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Momentum-space wave function equations are derived for the three-body system of one neutral
and two charged particles where the separable interaction is spin and charge independent. The
three-body wave function is decomposed so that the equations for the "pure" nuclear components
contain the two-nucleon t matrix, as usual, but the equation for the additional Coulomb component
is formulated in terms of the Coulomb potential rather than introducing the Coulomb t matrix. The
relationship of these equations to the scattering-amplitude equation of Veselova, in which the
Coulomb t matrix appears explicitly, as applied to the same problem by Kok et a/. , is given. After
partial-wave decomposition, the wave function equations are solved numerically with partial waves

through l =4 retained. The logarithmic singularity that appears when the Coulomb potential is ex-

pressed in momentum space is handled for each / by a subtraction technique originated by Lande.
Because of the symmetry of the problem, only even values of / arise throughout and only the /=0
and /=2 partial-wave contributions are required to predict the binding energy (and wave-function

components) to four significant figures. An order a (fine-structure constant) approximation (i.e.,
decoupling the Coulomb wave function component from itself) is made to check its validity. It is

shown that this O(a) approximation is equivalent to replacing the Coulomb t matrix by the
Coulomb potential in the Veselova equations. The wave functions without Coulomb effects and

with Coulomb effects [exact and 0 (a)t are used to calculate the expectation value of the Coulomb

operator to examine perturbation theory, cross check the numerical results, and to clarify the phys-

ics. We conclude that the Coulomb interaction can be incorporated easily into momentum-space

three-nucleon, bound-state calculations.

I. INTRODUCTION

Nuclear three-body problems in which two of the parti-
cles are charged are basic to our understanding of nuclear
structure and nuclear reactions. Two examples of current
interest are the neutron-two-proton (npp) and neutron-
proton-alpha-particle systems (npa with the a treated as
an elementary particle). To fully understand the structure
of He and Li, p-deuteron (p-d) scattering, and d-a
scattering, the Coulomb interaction must be incorporated.
Inclusion of the Coulomb interaction in a nuclear three-
body problem is considered difficult even when only two
of the particles are charged. ' The difficulty arises, of
course, due to the long-range nature of the Coulomb in-
teraction. Progress is being made in the sense that calcu-
lational techniques are being developed and used. For ex-
ample, modifications of the three-body scattering equa-
tions in momentum space have been worked out by
Veselova, and by Alt, Sandhas, and Ziegelmann; these
have been used to carry out p-d scattering calculations. '

More recently, threshold p-d scattering calculations have
been performed in configuration space. In fact,
configuration-space calculations appear to be the preferred

method for treating bound states when the Coulomb in-
teraction is included. However, besides the work
described herein, only one other exact (numerically)
momentum-space, bound-state, three-body calculation
with two charged particles has been performed.

Why is there a paucity of work on the momentum-
space, bound-state, three-body problem with two charged
particles~ We surmise that the main reasons concern the
worry of dealing with the logarithmic singularity that
arises in the kernels of the equations due to the long-range
nature of the Coulomb interaction and of working with
the fully off-shell Coulomb t matrix. These are unneces-
sary concerns. The problem can be formulated without
introducing the Coulomb t matrix —but only using the
Coulomb potential in momentum space. Furthermore, the
logarithmic singularity from the momentum-space
Coulomb potential can be handled by the method of
Lande as reported by Kwon and Tabakin. The purpose
of the present article is to describe work that illustrates
the latter points as applied to the problem of three spin-
less, equal-mass nucleons, two of which are charged, and
for which the nuclear interaction of any pair is represent-
ed by a one-term, attractive, s-wave, separable potential.
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The aim is to simulate the He system, using sets of separ-
able potential parameters which approximate an average
of the two-nucleon s-wave triplet and singlet interactions.

Our work complements that of Kok, van Haeringen,
and their collaborators. Kok et aI. Use the homogeneous
version of Veselova's system of integral equations. '
Veselova's equations with the inhomogeneous terms
present and the energy set equal to scattering values yield
the amplitudes for charged-particle —correlated pair (one
of which is charged) scattering. ' Kok et a/. make a
thorough investigation of the nature of the kernels (driv-
ing terms) in Veselova's equations. The Coulomb t matrix
appears linearly in some of the kernels; thus, an exact
solution of these equations necessitates dealing with the
fully off-shell Coulomb t matrix. For a bound-state prob-
lem it is the off-shell Coulomb r matrix at negative ener-

gies that appears. Nevertheless, after the bound-state
equations have been partial-wave pro~ected, they are equa-
tions in a single variable. This is in contrast to our ap-
proach where the problem is formulated in terms of the
bound-state wave function components and does not in-
volve the Coulomb t matrix, but only the Coulomb poten-
tial. However, the partial-wave projected form of our
equat1ons leads to two-variable miegral equat1ons. Re-
gardless, these equations are easily solved numerically and
permit direct construction of the bound-state wave func-
tion. These aspects and other comparisons of the two
methods are examined thoroughly below.

The structure of our presentation is as follows. Section
II of the paper contains our formulation of the problem,
while in Sec. III we relate our formulation to that of Kok
et al. The method of handling the logarithmic singularity
in the Coulomb kernel of our equations is presented in
Sec. IV. In Sec. V we give the numerical results, followed
by a discussion in Sec. VI. Section VII contains our con-
clusion. Finally, an Appendix lists the formulas we used
in calculating the wave function normalization and expec-
tation value of the Coulomb operator.

II. DERIVATION OF EQUATIONS

The goal of our formulation of the momentum-space,
bouIl«I-state, tilI'cc-paftlclc cqURtlons with Coulomb 1n-
teraction between one pair is to obtain both the energy
eigenvalue and the wave function. A momentum-space
formulation of the problem is most useful when the nu-
clear interactions are of separable form, because the prob-
lem without thc CouloI11b 1ntcI'actloIl leads to coUplcd 1n-
tcgI'al cquatlons 1n R s1Ilglc var1ablc. IIl add1tlon~ 111ost of
the "realistic" local-potential calculations for H have
been done in momentum space. " Thus, the question
arises as to what is a straightforward method for includ-
ing the Coulomb interaction between a pair of particles in
a momentum-space formulation. We suggest a method
that is independent of the form of the nuclear interaction.
Without loss of generality, we illustrate it for the special
case of three spinless, equal-mass nucleons, two of which
are charge«I, and with all pairs interacting through an at-
tractive, s-wave, separable potential. VA'th this simple
model we can explore how Coulomb effects modify the
momentum-space wave function in addition to shifting
the eigenvalue. Also, we can check the validity of possible

H%'=E%, (E (0), (2)

can bc bIokcn down according to thc standard FRd«iccv
decomposition:

Thus we get

(Ho E)g =——V ttj, (a=1 or 2)

(Ho E)$3 ——( V3+——V3 )4 .

We break Eq. (5) into two equations by writing
f3 g3+ri, ——where f3 represents a "Coulomb-modified"
g3, and g is the "pure" Coulomb component:

(Ho —E)$3———V34

(Ho —E)g= —V3 4 .
Equations (4) and (6) are next expressed in terms of the
nuclear t matrix, T (E), and the free-particle resolvent,

Go(E) =« —Ho) ' .

The Coulomb r matrix is not introduced in Eq. (7). Hence,
our final set of equations is

f =Go(E)&,(E)(gp+Q3+ri),

'6 =Go(E)&3(E)(gi+f2+ r) )

a=Go«)V3(Pi+6, +A+a) .

Equations (8)—(10) are the coupled equations that we
solve in momentum space and are the central focus of this
papcl.

Let us look at these equations for the example men-
tioned in the first paragraph of this section. The nuclear t
matr1x 1s

~ (E)= ~g ) (E)(g

1+ (g ~Go(E)~g ), (12)
2p 2p

p is the two-nucleon reduced mass (2@=M), A, is the
strength of the interaction,

g(k)=(k ig)=(k~+P )

and P is the inverse range parameter. This leads us to
choose

approxiIllations.
Consider the three-body Hamiltonian

a=a, +v, +v, +v, +V3,
where Ho is the free-particle Hamiito»an, V~ represents
the nuclear potential between particles Py (a&P&y&&),
and Vq is the Coulomb potential between charged parti-
cles 1 and 2. Schrodinger's equation,



1452 LEHMAN, ESKANDARIAN, GIBSON, AND MAXIMON

and

IQ )=%Go(E)Ig )Ia ),
I
A&=lvGo«) Ig3& Ib3),

I q & =+Go(E)
I q &,

where X is the wave-function normalization constant

((+
I
+)= 1) and E =——K /M. In the momentum repre-

sentation,
I
a ) and

I
b3) are the spectator functions.

With k the relative momentum between particles 1 and 2
and p, the relative momentum between 3 and the center of
mass of particles 1 and 2, we can express all other permu-

tations in terms of k and p. Accordingly, the equations
to be solved in momentum space are

D(p, E )a(p)=4rrA, f k dk I(p, k;E )[a(k)+b(k)]+ g (2l+1)JP(p, k;IC )0
1

(even)

D(p, K')b(p)=4nl, f k'dk 2I(p, k;K')a(k)+, go(kp)0 k + ,'p +E—

- „g( I 2 "'+ —'. p I
)a(

I

" ' —
~ p I

)

q&(k,p)= — f d k'u&(k, k' ) 2P~(k '
p )

4m. k'+4p +E

(16)

(17)

g(k )b(p)
k'2+ —p2+Q k + 4p +E

(18)

where

D(p ~')= I —~ f d'k
k2+ 4p2+E2

k +p +k-p+E

b (p) =a (p).
After modifying Eq. (21) to handle the logarithmic

singularity (see Sec. IV below), we solve Eqs. (16)—(18) nu-
merically, both as they stand and in order-a [O(a)] ap-
proximation. In the O(a) approximation gt is decoupled
from itself, i.e., instead of Eq. (10) [or Eq. (18)],we have

n—=Go«) I'3 (0i+42+A) . (25)

JP(p, k, K )

Ptb)g( I
k+ —,'0

I )ni(
I 2 k+p

I
k)

k +p +k p+E

(20)

(21)

[This is equivalent to dropping the g~ term from the
right-hand side of Eq. (18)]. Within our framework, this
is equivalent to replacing the Coulomb t matrix by V3 as
can be seen by writing Eq. (10) as

x =k.p, (22a) rl =Go(E) I'3 (E)(Q)+f2+ Q3) (10')

y=( —,'k+px)/I —,
' k+p

I

g(k, p )= Q (2l+1)Pt(x)rlt(k, p),
l

(even)

(22b)

(23)

Certainly, this is a natural approximation to make within
the context of our equations. We shall check its validity
through the eigenvalue and wave function.

R&I.ATIONSHIF TO EQUATIONS OF KOK et al.
k'+k'

u((k, k') =Q(( g)/m kk',
2kk' (24)

Pt(x) and Q~(x) are Legendre functions of the first and
second kind, respectively, and a in Eq. (18) is the fine
structure constant, equal to (137.04) ', so Ma=0.034696
fm . Only even l enters in the partial-wave projection
because the ground state is taken to have total angular
momentum zero with positive parity (i.e., symmetric
under exchange of particles 1 and 2). The ut(k, k') is the
partial-wave projection of the momentum-space form of
the Coulomb interaction (apart from a factor a) and it
contains a logarithmic singularity through Q~(g). Note
that if the Coulomb interaction is turned off, i.e., when
the fine structure constant a=0, then rl(k, p ):—0 and

IX+&=[Z. (E)+Z p(E)]r (E) IX )

+2Z, (E)r,(E)
I
X, )

IX3) —Z (E)l (E) IX+)
where

(26)

As mentioned in the introduction, Kok et al. use
Veselova's equations to calculate the exact solution of a
three-particle problem with Coulomb interaction in
momentum space. They use the same model of three spin-
less, equal-mass nucleons, two of which are charged, with
all pairs interacting through an attractive, s-wave separ-
able potential. For this problem, the symmetrized (be-
tween particles 1 and 2) form of-their equations is
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(E)= &g I
Gp(E)T3 (E)Gp(E)

I g

z~p(E)=&g~ I Go(E)+Go(E)T3(E)Gp(E) lgp&,

Z3 {E) &g3 I
Gp(E)

I g~ &

I g3 & [1+T3 {E)Gp(E)]
I g3 &

(29)

(30)

(31) and

G——p(E) T (E)(Pp+ g3 ) (35)

where V3 ——V3+V3. By inverting the operators on the
left-hand sides of the last two equations, we can express
the equations in terms of t m.atrices:

f3 =Gp(E) T3(E)(g +gp) (36)

r3(E) = — 1+ &g3 I
Gp(E)

2p 2p

+Gp(E)T3 (E)Gp(E)
I g3 & . (32)

In momentum space, these are equations in one variable in
which the Coulomb t matrix appears explicitly. How do
the equations for the wave function components, Eqs.
(8)—(10), relate to the equations of Kok et al.?
Equivalently, how are the X amplitudes related to the
wave function components?

To obtain the relationship, we return to Eqs. (4) and (5),
but this time g3 is not written as the sum of p3+rl. Con-
sequently, we have (a= 1 or 2, a&P)

where for the separable problem under consideration
T (E) is given by Eqs. (11) and (12), and

T3(E) T3 (E)+
I g3 &r3(E)&g3 (37)

where

+2&g, I G,(E)
I g. &r.(E)&g.

I
y3'&, (38)

In the momentum representation, Eqs. (35) and (36) are in
two variables, whereas Eqs. (26) and (27) are in one vari-
able. Clearly, an inner-product projection must be formed
with Eqs. (35) and (36) to extract one-variable equations.
We project from the left with &gp I

on Eq. (35) and sym-
metrize to attain

o — —
n Wa= — a(Wp+ A ) (33)

I Y~ &
= &gp I t.&+ &g.

I tp& (39)

(Hp —E—V3 )p3 = V3(f&+gp) (34)
Then we project from the left with &g~

I

on Eq. (34), sym-
metrize, and use the definitions in Eqs. (28)—(32) to derive

(E)ra«)(
I Yp. &+2&ga

I 43 &)+[z.p«) —&ga I
Go«)

I gp&]rp{E)(
I Ypa &+2&ga

I
4'&)

+2Z(z3(E)r3(E)Z3~(E)r~(E)(
I Yp~ &+2&g~ I p3 &),

where use has been made of

&g. I y,'& =&gp I y,'&,

(E)=Zpp(E),

Z3 (E)=Z3p(E) or Z 3(E)=Zp3(E),
(42)

(43)

r (E)=rp(E) . (44)

The terms in Eq. (40) with the factor —&g
I
Gp(E)

I gp& are equal to —
I

Y+p &
= —

I Y~~ & [see Eq. (38)]. Accordingly,
Eq. (40) can be written as

I Yp &+2&g I/3&=[Z~~(E)+Z p(E)]r (E)(
I

Yp+ &+2&g It/, &)

+2z~3(E)r3(E)[z3~(E)r~(E)(
I Yp~ & +2&g~

I 113 & )] {45)

The equations of Kok et al. , Eqs. (26) and (27), follow
directly from Eq. (45) with the definitions

Ix &—=
I Yp &+2&g. lf'& {46)

= &gp I y &+ &g
I yp&+2&g.

I q3 & (47)

I
X3 & =Z3 (EH (E)

I X+
The X amplitudes of Kok et al. are thus obtained from
our wave-function components by overlapping the com-

ponents with the form factor, &gp I, of the separable nu-
clear interaction.

The major approximation examined by Kok et aI. is the
replacement of T (E) by V . The motivation for doing
this derives primarily from the considerable simplification
in the numerical computation that results. In fact, before
the calculations of Kok et al. and the present work, re-
placing Tc(E) by V was the extent of previous at-
tempts. ' Since Kok et al. do not break p3 into the sum
of two terms, it is not obvious that their replacement of
T (E) by V is equivalent to our O(a) approximation.



%'e now deInonstrate that they are equivalent by starting
from Eq. (36)—the key equation underlying the formula-
tion of Kok et al.

Equation (36) can be written as

q;=G.(E)[T;(&)+T3(&)](g.+p~),
We introduce the porn (13) approximation, j.e., replace
T3 (&) by V everywhere in Eq. (36'):

Go«—) V3 (4 +4p)+Go«)[1+ V3GO«)] I g3 &r 3«)&g31[1+Go«)V'](4 +4p»

where

r3«)=&3@)[1—r3«)&g I
Go«)V3Go«)

I g &]
'

=r3«)[1+~3) &g I
Go«) V3GO«)

I g &+r3«) &g I
GO«) V3GO)T3«)Go«) V3'Go«)

I g &+ ]

We insert Eq. (52) into Eq. (50) to derive

tp3 [GOT3(1+GOV3+GOV3GOT3~GOV3GOT3GOV3 ~ ~ ~ )

+GOV3'(1+G, T, +G.T,G, V,'+G, T,G, V,'G, T; ~ . )](1(.~y~)

(52)

(53)

A=GOT3(1+GOV3+GOV3GOT3+ )(g +pp)

rI= GOV3 (1+GOT3+ GOT3GO V3 + ' )(g +gp)

We rewrite f3 and g in the following manner:

43=GOT3(4 +4p)+GOT3[GoV3(1+GOT3+GoT3GOV3+ ' ' )(4 +4p)]

GOV3 (4 +—Pp)+GOV3 [GoT3(1+GoV3+GOV3GoT3+ ' )(4 +4p)] . (58)

From Eqs. (57) and (58), it is clear that Eqs. (55) and (56)
are coupled as follows:

43=GoT3(W +4p+n)

IV. HANDLING THE LOGARITHMIC SINGULARITY
GF Ug(k, k' )

The integrand of Eq. (18) contains a logarithmic singu-
larity at k =k' due to UI(k, k' ):

Ug(k, k') -ln

(25')

Therefore, we see that the O(o;) approximation of the
present work is equivalent to the T3 —+V3 approximation
of Kok 8t QI.

where g=1 when k=k' [see Eq. (24)]. We treat this
singularity using the method introduced by Lande, as re-
ported by Kwon and Tabakln. The underlyIng point ls
that logarithmic singularities are integrable.

Let us write Eq. (18) as

rIi(k,p) = Mn I k' dk' vI(k, k')P—i(k',p), (59)

g ~Q+ 4p Q k —2p g p QI kgb
P, (k,p)= —,

' dx 2P~(x), +5m, +
k~~ —,'@2~A k2~ —,'p ~K k ~ ,p +K—

The method of Lande first involves rewriting Eq. (59) by adding and subtracting a «rm as fol»ws:

(60)
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k Pi(k,p) ~ ui(k, k')
r)i(k,p) = M—a i f dk'Ui(k, k') k'y, (k',p) —- +k'y, (k,p) dk'

Pi(g) 0 Pi
(61)

1 i. ~ dk'1 (+1
2~k ~o k

Ii(k)
k

where the integrand of Ii(k) has no singularities along the
path of integration:

and

-dk'%
k' Pi(g)

I

~l-i(k)= y, Pi —1(k»i —i (k)
I'=I

(65)

(66)

with 8' i
——0. Therefore, we can do the integrals analyti-

cally and write

Si(k) = 1 — Ii—2
2k

where

The first integral in Eq. (61) has an integrand that van-
ishes at k=k', since the quantity in the square brackets
goes to zero like (k —k') as k —+k'. The second integral in
Eq. (61) does possess the logarithmic singularity in its in-
tegrand, but we handle this integral analytically. Follow-
ing Kwon and Tabakin, we write

u, (k, k )
Si(k)= f dk' (62)

0 Pi

I
- dk' Qi(k)

~k "o k' Pi(g)
'

ed by Tabakin' and a set used by Kok et al. The values
of the parameters are given in Table I [note that
Mc2/(Pic)2=41. 5016 MeV ' fm ]. The binding energy
of the corresponding two-nucleon bound state is given
under Fz. At the two-body level, these interactions are
not markedly different.

First, we solve Eqs. (16)—(18) for the two parameter
sets when +=0, i.e., without Coulomb interaction. In that
case, Eqs. (16)—(18) reduce to a single equation:

D(P,K )a(P)=8m', f k dkI(P, k;IC )a(k) . (71)

We solve Eqs. (16)—(18) by iteration. The procedure is to
estimate a value of K; from initial estimates for the a (k),
b(k), and gi(k, p) we iterate until the iterates approach a
constant ratio, r If r e.quals one, then the proper value of
E has been obtained. The angular integrals in Eqs. (20),
(21), and (60) are done with Gaussian quadrature and all
infinite integrations by Gegenbauer quadratures. ' Be-
sides varying the number of points in the integration
grids, we also set tolerances for r(b, r) and the sum of the
absolute values of the a(p), b(P), and gi(k,P) at the grid
points (b,X). The results for a =0 are given in Table II

The results in Table II indicate that the fine structure
constant a=0 eigenvalue, E3, is given to four significant
figures for a grid combination of sixteen Gegenbauer
points and ten Gaussian points with tolerances hr=10
and EX=10 ". For such a grid, the wave-function nor-
malization constant, No, is determined to three significant
figures. %ith this wave function, we compute the expec-
tation value of the Coulomb operator:

Io ——0,
I2 ——v'3/2,

(68)

(69) F.~c= 0 &=0 4'c =0
~iz

(72)

v 7 6—V 10/3 6+v'10/3
24 (1—v'3/10)' (1+v'3/10)' 2

(we need only I =0, 2, and 4 in the present work). Clearly,
the problem of the logarithmic singularity has been elim-
inated.

V. RESULTS

In the solution of Eqs. (16)—(18), we consider two dif-
ferent interaction-parameter sets: a set originally generat-

TABLE I. Interaction parameters.

b,EO is determined to within +5 in the third significant
figure (or to better than 0.6%) on a 16—10 grid with
10 —10 tolerances.

Next, we solve Eqs. (16)—(18) for the case in which the
fine structure constant a&0. The results in Table III are
delineated according to the number of partial waves in-

cluded in the construction of g(k, p ). To a precision of
better than +5 in the fifth significant figure, the eigen-
value E3 is determined by including only the I =0 and 2

partial-wave projections of rl(k, p ). Likewise, the wave-
function normalization is stable to one part in 10 . In or-
der to determine the contribution to EEC from the
second-order perturbation theory, we evaluate the expecta-
tion value of the Coulomb operator with the full Coulomb
wave function, i.e.,

Source

Tabakin (Ref. 14)
Kok et al. (Ref. 7)

{fm ')

0.182
0.1540

(fm ')

1.15
1.082

(MeV)

0.413
0.4420

AE = % a~0 0~~0
7 12

(73)



Model

TabaklIl

(MeV)

9.236 8
9.2370

0.99999940
1.000 00000

Grids
Gegenbauer Gaussian

Tolerances
hr

0.3200
0.321 8

8.802 0
8.809 2
8.8092
8.8101

1.000 7
0.999999 82
0.99999982
1.000000 95

10
10
10
10

10
10
10 '
10-'

10
10
10
10-'

0.30048
0.30046
0.30046
0,30046

0.895 6
0.895 4
0.8954
0.895 4

8.802 0
8.8102

8.80200
8.810 14

1.0007
0.99999994

1.0008
1.000 000 95

10
10-'

10
10-'

10
10-'

10—3

10-'

0.30048
0.30046

0.30229
0.30228

0.8824
0.882 2

8.791 22
8.80976

1.0007
1.000~00

10
10

0.302 38
0.30228

0.881 6
0.882 2

where a (p) arid b (p) alc dlffclcllt duc to tllc Colllomb In-

teraction, and contributions from I)(k, p ) are included as
well. Clearly, the value of AE is stable with respect to
additional partial-wave contributions from 1)( k, p ).
Overall, rncludcng only the I=0 and 2 partIal-wave com-

ponents of Il(k, p) is sufficient to determine Coulomb ef-
fects on E3, N, and b,Ec (equations for X and hE are
given in the Appendix).

Finally, we solve Eqs. (16)—(18) in O(a) approximation
tsee Eq. (25)]. The results are in Table IV. For either the
Tabakin or Kok et al. models, the eigenvalue E3' ' is
lalgcl tllall E3 by -0.024 MeV. This small shift indi-
cates the validity of the O(a) approximation f«»ystcm
like He. The error in the energy value compared to the
exact result is ~0.4%. The very small differences in X
and b,E between the exact and O(a) calculations indicate

t»t the wav«un«jon does not change appreciably.
W»t R«»lly happens to the wave function in the three

different cases7 Basically, except for the change in
& =M ~E3

~

in the energy denominator, a decrease of
the c»nges in the spectator functions are

minim» Rs can be seen in Table V. When the fine struc-
tlll'c collstallt a+0, tile symmetry between g (p) and b (p)
ls brokcll. In golllg to O (a) Rpproxllllatloll Q (p) remajns
essentially ullcllallgcd, while $ (p) changes sljghtly
changes ln b(p) are s111111R1 to tllosc for I)0(k,p) gjvcn jn
Table VI. One might expect a larger change in X from
No to X slllcc E3 shifts by 10%, but this is compensated
for by the presence of the 11(k,p) component in the wave
function. Il(k, p) is a negative function and as such leads
to destructive interference terms in the evaluation of N~,
since the Faddeev components are nonorthogonal.

Model
(partial waves

10cluded) (MeV)

TABLE III. Exact results with Coulomb present.

Grids
Gegenbauer Gaussian

Tabakin
((=0)
(I=0,2)
(1=0,2,4)

8.3290
8.325 3
8.3250

0.999999 5
0.9999992
1.0000000

10
10

10-'
10-'
10-'

0.33216
0.331 74
0.33168

0.901 77
0.901 95
0.901 97

Kok et a(.
(I=0) 7.929 1

7.9420
7.941 1

7.9473

1.000 000 9
1.000000 9
1.0000000
0.9999996

10—6

10-'
10-'
10-'

0.310 J.6
0.31205
0.31206
0.31239

0.87567
0.86278
0.86270
0.857 58

(I=0,2)
(I=0,2,4)

7.93790
7.937 70

1.000~9
1.0000000

0.31165
0.31160

0.862 93
0.86294



29 MOMENTUM-SPACE SOLUTION OF A BOUND-STATE NUCLEAR. . . 1457

Model
(partial waves

included)
[E
(MeV)

TABLE IV. Order o; results.

Grids
Gegenbauer Gaussian

Tolerances
Ar

&O(a)
(fm ')

~+O(a)
C

(MeV)

Tabakin
(l =0)
(l =0,2)
(l =0,2, 4)

8.3060
8.3020
8.301 5

0.999 999 8

0.999999 6
0.999999 5

16
16
16

10
10
10

10-'
10-'
10-'

10-'
10-4
10-4

0.332 42
0.331 99
0.331 94

0.901 36
0.901 538
0.901 536

Kok et al.
(l =0)
(l =0,2)
(l =0,2,4)

7.919 1

7.9168

7.915 1

1.000000 9
0.999 9992
1.000 000 0

16
16
16

10
10
10

10
10
10

10-4
10-4
10-4

0.312 31
0.31190
0.311 85

0.862 36
0.862 53
0.862 54

VI. DISCUSSION

Before discussing the physics associated with the re-
sults, we compare our calculations with those of Kok
et a/. As can be seen from Table VII the agreement is ex-
cellent within the accuracy of either calculation. This
serves as a check of both approaches because they are
markedly different in their formulation and method.
Furthermore, in addition to the analytical proof of
equivalence given above, it verifies numerically the
equivalence of the O(a) approximation of the present
work and the approximation of replacing T by V in the
work of Kok et al.

All the major results for the Tabakin and Kok et al.
models are given in Table VIII (16, 10 grids; 10, 10
tolerances). Scanning the table, it is clear that Coulomb
effects for the two models are similar. For example, the
expectation value of the Coulomb operator from the wave
function without Coulomb effects, b,EO, is —10% of the
non-Coulomb eigenvalue, E3. The exact eigenvalues, E3,

are -23 keV larger in absolute magnitude than the O(a)
eigenvalues, E3 ' '. Calculation of the Coulomb-operator
expectation value yields essentially the same result wheth-
er we use the exact or O(a) wave function. Moreover,
from perturbation theory (neglecting third order effects), '

we can estimate the second-order contribution to the
Coulomb energy, E' ', from

aE~~ =bz+ZE'" .

within the accuracy of the expectation-value calculations
(+5 keV), we obtain E' '= —(10+5) keV for both models
and a good estimate of the Coulomb energy through
second order follows: b,E, is approximately equal to
AE

What is the source of the difference between AE, and
b,E (or E3 and E3' ') that leads to b,E being -23 keV
larger than bE, '? Schematically, the equations for the
wave function components have the form [see Eqs.
(8)—(10)]

TABLE V. Spectator functions without and with Coulomb. (Parameters of Kok et al. , Ref. 7.)

p
(fm ')

o.=0
a(p) =&(p) a (p)

Exact (e&0, l =0,2)
b(p)

0.1959&( 10
0.5380~ 10-'
0.1059X 10'
0.1794

1.000 000 00
0.990217 27
0.958 971 56
0.887 544 45

1.000 000 00
0.989 493 79
0.956 045 27
0.880231 50

0.964077 77
0.954 439 16
0.923 681 44
0.853 564 50

0.2795
0.4142
0.5957
0.8428

0.1186~ 10'
0.1679
0.2414
0.3577

0.759 907 96
0.579 830 11
0.380 980 07
0.209 386 29

0.093 31024
0.032 343 70
0.008 236 23
0.001 414 85

0.746 884 88
0.563 062 91
0.365 352 09
0.198703 47

0.087 880 43
0.030 302 32
0.007 686 78
0.001 31624

0.728 889 47
0.554 241 84
0.362 888 75
0.198 862 20

0.088 422 89
0.030 594 21
0.007 777 46
0.001 333 72

0.5574
0.9441
0.1859~ 102

0.5104&&10'

0.000 142 65
0.000006 85
0.000 000 11
0.000000 00

0.000 132 33
0.000 006 34
0.000 000 11
0.000 000 00

0.000 13429
0.000 006 44
0.000 000 11
0.000 000 00
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TABLE VI. fop(k, p ) exact, and O(u), (l =0,2). (Parameters
of Kok et a/. , Ref. 7.)

k=0.1959X 10-'
(fm ')

Calculated
quantity
(Mev) Tabakin

TABLE VIII. Comparison of models.

Kok et al.
(fm ')

0.1959X 10
0.5380X 10-'
0.1059X 10'
0.1794

0.2795
0.4142
0.5957
0.8428

0.1186X 10'
0.1679
0.2414
0.3577

0.5574
0.9441
0.1859X 10'
0.5104X 10'

Exact

—0.1107
—0.1093
—0.1049
—0.949X 10-'

—0.7785
—0.5525
—0.3257
—0.1541

-0.5632X 10-'
—0.1511
—0.2802 X 10-'
-0.3333X 10-'

—0.2278 X 10-'
—0.6988 X 10
—0.1001X 10-'
—0.6681 X 10-"

—0.1156
—0.1141
—0.1094
—0.9883 X 10-'

—0.8075
—0.5700
—0.3339
—0.1570

-0.5704X 10-'
—0.1524
—0.2817X 10
—0.3344 X 10

—0.2282 X 10
0.6992X 10

—0.1001X 10-'
—0.6672 X 10-"

IE ''I

aZpC

hE, =E3 —E3

AE =E '' —E

gzc ~a E0{a)
(2) 3 3

z&') = —,
' (aE.'—sap')

AE, =AEp +E' '

0.413

9.2370

8.325 0

8.301 5

0.921 8

0.902 0

0.901 5

0.9120

0.935 5

—0.023 5

—0.009 9

0.9119

0.442 0

8.810 1

7.937 7

7.915 1

0.882 2

0.862 9

0.862 5

0.872 4

0.895 0

—0.022 6

—0.009 6

0.872 6

SO

(E3 H v)
I y) —VI g)

(E3 Hp V)
I

—rt ) =—V
I g),

«', —H, —V) Il(o&=O.

The O(a) equations are of similar form:

(E3 ' ' Hp V)
I p ') = V

I
g—'), —

(EP"—H, )l~ &=v'I@ &,

thus,

&tt'o I VI n& &t)'o
I
VGo«3» «3) I 0&

(7&)

(75)

(77)

(78)

(79)

We can expand the resolvent Gp(E3 ' ') about E3.

(81)

where AE~z~
——E3 E3' ' —Further. more, the difference

between g' and P is second order in the Coulomb interac-
tion (this fact is manifest in the near equality of the exact
and O(a) Coulomb-operator expectation values, normali-
zation constants, and wave-function components —see
Tables III, IV, and VI):

Go7 Go(T— V)
I
0&—

where all arguments are E3. Therefore,

& q, I
vG, (E, ) v'I y)

to within second-order corrections [terms in the expres-
sion that are proportional to (V ) ]. Subtracting Eq. (83)
from Eq. (76), we obtain the key result

AE(p) =6E —AE

Quantity

I E3
I

(MeV)

I
E3

I
(MeV)

IE,"'I (MeV)

~E,c=E, —E', (MeV)

This work

8.809 8

7.937 70

7.915 1

0.872 1

Kok et al.

8.807 6

7.937 95

7.915 1

0.869 6

TABLE VII. Comparison with calculations of Kok et al.
(Ref. 7).

&t)lol VGo«3)lT «3)—V f IW&

kE (2 } is negati Ue, because VGo (E3 ) is a positive operator
(remember that V is purely attractive), gp and P are node-
less in momentum space, and for E3 ~0 and V repulsive,

& p
'

I
T'«3 )

I p &

(85)
&p'I V'I p&

for all p and p '. ' Clearly, the magnitude of bE~q~ is
determined by second and higher-order Coulomb effects:
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T —V =V GoT (86)

Though this is the case, AE~2] is quite distinct from the
standard second-order perturbation energy, E' '. This is
evident from Eq. (84) compared to the standard formula
for E' ' and from the more than factor of 2 difference be-
tween the quantities AE~z~ and E' ' as seen in Table VIII.

VII. CONCLUSION

Until now, the problem of including the Coulomb in-

teraction in bound-state, momentum-space, three-body
problems, when two of the particles are charged, with the
aim of obtaining the wave function and energy eigenvalue,
has been avoided for the most part. We conjecture that
the reasons for this are twofold: (1) The complication as-
sociated with the fully off-shell Coulomb t matrix and (2)
the concern of dealing with the logarithmic singularity
that arises, due to the long-range nature of the Coulomb
interaction, in the kernels of the wave-function-
component equations. We have shown that (1) can be cir-
cumvented and that (2) can be handled elegantly. We
have formulated the problem without introducing the

Coulomb t matrix, using only the Coulomb potential in
momentum space, and demonstrated how the logarithmic
singularity can be tamed by the subtraction method of
Lande. Without loss of generality, we applied our method
to a simple model problem to illustrate the method and
discuss the underlying physics, as well as to explore the
validity of an obvious approximation. We conclude that
the Coulomb interaction can be incorporated easily into
momentum-space, three-nucleon, bound-state calculations.
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APPENDIX

In this appendix, we display the formulas used to nor-
malize the wave function and calculate the Coulomb ex-
pectation values, Eqs. (72) and (73). The equation for the
inverse square of the normalization constant is

p g 2a p+b p +2g kbpg p+ 2+1 q kp k + 'p +E
I

+2 ' g( I
k+ 2~ P I

)~(p)g(
I 2 k+ p I

)[~(k)+2b«)l

+ 2+(2I+1)P,
—,
' k+px

. I-,'k+pI .
g(

~
k+ —,

'
p ~

)a(p)gl(
~

—,
' 4+p ~,k) /(k +p +k p+K )

where x=k.p. Once N is available, then b,E can be calculated from
(A 1)

bE =Pica(4') f p dpk'dk, Ig'(k)b'(p)+[2qp(k, p)+4~p(k, p)]g(k)b(p)I
p

+ g (2l+1) 2
1 — Il [gl(k,p)+—2~l(k~p)]

I

+ f p2dp k'dk k'~dk' [g(k)P~p(k, k')g(k')b'(p)
~p~p

+ [2gp(k, p) +4&p(k,p)]P~p(k', k )g(k')b(p) )

+ g (2l+1) . [ril(k,p)+4&l(k, p)]ul(k, k')
1 P

gl(k', p) k gl(k, p)
X

~
—

k ZP(k)b,
+ ~ l(k p)ul(k k')

p I p p

k &l(k,p)
k' Pl(g')5»

(A2)
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where the notation follows the text plus

hp ——k + 4P +EC

h»=k' + ,'p —+E

~l(kS) z I d&~l(~)g(
I 2k+ 4p I

)&(
I
k z p I

»
(A4)

(A5)

k' g(k')b»
P»p(k, k') =Up(k, k') 1—

k g(k)b»
(A6)
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