opera-
tors, the permutation of the indices e and f in Wb. ,js
glvcs f1sc to a nonvanlshlng tcfID glvcn as

(2.15d)

Equation (2.15c) follows from the fact that Q,'~j+'= QP',+'.
The relations (2.15b) and (2.15d) are proved in Appendix
B. Tlic opciatoi A„( j

is a symmctrlzcr witli i'cspcct to
the set of indices Iaj (see Appendix 8). Because of prop-
erties (2.15), it is clear that the ordering with which the in-
dices appear after they are relocated by the symmetrizer
P'„('a» is irrelevant for the I'term, but is crucial for the W
termS.

We remarked above that the overlap matrix 0 „ is non-
vanishing for any n and m of the same parity. In (2.14),
however, we have obtained only two terms with n =m +2
and n =m —2 in addition to the term n =m. This is, of
course, because we have been satisfied with obtained terms
to 0(W). [Since 0(I")=0(W), we are actually obtaining
terms to 0(I') and 0(W). For simplicity, we shall
henceforth speak only of 0(W) to mean both 0(I') and
0( W).] The next off diagonal terms would correspond to
the cases when n =m +4 and n =m —4, which would be,
however, 0( W ) and thus are neglected.

Let us remark that, because of property (2.15d), the ma-
trix (0 „),.b is not totally symmetric under the permuta-
tion of the indices Ia J and I b I. For reasons that will be
explained later, such R nonsymmetric matrix is not a con-
venient choice for constructing a suitable fermion basis.
Therefore, we introduce here a symmetrized overlap ma-
trix. To do that, %'c start lay replacing thc product states
(2.10) with symmetnzed product states defined as

whcrc I pcrmutcs all thc Ia I iiidiccs. By usiiig (2.16) wc
can now construct thc syITlmctrized ovc11ap matrix, with
elements {{m;a

~

b;n )). We shall denote this matrix by
Z, to discriminate it from 0 . Its explicit form is given,
to 0(W), by

~() ) (3) W(s)
( 1) ( 2) m(aj n(bj g(, b(b2b3 g(, b3~n, m+2

(1) (3) W(s)
( 1 ( 2) n(b j m(a j b), a)azar' g3b( n, m —2 ,

~ (2.17)

(s)Wb. ,ys
———,( Wb. ,ps+ Wb.g,s+ Wb.s,y) . (2.18)

In the rest of the paper we shall (generally) omit the word
symmetn'zed, because from now on we consider exclusive-

ly symIIletrizcd ploduct states.

The Z matrix of (2.17) is very close to 0 of (2.14), the
only, but important difference being that the former con-
tains the symmetrized W" coefficients, defined as The product states defined by (2.16) are not only

nonorthonormal, but also overcomplete. Therefore the
overlap matrix (Z ) with elements given in (2.17) is singu-
lar, in general. This means that unphysical components
RI'c adIY11xcd 1n the pI'oduct space. There ls» ho%'ever» a
very practical way to overcome this difficulty; it is to
choose a fermion subspace so that in it the matrix Z be-
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comes nonsingular. When truncation to a single collective
component has been made, a suitable physical subspace
can be defined by imposing an upper limit, say Nm, „, to
the admissible number of RPA phonons that can be super-
imposed in (2.10). (In practice, N, „can be quite large. )

Once this is done, no further discussion is needed concern-
ing the problem of the unphysical components in the
theory, both in the fermion, as well as in the boson
descriptions, since no danger of admixture of unphysical
components exists.

In order to carry out the bosonization, it is convenient
to construct first an orthonormal fermion subspace Th. is
is the space to be subsequently mapped onto an ideal bo-
son subspace. Since the ideal boson states are totally sym-
metric under the interchange of any pair of indices, it is
quite obvious that we ought to start with fermion states
that possess the same property. This was the reason for
introducing the symmetrized states (2.16), and the sym-
metrized overlap matrix (2.17).

By using the states (2.16) and the (Z ) of (2.17) as the
norm matrix, we can now construct a set (which is com-
plete in our truncated space) of orthonormal RPA states,

~

a;m). From the form of the (Z ) matrix, we see that,
to 0( W), an orthonormal I phonon state can be written
as a superposition of symmetrized product states with
n=m, m —2, and m+2 phonons. However, it is not

a priori evident that we must retain both the product
states with m & n and m ~ n in order to be able to obtain
an orthonormal state. Consider, e.g., using Schmidt's
orthonormalization procedure. We can certainly construct
an orthonormal state

~
a;m ) by taking only the product

states with n (m.
Having this ambiguity in mind, let us choose to write

a;m as

max

~

a;m ) = Q (N „'), b~ b;.n )),
n, b

(2.19)

where the norm matrix (N '), generally different from
(Z '), is to be determined from the condition that the re-
lation

&~;(2
~
b;~) = gg (Nmk')a; (Zk()a', b (N)n')b', b

k, a'e, b'

(2.20)

is satisfied [up to 0( W)].
We shall now find the concrete form of the norm ma-

trix by evaluating the matrix element (2.20). It will be
very reasonable to expect that N ' has the same tensorial
structure as does Z '. We, therefore, assume that N
can be written as

(2) (2)
(Nmk )a;a' a,a'+

k k 1
~m[a) ~k[a'[ Ia a a~a~ ~a .a ~ '3k, m

y 1 (1) (3) (s)+
k ~m[a) ~k[a'[ ~ . «& ~—.—&'[)k,m+2k(k —1) (k —2 a&, a &a2a3 a&.,a 3

(1) (3) (s)+ ~ ~k[a') ~m[a) ~ ' ~—.—~[3k, m —2 ~

v'm (m —1) m —2 a ),'a)a2a3 a3,'a )
(2.21)

Note that we have introduced the unknown numerical coefficients x and y (their presence is the only reason N ' differs
from Z ), which are to be fixed by using the condition (2.20). Keep in mind that in (2.21) x is associated with the term
with the running index k =m —2, while y is associated with the term with k =m+2. [In the matrix N itself, the roles of
x and y with respect to the running index are inuerted so that NN = 1, again up to 0( 8').]

We now insert (2.21) and (2.17) into (2.20), and find, to 0( W), that

( m (2
~

I) 11 ) (Nmk )a; '(Zk/ )a', b'(N(n )b', b

~a, barmn+(X+y ) ~m[a[ ~n[b[ ~a{,b{b&b&~a b ~n, m+2
1 1 (1) (3) (s)

n(n —1) (& —2) 1' 1 2 3 a) 3

1 1+(x+y —2)
+m(m —1) m —2

(&) (3) (s)~n[b[ ~m[a) II b , {a&{aa~3a3,b{~n,m —2 (2.22)

x+p =2 . (2.23)

On the other hand, this also means that the problem is not
completely determined, since we have one equation for
two unknowns. Such an ambiguity, however, does not
represent a serious problem. In fact, any pair of x and y
[which we shall henceforth denote collectively by z;

We thus see that (2.20) is satisfied if we choose x and y
such that

I

z =(x,y)] that satisfies (2.23), defines a set of orthonormal
basis states, i.e., a representation, and the sets belonging to
different z's can be transformed one into another by uni-
tary transformations. Therefore, the above indeterminate-
ness simply says that we have an infinite number of physi-
cally equivalent representations.

In Sec. III, we shall show how to bosonize the fermion
system which we have constructed above. We do this first
for a generic z. Subsequently, we take advantage of the
freedom in the choice of z and achieve a significant sim-
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A. Hermitian case

As is well known, and as emphasized in our recent pub-
lications, the basic guiding principle of bosonization is to
find a boson image (OF)l) for a given fermion operator
OF, such that the equality

&z;m, a
~
OF

~
b, n;z&=(m, a

~

(OF)s(z)
~
b, n), (3.1)

is satisfied. Here, the boson states are defined as

(~t)-~0)=— ~t~.' gt ~0);
1 g 1

(m (N,„) . (3.2)

In (3.2) A, is a pure boson creation operator, and
~

0) is

the boson vacuum. The states defined by (3.2) span the
collective boson subspace which is the boson image of the

plification in the obtained boson expansions. In order to
make the presentation of Sec. III more transparent, we
shall henceforth make the z dependence of the orthonor-
mal states explicit by writing them as

max

~
a, m;z& = y (N „),.b(z)

~
b, n && . (2.24)

n, b

III. BOSONIZATION

U(z)= g ~a, m)&z;m, a
~

.
m, a

(3.3)

Naturally the explicit form of the Usui operator depends
on the representation, i.e., on the z we choose for the fer-
mion basis. By making use of (3.3) and of the closure re-
lation for a complete set, it is easy to see that in our trun-
cated fermion and boson subspaces, UU =11) (boson unit
operator), and U U= 1F(z) (fermion unit operator in the z
representation).

By making use of (3.1) and (3.3) and of the above prop-
erties of the Usui operator, we readily obtain the relation

collecti Ue (physical) fermion space, spanned by states
(2.24).

There are known a variety of ways to carry out the bo-
sonization procedure. Here we shall apply a technique
that combines the use of the modified Usui operator, first
introduced by MYT, with that of the term-by-term boson-
ization (TTB) method, recently proposed by Tamura. '

The Usui operator is useful in making the formulation
transparent, while the TTB method is powerful in deriv-

ing very quickly the explicit form of the various boson ex-
pansions.

Let us define the Usui operator as ' '

&z;m, a
~
OF

~
b, n;z &

= &z;m, a
~

Ut(z)U(z)OF Ut(z)U(z)
~

b, n;z & =(m, a
~

(OF)s(z)
~

b, n),
where (OF )s, given by

(OF)ll(z) = U(z)OF U (z),

(3.4)

(3.5)

is the boson image of the fermion operator OF. In fact, if the fermion operators are bosonized according to (3.5), Eq.
(3.1) is guaranteed to be satisfied. Conversely, the boson image (OF)s of any fermion operator OF constructed so that it
satisfies Eq. (3.1), can also be represented in the form of (3.5).

To find the explicit form of (OF)1), we begin by choosing the case with OF B„and rewr——iting the matrix element
&m;a ~Bt~b;n& as

&z;m a IB
~

b "z&=2 2 (N k'), , ( )z&& ka'~ ,B~ b', l&&(Nl„')b b(z).
l, b' k, a'

g g (Nmk )a;a'( )+(I + 1) ~a', b'e~k, 1+1 ~k(a'j ~l(b'j I a~ ai
—1 1

l, b' k, a'

~(1)+ lfb I
~. . . ~-, —, ~k l+a la2, eh

1 a 2, b &2 +

(1) (3) ( )

+l (l 1 ) (l 1 )
k(a'j l(b'j

+ ~ ~ 8',
b2 a 1,

' ~ll, k+J

e;a'1a2a3 a '.b' ~l, k —3 Nla )b', b(z~ )

(3.6)
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By using the definition of the norm matrix given by (2.21), we can carry out the summations over k, I, a', and b' in (3.6).
The algebra is somewhat lengthy, but straightforward, and we feel it unnecessary to give it here explicitly. Notice in
(3.6) a peculiar behavior of the index e relative to the indices I b j. Every quantity in (3.6) is totally symmetric with
respect to any interchange of Ib'j, while only a partial symmetry exists in the interchange between e and Ib'j. Thus
great care must be exercised in manipulating the product of X ' and (Z ).

The final form of the fermion matrix element of B, is given as

1 1 co(1) m(2) (s)~ m(a) ~ a(b) ( ~a), eb(b& 3 ~a(,eb)b2 )~a .b ~a, m+)

2 —x ~(3) (s)~ mIaI ~e;a a a ~a;b~n, m —3 ~v'm (m —1)(m —2)
(3.7)

Note that this result is fairly simple, and that one reason for this is that the unlinked terms, i.e., terms in which the coef-
ficients 7 or 8' do not carry the index e, have canceled out completely. Note also that the 8"terms are totally sym-
metric, although they contain the index e (these terms originate from the products of the W factors in N ' and the b,
factors in Z ).

The rhs of (3.7) is nothing but the irreducible tensor expansion [valid to 0( W)] of the left-hand side (lhs) of (3.1). By
inspection, we can readily write the boson expansion for (B, )~(z):

3' (s)(Be )B(z)=Ae —
2 Yfg;ehAfAgAh ~f;egh

( ~f;egh AfAgAh— (s)8', .Iggif Agog . (3.8)

(Summation over dummy indices is understood. ) We may easily confirm the validity of (3.8) by inserting it into
(m;a

~
(B, )2)

~

b;n ) and finding that it results in the rhs of (3.7). The bosonization procedure used above, i.e., the pro-
cedure to obtain (3.8) from (3.7) by inspection, is nothing but an example of the use of the TTB method. ' The spirit of
the TTB method was explained in some detail in the Introduction. Combining that explanation with its actual use here,
the reader will now have a very concrete understanding of this technique. The reader will also see clearly the greater
simplicity and transparency of this method over all the other bosonization techniques mentioned in the Introduction.

The boson image (B, )2) of the annihilation operator B, is, by construction, just the Hermitian conjugate of (3.8). As
for the scattering operator Cz, its fermion matrix element is written, again to 0( W), as

(&) 1 (p+)) ~( ) ~( ) p~(+)g ~ + ~( ) ~(

(3.9)

Applying the TTB method, we then find that

The expansion (3.10) is basically the same as that of Refs.
11 and 13. As we see, neither (3.9) nor (3.10) depends on
z. This is because, up to 0(R'), we were able to set
X '=b, in the fermion matrix element (3.9).

This concludes the bosonization of an even fermion sys-
tem since all the operators can be expressed in terms of
B~, B, and C~. We may also notice that it is now a
straightforward matter to verify that the expansions of
(3.8) and (3.10) do satisfy (perturbatively), within the trun-
cated space, all the original fermion commutation rela-
tions given in (2.3). [Note that Eq. (2.15d) is needed to
prove (2.3d).]

It is gratifying to find that the forms of (B, )2)(z) and
(Cz)2), obtained in (3.8) and (3.10), are fairly simple, con-
sidering the complexity of their derivation. Still, the

z dependence of (B, )g may be considered embarrassing,
because it means, e.g., that the Hamiltonian is indeter-
minate, to the extent that z is indeterminate. We shall
postpone the discussion of this problem, however, to Sec.
IIIC, and address ourselves next to the derivation of the
Dyson-type BET.

B. Bosonization: Non-Hermitian case

U)(z)= yy ~

a,n)(z;l, b
~
(Z)„)b, ,

n, a I b

U2(z) = g g ~
a, n)(z;l, b

~
(Z)„')b,

n, a 1,b

(3.11a)

(3.11b)

In this subsection we construct the RPA-based boson
expansion which is non-Hermitian, i.e., is of the Dyson
form.

As in Refs. 16 and 17, we shall begin by introducing
two Usui operators;
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In our truncated fermion and boson spaces the above Usui
operators satisfy the following conditions:

U2(z) U)(z) = g l
a, n;z & (z;n, a

l

n, a

=1F(z) (fermion unit operator) . (3.12b)

U((z)Uz(z)= g l
a, n)(n, a

n, a

= lz (boson unit operator), (3.12a)

Using (3.11) and (3.12b), it is straightforward to derive
the z-dependent Dyson boson image of any fermion opera-
tor OF. We rewrite the fermion matrix element as

with

&z nb'l Ob
l

~ m 'z
& = &z'm ~

l
Uz(z) U) (z)OF Uz(z) U) (z)

l
»n 'z

&

= y y(Z k ), a (k;~'
l
(OF )D(z)

l

b', I )(Z/n)b'b,
k, a'1, b'

(3.13)

(OF )D (z) = U) (z)OF Uz (z)

representing the Dyson boson image of the fermion operator Ob.
In order to obtain (Oz)D explicitly, by using the TTB method, we find it convenient to invert (3.13) as

(ma
l
(OF)D(z)

l
bn)= Q P Q P(Zmq)aa (Npk')a .a (z)((zka'

l
OF l

O', I z»(Ntq )b.b (z)(Z,„')b-.b .
ka' pa" lb' qb"

(3.14)

(3.15)

If the rhs of (3.15) is rewritten as a sum of irreducible tensors, the TTB method immediately gives rise to the explicit
form of (OF)D.

Note that Z and N appear now in (3.15) in the combinations of ZN ' and N 'Z ' We ma.y work out the combina-
tion ZN ' first, which results in the following expression:

(3) () ) W(s)g(Z m) aa(Ntk ), , (z)=&a.,a&mk+ &k k 1) k 2 k[a') m[a) a) a~(a2a' a(a3 km —2

pa"

+ k[a') m[a) a ~ a a a a a km+~
y —1 l (]) (3) (s)

v'm(m —1) m —2
(3.16)

The combination N 'Z ' can be evaluated in a similarly straightforward manner. By using these results, it is easy to
prove that Eq. (3.15) is satisfied for OF ——1 [and thus (OF)t) ——1] provided, once again, that x+y =2. Note that this sim-
ple test case was used for the choice of Z over other possible normlike matrices in the definition of the two Usui opera-
tors in (3.11). Any other choice fails the above test.

We now set OF B, in the rhs ——of (3.15), and evaluate the fermion matrix element to obtain

(m;a 1(Be)D(z)
l

b n) = +'(m +1)bae;b5n, m+)

1 1 (2) ()) (s)
~m[a) ~n[b) [2Wb&,.e )a2 a(y+1)Wb), e &a, la~a2, b('5nm —),

2 —(x + 1) (3) (e)

n (n —1)(n —2) ~n [b) We;b&b2b3 ~b;a bn, m+3 .
2 3 3~a (3.17)

The validity of the choice of (3.11), using Z and Z, reveals itself also in the fact that no unlinked terms are present
in (3.17). With any other choice we found that the unlinked terms could not be totally eliminated in the resulting expres-
sion corresponding to (3.17). [This is, of course, intimately connected with the fact mentioned below Eq. (3.16).]

We can now apply the TTB method to (3.17) and find that
r '—'+"W(. ' ~~~ .e;fgh f g h

(B, )D
——3,; (TD case)

exactly, the result of (3.18) is rather lengthy.
We next set OF B, in (3.15), and find——that

(B, )D(z) =3,— Wb. efg
— Wb. ,fz AfAsAb—

3' + & (s)

Unlike the case of the Tamm-Dancoff based BET (of the Dyson form), in which we had'

(3.18)

(3.19)
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(m;a I(B, )D(z) I
b;n)= &(n+1) b, b, —

1
~~I&) ~&(b) Y (a2, b(e~g3,.$2 ~n, m —1

1 1 ()) (2) (~)~~(g) ~g(b )[2~a(,eb')b2 (y ) ~a(,eb)b2 l~g),.b2~n, m+1

2—(x —1) (3) (s)
v'm (m —1)(m —2)

~m(a) II e;a a2a3~g;b~n, m —3
1 2 3 3~

(3.20)

Applying the TTB method again, we obtain

(B, )D(z) =A, Yfz.—ehAfAzAh — Wf ezh—
() t 2 —(x —1) () t t

~f;egh ~f~g~h
3~

~e;fgh~ f~g~h (3.21)

To complete the bosonization we must still consider the
scattering operator. The algebra is the same as in the Her-
mitian case, since up to the order we work, we can set
N=Z=b, in the matrix element of C . The resulting ex-
pansion obviously coincides with that of (3.10) for the
Hermitian case:

(3.22)

As in the Hermitian case, it is now straightforward to
verify that the expansions of (3.18), (3.21), and (3.22) satis-
fy all the fermion commutation relations (2.3). As we see,
the expansions obtained in the non-Hermitian case are
more complicated than we have expected. We shall com-
ment further on this at the end of Sec. III C.

I

Since our BET has been constructed in such a way that
the fermion calculations are copied faithfully by the boson
form of the theory, the above z dependence of the boson-
ized operators should be only apparent; i.e., any choice of
z (so long as the condition x+y =2 is fulfilled) ought to
result in the same numerical results for any physical quan-

tity. Although the above argument should be sufficiently
convincing, we feel it, nevertheless, desirable to formalize
it, and this is what we intend to do now.

Let us consider two choices of z; z=z& (x=x( and

y =y)) and z=z2 (x =x2 and y=y2). The fermion states
(2.28), for each of the above choices of z, form an ortho-
normal complete set (in our truncated space), and the two
sets can be transformed from one into the other through a
unitary transformation. With obvious notation, this
transformation is written as

C. Equivalence of all the z representations
and the ensuing simplifications

of the boson expansions

I
a, m;z) )= g s, .„b(z),z2)

I
b, n;z2 ),

n, b

the element of the unitary matrix S being given as

(3.23)

As we saw in Secs. III A and III B, the boson images of
the 8, and 8, operators are z dependent. On the other
hand, we have remarked at the end of Sec. II that the fer-
mion theories with different choices of z are all equivalent.

S,.„b(z),zz) = &z2 ,n, b
I
a,'m;z) ) . (3.24)

The unitary equivalence of the two representations is
embodied in the following equality:

&z) m a IHF Ia' m'z) ) g g S; b(z) z2)&z2'n» IHF
I

b' n';z2)S„b. , (z2,z)) .
n, b n', b'

(3.25)

For clarity we have considered in (3.25) the case in which O~ HF, the Hamiltonian——, although any OF could have been
used.

In discussing the boson correspondence of (3.25), we shall take, for concreteness, the Hermitian case of Sec. IIIA.
Since the basic equality (3.1) is satisfied for both z=z) and z=z2, we can replace (3.25) by

(m a IHa(z)) I

a' m')= g g S~',.b(z) z2)(n b IHa(z2) Ib' n')S„, , .(z„z, )

n, b n', b'
(3.26)

[by writing Hz for (Hz)z for simplicity].
We wrote (3.25) and (3.26) very explicitly in parallel, in

order to emphasize the similarity and the difference in the
two equalities. The similarity is evident. The difference
is that, in the fermion matrix element, the z dependence
originates from the fermion states, whereas the boson ma-
trix element depends on z through the boson operators.
That the fermion and boson matrix elements differ in this

way is very natural. We have no freedom to modify the
fermion operator in any arbitrary way. Similarly, the
(ideal) boson states are unique; there is again no freedom
to choose them arbitrarily. Therefore, in the bosonization
the z dependence is transferred from the states to the
operators.

In spite of the difference we have just described, the
way the z independence of the final physical results is
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e )D Ae Yfg;ehAf gAh ~f;eghAfAgAh

(s)—
3 ~e;fgh~f~g~h,

(Be )D Ae ( +f;egh +f;egh )A fAgAh
(s)

(3.28a)

(3.28b)

The expansions in (3.28) are not much simpler than the
original ones given in (3.18) and (3.21). Furthermore, they
are by no means simpler that the Hermitian expansion of
(3.27).

Dyson's BET has been considered very powerful, be-

guaranteed via the presence of the unitary operator S, is
the same in the fermion and boson descriptions. In other
words, we can thus be assured that we may choose any z
we like in the bosonized operators.

We now intend to take advantage of the equivalence of
all the z representations and simplify the expansions we
obtained in the preceding subsections. In the Hermitian
case, by looking at (B, )g given in (3.8), we immediately
see that the most desirable choice of z is that x =2 and

y =0. The expansion then takes the form

(B, )D =A, ——,
'

Yjg ~ ehAfAgAh Wf.eghAfAgAh, (3.27)

which is rather simple.
The matter is not so clear-cut in the non-Hermitian

case, and it appears that the best we can do is to choose
x =y = 1, obtaining

cause it gives rise to finite expansions for the pair opera-
tors Ione term for (B,)D and (Cz)D and two terms for
(B, )D], without employing any perturbative argument,
offsetting the complications that come from the non-
Hermiticity of the theory. In the RPA case the situation
is quite different. Let us stress here a few aspects which
characterize the non-Hermitian expansion we obtained: (i)

the terms 5 Y, and P't' ' in the expansion which contri-
bute to the diagonal matrix elements are exact, whereas
the off-diagonal terms 8' and Q'& ' have been obtained
perturbatively; (ii) unlike the TD case, the non-Hermitian
expansions are not finite; and (iii) in particular the annihi-
lation operator loses the one-term nature of the TD case.
Because of aspects (ii) and (iii), the appealing features of
the Dyson-type expansion, namely exactness and finite-
ness, are all but lost, once one switches to the RPA repre-
sentation.

D. Comments on the approximation of Eq. (2.13)

Throughout the paper, we have used the approximation
(2.13), i.e., we have set (0

I Cz I0) =0 in evaluating the
various matrix elements. Actually, we can evaluate (in a
perturbative manner) (0

I C~ I
0), and show that the use of

(2.13) is consistent with our perturbative treatment of the
other quantities.

The RPA vacuum may be written as'

jlj2J 1j2 AP

(3.29)

where No is the normalization constant, and BCS) is the
BCS vacuum. Furthermore, the expansion coefficients
V'. .', , are implicitly given through the equation

JlJ2eJ l J2

g(0) ~ y(A) I (a)

JlJ2

(3.30)

showing that V'. .', , =O(Q'&').
JlJ2 JlJ2

From (3.29) we thus see that

(0I c,'I 0)=o(v')=o(Q') .

which can be solved perturbatively. To the first order, the
solution is given as'

(3.31)

1 ( & ) ( 1 ) (JJoo- )
ma;nb ~m(a) ~n(b) ~a b g ~a b j~mn

J

(3.33)

where P was defined in Eq. (2.9). As we see,
O(C) =O(PQ ) i e., I Cm, ,b„ I

«
I

W I, and thus C, .b„
can be neglected consistently in our theory.

It is nevertheless interesting to see how the results of
Sec. III would have been modified, had we retained

nJ &0. We find that, e.g., in the Hermitian case (with

x =2,y =0), the new expansions can be written as

(Cj&j2kp)B nj&~j ~j2~ko~qo+Pb a AeAf(p+)

For later convenience we shall write (0
I Cz I

0) as

&0
I cj,j,kq I

0& =nj, ~j„,40~qo ', tTj, —-o(Q') (3.32)

and

(The quantity Itj is a constant proportional to the averageJl
number of quasiparticles in the orbit j&

——jz.) Throughout
the present paper, we have been setting trj =0. If (3.32) is
taken into account, however, a new term, which we shall
denote by C, .„b, appears in the overlap matrix element
((m;a

I
b;n)). This additional contribution can be writ-

ten as

2V5

t
2 +fg;eh~f~g~h ~f;egh~ f~g~h (3.35)

As we see from (3.34), a constant term O(Q ) appears in

(Cz)D for k =0. This does not concern us in the present
paper, since we have considered the case with A, =2 only.
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Oll tllc otlMI hand, lt ls wort1lwllllc to Ilotc ill (3.35) t1lat
thc 1cRdlng A term 118s been modlflcd. Tllls I'cpl'cscnts 8
qualitatively new feature of the BET in the RPA represen-
tation, as opposed to that in the TD representation, where
no correction to the leading term could possibly emerge by
going to higher orders.

In the present paper, we have described a method for
constructing directly an RPA-based BET. As explained in
the Introduction, this has been a long standing problem,
and in order to simplify our task in the first attempt to
solve 1t, wc have limited ou1sclvcs to t4c ca,sc 1Q F1.ch
only one kind of collective RPA mode was retained. This
truncation of the RPA space permits us to treat the whole
problem perturbatively, and we have taken full advantage
of it. Note, nevertheless, that the above truncation is not
too restrictive from a practical point of view. Many suc-
cessful fits to data ' we reported earher were achieved
within the same limitation.

Technically, we used the Usui operator6 together with
the TTB method. ' Their combined use made the formal-
ism very compact and transparent. Still the problem itself
was nontrivial (even under the above truncation), and thus
we had to go through fairly lengthy algebra. It is then
very pleasing to find that the final results obtained for the
boson expansions, given in (3.10), (3.27), and (3.28), for the
basic fermion operators, are very simple. This means that,
e.g., the bosonized Hamiltonian can be obtained in a quite
simple form.

As rclllal'kcd also lll tlM Introduction, our pl evious
works ' were based on an indirect construction of the
RPA-based BET, which was done in KT-2. It not only
required a lengthy formulation, but also resulted in 8 com-
plicated Hamiltonian. As discussed in KT-3, one of the
(realistic) calculations, which we plan to perform in the
near future, by going beyond what we have done before,
is a calculation in which the coupling between the collec-
tive and noncollective modes is taken into account. The
complicated expressions of KT-2, which we had to deal
with, were rather discouraging in attempting such an ex-
tension of the formalism. With the much simpler expres-
sions of the present paper, however, this task appears
feasible, and we are in fact preparing for such further
wol k.

At this point, we may explain why we gave up in KT-2
the direct construction of the RPA-based BET. As
remarked above, we used there the commutator Inethod.
(See Ref. 20 for our significantly improved understanding
of the commutator method. ) This method worked
without any trouble in the TDA case. %hen the same
method was used in the RPA case, however, we found
that the number of the unknown expansion coefficients
exceeded by oIlc thc number of cquatlons foI' them. From
what wc have found 1Il thc plcscIlt work~ this cRQ bc cc1-
tainly understood as the onset of the indeterminateness of
thc cxpans1on duc to thc unflxcd parameter z. %c now
u~ders~and the meaning and the role of z, and even know
how to take advantage of this indeterminateness. At the
time we were working on KT-2, however, we were totally

unaware of this feature, and thus gave up the whole pro-
ject.

We shall now discuss very briefly the work of Almoney
and Horse. They also used the commutator method, and
obtained (81IIlost by lllspcctloll) tllc lcsul't for (Cp)g 't118t

agrees with what we gave in (3.10). For (8, )ll, however,
they were satisfied with having the lowest order expansion
in (3.27), i.e., they set (8, )Il ——A, . In the terminology of
KT-1, their theory is thus a third order theory; the highest
order terms in the Hamiltonian contain at most three bo-
son opclatoI's. To have such a,n odd order theory ls
known to be dangerous, however, because, at least concep-
tually, it leads to a collapsed shape of deformation, a trou-
ble that an even order theory can easily avoid. z' lf this
point of view is taken seriously, then the theory must be
extended at least to the fourth order. This means that the
rest of the terms in (3.27) are needed. As we have ex-
plained above, to derive these terms in the commutator
method could have been very difficult.

Having obtained thc Hcrmitian cxpanslons glvcn In
(3.10) and (3.27), we can construct the fourth order BET
HRlIllltolllall, by uslllg tllc tcclllllqllc developed ill Scc. 4
of KT-1. By going one step further in the expansions in
(3.10) and (3.27), we can construct the sixth order Hamil-
tonian. Since we expect to meet the need for such 8
higher order BET, under certain circumstances, we are
also working on this.

In closing the present paper, we shall address ourselves
to some rather general aspects of the BET as a whole. It
concerns the question on why bosons are introduced in the
first place. This question has been asked repeatedly in the
past, but we feel that it has become now much easier to
answer, thanks to the introduction of the TTB method.
As shown above, the TTB method makes the bosonization
procedure almost trivial, once the fermion part of the for-
malism is completed. It also makes the relation between
the fermion and boson descriptions very clear. However,
the fact that the fermion part of the formulation has been
completed means that we have already concI'ete forms for
the fermion matrix elements. It is thus very natural to ask
why these results are not then simply used directly for nu-
merical calculations.

There alc scvcI'81 I'casons that make the usc of 8 boson
representation advantageous. Consider, e.g. , using the ex-
pansion of (3.10) and (3.27) in the 8 C and 8 8 terms in
tlM orlglllal fcrmlon HRIIllltolllall. Onc cRslly secs that t1lc
anharmonic terms like A AtA and AtA AA emerge along
with the harmonic A A term, in the boson Hamiltonian,
allowing us to visualize the onset of the (kinematic) anhar-
monicity very clearly. In the fernuon form, on the other
hand, we have to trace the corresponding anharmonicity
effects in the individual matrix elements, one by one,
which makes it rather hard to get an overall view of these
effects.

The use of the boson form also makes the calculations
sllllplcl'. Ill fact, c.g., once tllc bosoll Ham11tonlan 118s

been obtained, we can use the ideal boson states as basis
states, and readily carry out the calculation of the matrix
clclllcllts. Note 'that t1lc boson cxpRllslolls lll (3.10) alld
(3.27) were obtained in the so-called M representation.
However, the transformation of the Hamiltonian in the
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boson form from the M to the I representation can be car-
ried out in a straightforward manner. ' This means that
we can use the boson basis states in the I representation as
well. To perform the corresponding calculation in the fer-
mion form is rather cumbersome, if not impossible, when
one includes many-phonon states.
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APPENDIX A

In this appendix we shall present a few intermediate
steps of the algebra needed to derive (2.14). By using (2.3),
it is straightforward to find that

((m, a
~

b, n)) = W'„'('b) 5, , b ~ ~ ((m —l, a&
~

b„n —1))—~'„('b) gp~& „~p~&+' ((m 1 a,
~

b g „1))
g~P

(Al)

In (Al), W„(b) is an operator that symmetrizes the operand with respect to the set of n indices Ib j. Thus take,
(k)

e.g., the symmetrizer P'„('b) in the first term of the rhs of (Al). It produces a sum of n terms, the ith term being equal
to

5, , b((m —I, ;a~
~
b&b2 . b; ~b;+, b„;n —1)) .

It is important that in

I
bib2 bi —lbi+I bn n

the ordering of the operators

Bb
)

Bb Bb
) Bb„

is kept fixed; otherwise error occurs. This is because of
the noncommutativity of the Bf operators, as seen in
(2.3d). [Note that the symmetrizers select all the ap-
propriate combinations of indices, without, however,
changing their original ordering. Thus, e.g., if we have
the set a; J with i =1,2, . . . , m (in that order), the opera-
tor P'~3(, ! would select all the combinations (a;aja~) with
i &j&k. It will be seen that this fact is crucial for some
kinds of terms, e.g., those that appear in Eq. (2.15) of the
text.]

In general, A'„"('b) gives rise to a sum of „Cb terms,
where „Cb is a binomial coefficient. We also understand
that P'„"' =0 if k & n and that P'„'"' =1. The notation
P-'~+' used in the second term of (Al) signifies that the

creation operator Bb in the matrix element that follows it
2

has been replaced by B~. The notation Qb sIb ~
in the

I

(o [B.B.,c,'[ o) =Q'.~+', (A2a)

where we have used (2.13). Since the last term of (Al)
contains a factor P'~ ' already, we need, for a general m,
to evaluate the remaining part of the matrix element only
up to the same order of (A2a). A direct calculation for
this part then gives

I

third term of (Al) signifies that the creation operator Bb
2

has now been replaced by the annihilation operator Bg.
Because of the presence of the symmetrizer, the Bz opera-
tor replaces each of the Bb operators one by one, starting

1

with Bb . This is why we were unable to write this matrix2'

element in the form of an overlap integral, as we did for
the first two terms.

We note that the second and third terms in the rhs of
(Al) are, respectively, O(P'~ 'P' +') and O(P'& 'Q'I'+')
and are thus small (for the collective RPA component).
Since we are satisfied with obtaining all the quantities to
these orders, we can treat the RPA operators, that still
remain in the matrix elements in these two terms, in the
zeroth order, i.e., treat them as bosons. As for the last
term in (Al), we first note that (for m =2)

(O~ (B. ) -'(Bb-' )"-'C,'~O) = A"', (. ) Q.'-'+'(0~ (B. ) -'(Bb-', )"-' lO) =(m —3)!P'",(. )
Q'.".'&. ;&,„+,

(A2b)

valid up to the term O(Q'~+'). In Eq. (2.15b) we have introduced the notation 5 to mean a normalized product of
Kronecker deltas. Thus
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~a)b) [ia(b(

and so forth.
With the above remarks in mind, Eq. (Al) can be rewritten as

«m, a
~
b, n)) = ~n[b) &a, b, ((m —l,a)

~

b(;n —1))—
1

~m ([a !~n[b) Ya(a2 b)b2~a b2f')n m

2(n —3)! (3) 2(m —3)! ()) (2)~n[b! ~a& ,b)b&b'3~a), b3~n, m+2
) )

~n[b) ~~ )[a)!~ b,)a& a2a~3a3b ~)n, m—2.

(A3)

In writing (A3) we have introduced the new quantities
Y and 8' which are defined in (2.15a) of the text. The
symmetry properties of Y and 8' are given in (2.15b) and
(15c).

Equation (A3) can be considered as a recurrence rela-
tion for the norm matrix ((m, a

~

b, n)) in terms of
((m —l, a)

~
b), n —1)). We may now apply this re-

currence relation n —1 or m —1 times, whichever is small-
er, each time obtaining additional contributions to the last
three terms on the rhs of (A3). All the various contribu-
tions can be combined together and written in a compact
form by using the appropriate symmetrizers. Summing
up all the contributions, for the overlap matrix we obtain
the expression given in (2.14).

APPPENDIX 8

Here we shall prove the equality of (2.15d), i.e.,

(p —) (p+ )
(+f;e'eg +f;ee'g) X~ e', e I'g,f

p

(B1)

as well as the symmetry properties of Yef.gb of Eq.
(2.15b). Let us begin with (Bl). By taking advantage of
the symmetry (2.15c) of 8; and using Eqs. (2A), (2.6), and
(2.9), we may rewrite the lhs of (Bl) (keeping in mind that
A. =2 and p = Ij,j~kq]) as

p p

= g [ (AP fop, ~
kq)(APgkP,

~
kq) —(AP flp,

~
kq)(APgAP,

~
kq)

p

+(ApfAp,
~
kq)(Ap, kpg ~

kq) —(Apfkp,
~
kq)(Ap, Apg

~
kq)]

X A, g (g, gq ~ p~~ pq f )pf—j et)J. f W(j 2j) A A,;kj') 8 (j zj) ki,;kj')DJJ D~~, Df J.,Df j) .
JJ

(B2)

Each of the four terms in the square bracket in (B2) is a product of two Clebsch-Gordan (CG) coefficients. By perform-
ing the summation over q, each of the four terms can be transformed into a product of a Racah coefficient and two CG
coefficients, one of the latter containing p, and pb and the other p, and p, . If the summation over k is further carried
out, we see that the contributions from the third and the fourth terms in the square bracket cancel out, whereas those
from the first and second terms can be combined to give

2(8gj., g Wf. 'g)= g(APfkpg ~
kq)(XP, APe

~
kq)

4

X&g[f ,f, +(—) P ,P,"]Q',P '[1—"( —) ]8'(j~,A,g;kj)
JJ

X W(j 2j ) AA;kJ')D D, D . D", . ".
p p p

which proves (Bl).
To prove (2.15b), it is convenient to rewrite Y,f bas. (B3)
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(p —) (p+)
Yef;gh =

2 ~~e, g ~g,f
P

X8'(j2j, kA, ;kj)W(j&jtAA, ;kj')DJJ DJJ DJ J DJ J. (B4)

By performing on (B4) the same kind of angular momentum algebra described above for (B2), we can easily see that the
symmetry relations (2.15b) do indeed hold.
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In a third order theory, the potential energy term may be writ-
ten as

V(P) =c2P'+ c3P'cos( 3y );
see, e.g., Sec. 6 of KT-2 for its derivation and for the explana-
tion of the notation. One sees that V(P)~ —oo as f3~ co, if
c3 (0 and y =0 . This is a needlelike collapse of the nuclear
shape. Similarly, a flat disklike collapse occurs if c»0 and

y =60. In the fourth order theory, on the other hand, an ad-
ditional term, c4P', appears in V(P), which prevents the onset
of the above collapse, so long as cq &0. Note that our micro-
scopic calculations in Refs. 2, 7, and 8 always predicted c& & 0.


