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Variational calculation of the a particle with the Paris potential
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The ground state of the a particle is calculated using a revised version of the Brillouin-Wigner
perturbation method, with enhanced variational flexibility. The resulting energy eigenvalue, for the
Paris potential, is —25.5 MeV. When Coulomb forces and possible errors are taken into account
one establishes an upper bound on the eigenvalue of —24.1 MeV. The derived wave function con-
tains a D state admixture of only 5.36%.

I. INTRODUCTION

An important advantage of the Brillouin-Wigner' per-
turbation procedure lies in its variational properties. It is
considerably more straightforward to judge the accuracy
of an approximate energy eigenvalue if one knows that
one has calculated an upper bound, and not overshot the
exact result. Without a variational principle it could be
extremely difficult to know if an extension to a higher or-
der of approximation actually leads to an improvement.

When the eigenvalue is supported by an upper bound
theorem one may attempt improvements by inserting ad-
ditional variational flexibility into the trial wave function.
The Brillouin-Wigner wave function has proven to be very
accessible to such experiments. Previous papers have in-
vestigated a simple trial wave function, related to the
Moszkowski-Scott separation method, and designed for
calculating the bound states of light nuclei with modern
nuclear interaction operators.

The present paper extends this work in two respects. In
Ref. 4 a Gaussian potential was fitted to the lowest Talmi
integrals of the Reid soft core potential, so that all the in-
tegrals could be performed in closed form. Thus the
eigenvalue approximate obtained is not an upper bound
for the Reid soft core potential; but it is for the simulated
potential. In the present work the recent Paris interaction
is used in its entirety, without any mutilation. Second,
considerable new variational flexibility has been intro-
duced into the trial wave function to improve the accura-
cy of the upper bound. This will be described more fully
in Secs. II and III.

W= guJ— g q~j+ U,
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where v,J is the two-body Paris interaction.
The variational trial wave function is chosen in the

form:

one obtains
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In previous work ' one maintained the condition

g W'= W. In the present example, however, this will not
be the case. We reserve the right to select the 8" later to
obtain more variational flexibility in g. This is clearly
permissible, so long as one does not violate the boundary
or symmetry conditions of the wave function.

Substituting Eq. (5) into the variational integral

II. METHOD

The Hamiltonian is written in the form

H =Ho+ 8',
where
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defines a set of (antisymmetrized) oscillator functions

Hpy„(1, . . . , A)=e„y„(1, . . . , A)
Variation of the E;,
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to optimize the eigenvalue yields the set of equations

E2(i)= QK/[E' '(i j) E—I '(i j)] . W'(D) = —g ficoSJkq, 't, exp( a—;q,k) .
j&k

(14)

Substitution of Eq. (9) into Eq. (7) gives us

E =op+ Wpp+ g K;E2(i) . (10)
Here Pp and P

&
are projection operators for the

T =0, S = 1 and the T = 1, S =0 states, respectively:

Now if one constructs column matrices E2 and K out of
the elements of E2(i) and K;, respectively, and likewise
square matrices E' ' and E' ' out of E' '(i,j) and E' '(i,j),
then Eqs. (10) and (9) may be combined to eliminate K
and yield a form most convenient to calculation:

E =op+ Wpp+E2[E' ' —E' '] 'E2 .

Pp(j~k) =+6(3+~q c7k)(1 rj'—rk) i

P)(j,k) = —,', (1—o 1 c7J)(3+ rj. .rk),

and SJk is the usual tensor operator

-+ w —+ w -+ -+
SJk 3 0 J n 0 k -n —0.

J 0

(16)

III. DETAILS OF THE TRIAL WAVE FUNCTION

W'(3S, ) = g fuoPp(j, k)exp( —a;q~q),
j&k

W'( 'Sp ) = g AcoP ) (j,k)exp( —a;q~g ),
j&k

(12)

(13)

If one chooses to partition the W' such that g W'= W
in the preceding section then one has precisely the method
in Ref. 4. For modern nuclear forces this will lead us to
some rather formidable eightfold integrals which must be
done by strictly numerical methods. Clearly there is no
reason to attempt to deal with such complications. One
still retains a broad choice in selecting the W'. This
choice is to be guided by two criteria. First, one should
have mathematical problems which are conveniently
disposed of on modern computers. Second, one should
produce a reasonably accurate wave function.

The choice to be tested in this paper can be written in
three parts

Thus one forms a perturbed defect function for each two-
body channel available in "He.

The a; represent some grid of numbers. Ideally they
could be varied to minimize the upper bound. Since the
final expression for the eigenvalue is not linear in the a;,
this is a rather time consuming procedure. A better alter-
native presents itself after one has looked at the basic ex-
pressions involved.

Most of the procedures and equations of Ref. 4 are now
directly applied to the present o.-particle calculation. The
only difference in procedure is that previously the nuclear
interaction was taken to be a linear combination of Gauss-
ians, so that all of the integrations could be performed in
closed form, while in the present work with the Paris po-
tential many of these integrals must be done by numerical
methods. Let us now display these integrals.

First, in order to clarify the notation, note that the in-
tegrals needed to calculate E' ' are the same as those given
in Ref. 4, for example,

a 1 a'
ZiJ ZiJe

1~( I p)3/2( 1 pi )3/2 ts —][ 1 pp&t2]
—3/2dt

i0

where

P=a j(1=a),
fico5 =E —e—p,

e =E —H0,

z;~ =fuoexp( —aq,j ) .a 2

The parameter np depends on the partition of particle labels (ij,kI), and are specified in Table I. The matrix element be-
comes

a a'
i' kI/J

a& a
Zij Zkl"e

00 , 00
+ (fuo6) (z,j )pp(z,j )pp

after correction for the Pauli operator Q =1—0) (0
~

.
The integrals needed for the central terms in E2 are of the form:

z; —
ukt =~ 3/ (1 p) / f t—'(1 nppt ) dt f u(q)—exp 2 dq,

e 1 npPt—
where u (q) is the appropriate component of the Paris potential. To calculate E' ' one needs integrals of the form:

(21)
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a
Zij Vkl Zmn

1 1=[~-'(I—p)(l —p)]'"f f («)' -'r , -'"dtdr f u(q)exp[ —r,q'/r, ]dq, (22)

where

I,=1 n, P—t n213—'r n~f3—P't 2,
I 2 ——1 n313—p't 2,

and the n; are given in Table I. Pauli corrected integrals for E ' are

(23)

(24)

a Q a
Zij Vkl

—
Zmn

al l a'
Zij Vkl Zmn"e e

1
+(fico5) '(z~l)oo ukI

—z „e 00

I a l I

+(~&) '(z .)oo z;, —ukt +(~&) '«g)oo(utl)oo(z .)oo
e 00

(25)

It should be noted that several of the above terms, like

a
Z12 V 34e

(26)

TABLE I. The n; needed to calculate E' ', E' ', and E2.

(ij,kl, mn)

(12,12,12)

(12,12,13)

(12,13,12)

(12,13,23)

(12,34, 12)
(12,13,14)

(12,12,34)
(12,13,34)

(12,34,13)

(12,13,24)

n1

1
1

4
1

4

0
1

4

1
1

4

0

(ij,kl)
(12,12)
(12,13)

{12,34)
n2

1

4
1

4
1

4

1

4

1

4
1

4
1

n3

1

4

1

1
1

4

0

1

4
I
4

no
1
1

4

0
n4

—1
1

4
1

2
1

2

1

4
I
4

vanish identically due to the Pauli correction. The
momentum dependent terms in the Paris potential cause
no great problem, as one simply performs the indicated
differentiations with respect to q within the integrands be-
fore performing the integrations. Likewise the tensor
terms yield simple modifications in the integrands. The
appropriate coefficients can be found in Ref. 4, where the

q integration was carried out using Gaussian functions
for u.

Thus by using Gaussian functions in the 8" one has
only double integrals to deal with in E2 and triple in-

tegrals in E' '. Actually the situation is not even that
complicated. At least one of the integrations can always
be reduced to an error function, and error functions
present a trivial computational problem. The remaining
single and double integrals were performed to a tolerance
of 1 keV.

[zi2('So P )—ui3('St)]oo .
e

(27)

Let us take an overall view of the interpretation of the
trial wave function. For small values of P; (say 0.1), the
defect function contribution

Xi ——K;
q„&n i

W'io)
E —E„

(28)

One must now select an appropriate grid of values for
the a; in the calculation. The selection is facilitated by
considering the variable change

P;
—=a;(1+a;)

The dependence of the E2(i) in P; is displayed in Table II.
This is the final set used in the He calculation reported in
Sec. IV of this paper, with oscillator size parameter
b =1.6 (10 '

) cm, and U iterated so that 5=1. There
are two interesting points concerning these numbers.

First, note the surprisingly moderate variation of E2(i)
with P; over the full range of values 0&P;&i This. is
particularly striking in the central contributions,
E2( S&,P;) and E2('So,P;), which must identically vanish
at the end positions P=O or 1. The tensor term E2(D,P;)
shows somewhat more variation with P;. This is in part
because 8"(D) in Eq. (14) was chosen so that E2(D,P; =0)
does not vanish while E2(D,P;=1)=0. The figures in
Table II imply that one does not need a very extensive
grid of values for the P; in the trial wave function in order
to obtain a reasonable energy eigenvalue. Consequently
only the values 13;=0.1, 0.3, 0.5, 0.7, and 0.9 were used in
the calculation reported in Sec. IV.

The second point worthy of note in Table II is the rela-
tive size of the two-body and three-body contributions.
The three-body terms are by no means small. This is basi-
cally due to the fact that there are so many of them.
There are twenty-four terms of the type [z&2(Q/e)u, 3]oo
against only six two-body terms of the type
[z~2(Q/e)u|2]oo. The fact that the three-body contribu-
tion is larger in magnitude than the two body in the S0
channel for small P; is actually due to cross terms of
z('So, /3;) with the strong S~ interaction of the Paris po-
tential
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TABLE II. Comparison of two- and three-body contributions to E2(i) in MeV. A11 entries are

corrected for the Pauli operator. The central terms include both momentum independent and dependent

components of the Paris potential, and the oscillator potential correction (q;~) in Eq. (4).

Type of term

8"(S )
of Eq. (12)

0.1

0.3
0.5
0.7
0.9

Two-body
part E2

—3.263
—8.049

—10.344
—9.725
—5.118

Three-body
part E2

—1.972
—4.214
—4.410
—2.998
—0.773

Total E~(i)

—5.235
—12.263
—14.754
—12.723
—5.891

w'('s, )

of Eq. (13)
0.1

0.3
0.5
0.7
0.9

—1.700
—4.245
—5.598
—5.429
—3.084

—2.734
—5.792
—6.060
—4.120
—1.067

—4.434
—10.037
—11.658
—9.549
—4.151

8"(D)
of Eq. (14)

0.1

0.3
0.5
0.7
0.9

—16.556
—10.008
—5.026
—1.700
—0.137

7.330
3.295
1.104
0.202
0.005

—9.226
—6.713
—3.922
—1.498
—0.132

will converge very rapidly as increasing n induces increas-
ing quanta of the oscillator orbitals into the perturbed
wave function. Thus, as this term emphasizes excitations
of low energy (hence low momentum), its influence tends
to come from the longer range components of the nuclear
interaction. Conversely, for P near one (say 0.9) the series
in Eq. (28) will converge very slowly with increasing n,
thus mixing states of very high momentum into the wave
function. This term must obtain its influence from the
shorter range components of the nuclear interaction.

One sees, therefore, that this variational trial wave
function accomplishes a separation in the effects of the
long and short range components of the nuclear force. It
is very similar to the philosophy of the Moszkowski-
Scott method, even though the mathematical details are
very different.

If one were to partition the trial wave function into an
unlimited number of terms (P;), thereby using all the de-

grees of freedom oF the excited configurations, one would
attain a complete analysis of all two particle excitations
out of the oscillator ground state. The objective of the
present procedure, however, is to attempt an adequate rep-
resentation of the true eigenstate with only a moderately
sized partition.

IV. RESULTS

The values obtained for the K, in each channel by solv-
ing Eq. (9) are shown in Table III. The corresponding en-
ergy eigenvalue for the a particle is —25.5 MeV.
Coulomb interaction was not included in this calculation.
It is not really hard to incorporate, but it is a nuisance to
separate off the proton-proton channel in the isospin for-
malism. When one is finished with the rest of the calcula-
tion, however, one has a trial function with which one can
readily estimate the Coulomb contribution to the energy
to be 0.9 MeV. Since one has two contributions to the en-

ergy and both expectation values are calculated with the
same trial function, it is legitimate to add them, and ob-
tain an upper bound of —24.6 MeV.

There is one more correction to be considered before
one can quote a rigorous upper bound. That is the numer-
ical error accumulated in the calculation itself. There are
three possible sources of error to be considered: (i) Not all
of the parameters of the Paris potential are given explicit-
ly in the literature. Some are given by formulae, and must
be computed by the user. In all cases these formulae were
satisfied to better than eight significant figures. It is
doubtful that any relevant errors were incurred here, as
the other parameters are quoted to eight significant fig-
ures in Ref. 7. (ii) Twelve significant figures were retained
in all matrix routines, so that no errors accumulated in the
third significant figure of the results quoted here. (iii) The
integrals were all calculated to a tolerance of 1 keV. This
appears to be quite accurate, but there is a catch. All er-
rors are incurred through the fact that one must sample
the integrands over a finite integration grid. Consequently
the error may be systematic rather than random.

The maximum possible effect of the integration errors
can be estimated by systematically altering each integral
by 1 keV in a direction such that one raised the eigen-
value. This produced nearly one-half an MeV repulsion.
Consequently one is left with an upper bound of —24. 1

MeV to be compared with the experimental value of
—28.4 MeV. The rms radius was calculated to be 1.28
(10 '

) cm, in comparison with an experimental value of
1.44 (10 '

) cm.
The trial wave function contains a 5.36% admixture of

the Do state. Since the Paris potential yields a S.77% ad-
mixture of the D~ state in H, this result in the present
calculation of He is remarkably low. The reason can be
found by carefully inspecting Table II. For the tensor in-
teraction the three-body terms make a contribution of op-
posite sign to the two-body terms; and one sees consider-
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TABLE III. Values of K(i) for the u particle.

K('Si,P;)

0.1

0.3
0.5
0.7
0.9

—1.539
1.009
1.182
1.538
5.017

—1.852
1.980
0.517
2.500
2.953

—0.055
-1.002

3.855
3.701

—9.412

able cancellation at small values for p;, which derive their
strength from the long range components of the tensor in-

teraction. This effect is obviously absent in H, plays only
a minor role in H, but is very significant in He due to
the increasing number of three-body terms relative to the
number of two-body terms. The short range part of the
tensor interaction is significantly weakened in modern nu-
clear forces due to the effect of heavier vector mesons, '

which makes the cancellation between two-body and
three-body contributions at long range even more pro-
nounced. MOI'covcI, thc three-body terms rcinforcc thc
two-body terms for the central components of the interac-
tion. The resulting enhancement of the excited central
terms further diminishes the importance of the tensor
terms when channel coupling is taken into account. Re-
cent considerations on nuclear saturation by Moszkowski
are dependent on a weakened tensor interaction, and there
is no doubt that the cancellation in the long range com-
ponents of the tensor force will play some role in satura-
tion.

Normally one would require that the relative wave
function for any two nucleons vanish as their separation
approaches zero in a. calculation with modern nuclear
forces. In the present example, however, this condition
has not been forcibly inserted. Rather it is left to the in-
teraction operator to accomplish this through the calcula-
tion, and one can later test the derived wave function to
see how well this condition is fulfilled. I.et us define
Pi2(0) to be the value of the unperturbed wave function at
zero separation for the relative motion of two nucleons in
a particular channel, and $,2(0) to be its perturbed coun-
terpart. Thc dcrivcd wave function yields

Piz(0) =0.001 ('So state)
i2o

=0.016 ('Si state) .

Calculations for thc A particle have bccn pI'cviously re-
ported; the most recent using the Reid"' ' and Urba-
na' interactions. The most appropriate comparison is
probably with the Urbana interaction, since this is a
modern potential comparable to that of the Paris group.

The energy eigenvalue for this case was —25. 1+0.4 MCV,
neglecting Coulomb forces. It is amusing that not only
the eigenvalue, but also the error, are quite comparable to
the results in this section. The Urbana group also calcu-
lated He usiilg tile Reid soft coi'e poteiitlal, obtaiillllg
only —22.9+0.5 MCV. This is consistent with the previ-
ous work with the Reid interactions; and it appears that
one may conclude that the modern Paris and Urbana po-
tentials yield binding energy for "He which is 2 or 3 MeV
nearer the experimental value compared to the Reid po-
tcntlal.

V. CGNCLUSION

The most obvious improvement one could make in the
trial wave function is to refine the grid of values chosen
for the p;. It is possible to tell how far one should carry
this refinement without completing the entire calculation.
Since the components of the trial function are not all
orthogonal one will eventually reach a grid so small that
the elements of the matrices used in Eq. (11) may be ob-
tained from each other by linear extrapolation; for exam-
ple, one mill have

&2(p„)= —,
' [& (2p„+&p)+&2(p„~p)]

At this point one succeeds in producing singular matrices,
and not in improving the eigenvalue. This fact can be
helpful in guiding one to choose an improved grid.

Before refinement of the grid is warranted, however,
there is another significant improvement that clearly must
be investigated. The effective three-body terms in this cal-
culation were found to be quite large, but there werc no
three-body correlations specifically built into the trial wave
function. Consequently, it is doubtful that one has ob-
tained the optimum contribution from the three- (and
four-) body correlation energy.

In addition, investigations of the contribution of three-
body nuclear forces (which are mediated through to the b
isobar) to the binding energy of very light nuclei have re-
cently been reported. ' lt appears that the contribution
to the binding energy of' the a particle could easily be in
the range of 1—4 MCV.

It is a straightforward matter to incorporate both these
improvements into the procedure developed in this paper.
The difficulty involved in implementing the method will
depend only on the new integrals encountered from the
specific form of the nuclear three-body force.
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