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Triaxial shapes in the interacting boson model
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We suggest the use of cubic terms in the interacting boson model. It is shown that, examining the
classical limit, such cubic terms can give rise to stable, triaxial shapes. Energy spectra are studied in
the U(5), O(6), and SU(3) limits. Also, a more realistic case is studied in ' Ru.

Since the work of Wilets and Jean' and of Davydov,
Filippov, and Chaban, ' it is known that the y degree of
freedom plays an important role in many nuclei of the
mass table where static (quadrupole) deformation occurs.
These models adopt a geometrical picture of the nucleus
to describe its collective excitations, as put forward by
Bohr and Mottelson, and emphasize the importance of
deviations from axial symmetry. In the model of Jean and
Wilets' the'potential energy is assumed to be independent
of the y degree of freedom, hence the name y-unstable ro-
tor. In the model of Davydov et ai. , ' on the other hand,
one proposes a rigid triaxial shape for the nucleus. More
recently, similar calculations were carried out by Toki and
Faessler. Although these models are, in general, success-
ful in reproducing the experimental data, they have as a
disadvantage the lack of a unified theory, since each of
these models is based on a different hypothesis concerning
triaxiality.

The interacting boson model (IBM) of Arima and
Iachello has provided us with an alternative description
of nuclear collective excitations, which in contrast to the
geometrical models, is of an algebraic nature. One of the
most attractive features of the IBM is certainly its unify-
ing capacity and one might try to use this property to es-
tablish a coherent theory of triaxiality in the framework
of the IBM. However, with the work of Ginocchio and
Kirson and, simultaneously, Dieperink et al. , that
bridged the gap between geometrical models of nuclear
collective motion and the IBM, it became clear that even
the most general Hamiltonian of the model in its original
formulation of Ref. 6 cannot give rise to a stable, triaxial
shape for the nucleus.

In this paper, we show that by incorporating cubic
terms in the Hamiltonian of the IBM, one may obtain a
stable, triaxially shaped nucleus and study the influence of
such terms on the energy spectrum in each of the three
dynamic symmetries. Our analysis will be completely re-
stricted to the IBM-1, that is, making no distinction be-
tween protons and neutrons. This is in contrast to the re-

I

cent work of Dieperink and Bijker, ' who showed that
triaxiality also occurs in particular dynamic symmetries of
the IBM-2 that does distinguish between protons and neu-
trons.

The Hamiltonian we consider is of the form

H =H,d+ g OL [dt dt dt]' '[d d d]' '

L

where H,d is the standard Hamiltonian of the IBM,"'
H,d =Ednd+tcQ Q+a''L L+tc"P P

+$3T3 T3+g4T4 T4 (2)

We have studied for each of the three limits of the IBM-1
[U(5), O(6), and SU(3)] the infiuence of the various cubic
terms of Eq. (1) on the energy spectrum. From our calcu-
lations it becomes clear that only the L=3 term can in-
duce stable triaxial shapes. In Figs. 1(a)—(c) we show typ-
ical spectra in the three limits. The parameters of Eqs. (1)
and (2) are specified in the caption. Figures 1(a)—(c) illus-
trate that in the U(5) and O(6) limits both the ground-state
band (g.s.b) and the first excited 2+ band are not changed
by the inclusion of cubic terms in the Hamiltonian. On
the other hand, the 3+,4+,5+, . . . , bands are lowered in
energy since for these levels the cubic term with L =3 can
give a diagonal energy contribution. In the SU(3) limit
the ground-state band and the p band are unaltered but
the y band is shifted in energy with respect to the stan-
dard SU(3) calculation. These results clearly point out
that, in the new Hamiltonian, the y degree of freedom no
longer is unstable but prefers a particular triaxial shape
with y&0' or 60'.

In order to obtain a more intuitive insight into the prob-
lem of triaxial shapes, the classical limit of the Hamiltoni-
an of Eq. (1) can be calculated. In the intrinsic frame of
reference one obtains a potential energy surface dependent
on P and y, which for a Hamiltonian with a L=3 cubic
term reads ' '

4 1+pe 5 1+p2 5 1+p2 35 (1+p2)2

+03N (N —1)(N —2)—1 P z
( —1+cos 3y) .

7 ( 1+P3)2
(3)
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tional to cos 3y does a stable, triaxial shape eventually
arise. As studied by Van Isacker and Chen, ' the cubic
anharmonicities indeed induce such terms.

The above discussion is based upon a study of the
minimum values (p, y) of the expression E(p, y) of Eq. (3)
corresponding with a given IBM-1 Hamiltonian. Thereby,
one concentrates on the static (potential energy) part of the
Hamiltonian. In the full quantum mechanical problem,
dynamics (kinetic energy) has to be taken into account
properly which implies deviations from the minimum y
value. In this way, an effectiue y value can be determined
as the expectation value of y using the quantum mechani-

This expression allows us to visualize the influence of the
L= 3 cubic term in a (p, y) potential energy plot, as is il-
lustrated in Figs. 2(a)—(c) in the case of the U(5), O(6),
and SU(3) limits, respectively. One indeed observes that,
in particular in the O(6) limit, a stable triaxial minimum
results at y =30' and p=0.7. The need for cubic terms to
have a minimum in E(p, y), different from y =0' or 30',
is clear. Without the cubic terms, the only dependence on
y in Eq. (3) resides in the cos3y term, which always im-
plies either a prolate or an oblate minimum (provided ~ is
negative), depending on the sign one considers in the
quadrupole operator Q. Only by including terms propor-

FIG. 1. (a) The lower band members in the U(5) limit for %=7 bosons. The left part of the figure shows the spectrum in the exact
U(5) limit and the right part shows the spectrum when the L=3 cubic term is added. The parameters of Eqs. (1) and (2) are the fol-
lowing: e~ ——0.6 MeV, ~'=0.001 MeV, and 03——0.06 MeV. (b) Same caption as (a), but for the O(6) limit with Ã=8 bosons. The pa-
rameters of Eqs. (1) and (2) are the following: ~'=0.02 MeV, a"=0.1 MeV, q3

——0.15 MeV, and 83——0.06 MeV. (c) Same caption as
(a), but for the SU(3) limit with X= 11 bosons. The parameters of Eqs. (1) and (2) are the following: ~= —0.02 MeV, ~'=0.01 MeV,
and 03——0.02 MeV.
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FIG. 2. (a) Potential energy surface, according to Eq. (3), for the U(5) limit with the parameters given in the caption of Fig. 1(a).
(b) Potential energy surface, according to Eq. (3), for the O(6) limit with the parameters given in the caption of Fig. 1(b). (c) Potential
energy surface, according to Eq. (3), for the SU(3) limit with the parameters given in the caption of Fig. 1(c).

cal wave function. Work in this direction is in pro-
gress 14I 15

Recently, the nucleus ' Ru has been studied in the
framework of the IBM. ' ' The hexadecapole degree of
freedom (g boson) was shown to be of crucial importance
for the description of many detailed properties of this
transitional nucleus. However, the excitation energies of
the levels of the y band are not substantially altered by the
addition of a g boson and they strongly deviate from the
experimental data (see Fig. 3). The fact that many of the
experimental observations support the hypothesis of ' Ru
being a triaxial nucleus' suggests the use of the L=3 cu-
bic term in the IBM Hamiltonian. Its effect is illustrated
in Figs. 3 and 4. The levels of the y band are changed
from a (3+,4+), (5+,6+), and (7+,8+) odd-even sequence

T(E2)=e~(dts+s d)' '+edd(d TI)' '. (4)

Conforming to the calculation of Ref. 12, we use the ef-
fective boson charges ed, ——0.1 e b and edd

———0.05 e b. In
Tables I and II, we compare the calculated quantities with

into a band with more regular spacings, which is typical
for a nucleus which is not y soft or rigid triaxial, but has
a shape somewhere in between. This example illustrates
that the use of cubic terms in the IBM enables one to
describe nuclei ranging from y soft to rigid triaxial, hence
covering a wide class of nuclei in the mass table.

We also have studied the g.s.b. 8(E2g~I —2) values
and the diagonal reduced matrix elements (I

~ ~

T(E2)
~
~I ),

using the standard IBM-1 electric quadrupole operator,
c.e.,
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TABLE I. The ground-state band B(E2;I~I—2) values in
units of e b .

I—+I —2 Expt' 03——0
IBM-1b

03 ——0.11

2~0
4—+2
6—+4
8—+6

10~8
12~10
14~12

0.165
0.239(26)
0.335{28)
0.364{25)
0.332(7)
0.224( —1o6)

0.168
0.246
0.273
0.272
0.250
0.211
0.155

0.168
0.246
0.275
0.276
0.254
0.213
0.156

'From Stachel et ah. (Refs. 16 and 17).
Parameters given in the caption of Fig. 3.

This is still not the most general one- and two-body transi-
tion operator for s and d bosons. We will later indicate
with arguments based on perturbation theory that the
operator (5) is appropriate for describing g.s.b. E2 proper-
ties (see Fig. 8). The extension (5) has the disadvantage of
increasing the number of effective boson charges signifi-
cantly. One can show that in the pure U(5) limit the cal-
culation of g.s.b. 8(E2) values and diagonal reduced ma-
trix elements needs only two of these effective boson
charges.

In the U(5) limit the g.s.b. wave functions read
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and the extra contributions to 8 (E2/~I —2) and
(IIIT(E2)III) become

2
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0 I

-02
I

-Q.1 0.0

e3
Q.1

I

0.2

FIG. 4. Variation of the levels of the y band as a function of
the strength parameter 03. The parameters of the IBM-1 Hamil-
tonian of Eqs. (1) and (2) are given in the caption of Fig. 3. At
the extreme right, the experimental y band in ' Ru is also
drawn for comparison.

(I
I I

T(E2)
1/2

(2I+1)(2I+3)(2I+2)
I n +e 7 g2/11( „—1) ]7I (2I —1) (8)

(only L =L'=4 contributes), respectively.
In Figs. 5 and 6 we show 8 (E2/~I —2) and

(IIIT(E2)III) as a function of I in the U(5) limit for
N=8. Since the higher order terms in the electric quadru-
pole operator of Eq. (5) will generally be of the order

2
L —L,L'—.1 body

framework, as discussed by Warner and Casten, ' ' where
the Hamiltonian

TABLE II. Diagonal reduced matrix elements (I
I I

T(E2)
I
II )

in the ground-state band in units of e b.
we use in the schematic U(5) calculations the values
e4 ——0.01 e b and e4 4 ——0.01 e b. The g.s.b.
8 (E2g~I —2) values grow to much larger values for the
6+~4+, 8+~6+, and 10+—+8+ transitions, and the di-
agonal reduced E2 matrix elements no longer show the
pure U(5) behavior. Both facts do show up in the ' Ru
nucleus, ' ' a nucleus that seems to be situated in a transi-
tional region between the U(5) and O(6) limits. '

If one studies more complicated situations [other than
U(5)] and other E2 transitions, the above simplifications
for the U(5) limit are not valid any more. One way out is
to introduce cubic anharmonicities in a consistent-Q

2
4
6
8

10
12
14

Expt'

—0.91(40)
—0.42{31)
—0.54(22)
—0.76(31)

03——0

—0.75
—0.91
—1.03
—1.11
—1.18
—1.24
—1.29

'From Stachel et al. (Refs. 16 and 17).
"Parameters given in the caption of Fig. 3.

IBM-1"
63 ——0.11

—0.75
—0.87
—0.95
—1.03
—1.11
—1.19
—1.29
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FIG. 7. Diagrammatic representation of the energy correc-
tion (in second order perturbation theory) to the

I
s d ) con-

figuration using a quadrupole-quadrupole interaction (left) and
the corresponding effective three-body interaction after the ex-
clusion of the g boson from the model space (right).

FIG. S. Schematic model calculation in the U{5) limit for the
g.s.b. B(E2;I~I—2) values, if one includes two-body boson
transition operators in the T(E2) operator [see Eq. (5)]. The ex-
pression is drawn for ed, ——0.1 e b and for both e4 ——0 e b (A) and
e4 ——0.01 e b (B).

boson space, due to the exclusion of the higher angular
momentum bosons. The most important one of these bo-
sons is the g boson which is useful in describing many
features of transitional nuclei. ' ' With a g boson, the
one-body quadrupole operator becomes

Q =(dts +std )'2'+a(dtd)'2'+f3(dtg+gtd )' '+y(gtg)' '

H =xQ Q+K'L L
Qsd +PQ—ed+ y Qss (lO)

is used, now with an extended quadrupole operator as
given in Eq. (5) [T(E2)=ed, Q], but using the same pa-
rameters for the quadrupole operator in both the Hamil-
tonian and the E2 transition operator. Thereby the num-
ber of parameters is reduced significantly.

As a final point, we show that a cubic interaction can
be obtained as a renormalized interaction within the sd-

The correction to the energy of the
~

s d ) contribu-
tions in second order perturbation theory, using as a resi-
dual interaction a quadrupole-quadrupole force irQ. Q, can
be written as (see Fig. 7)

U(5} LIMIT

P
E2

E2

(a)

E2

I

14

I

FIG. 6. Schematic model calculation in the U(5) limit for the
g.s.b. diagonal reduced matrix element (I

I ~
T(E2)

I ~I ) if one in-
cludes two-body transition operators in the T(E2) operator [see
Eq. (5)]. The expression is drawn for edd = —0.05 e b and for
both e4,4 ——0 e b (A ) and e4, 4

——0.01 e b (B)

FIG. g. Diagrammatic representation of the correction (in
lowest order perturbation theory) to the T{E2)operator of Eq.
(4) using a quadrupole-quadrupole interaction and a g boson as
an intermediate state for the diagonal (a) and the I~I —2 (b}
g.s.b. E2 matrix elements. The corresponding matrix elements
of the effective two-boson transition operator, when excluding
the g boson from the model space, are given on the right-hand
scde.
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2+2
QE(d3) ~2

i
(sN —3d3

i

(dtd)(2(. g i

s((( —2d2g ) i

2

2 2
(s+ d i(dtd)' '(dtd)' 'is d )(d

i
Qsd. gsd id)

2 2
&2 P (sN —3d3

i
(dtd)( ).(dtd)( )n

i
s —d )hE

Thus, the renormalized effective interaction becomes

2~2
H, rf=v (dtd)' '(d d)' 'n~,E (12)

where bE =ed —es and nd is the d-boson number operator. By recoupling the angular momenta, the effective interac-
tion can be rewritten as

2 2

H,ff=lr +8 [dtdtdt]( '[ddd]' ', (13)

which indeed is a three-body interaction between the d bosons, resulting from excluChng the g boson from the model
space.

Similarly, an effective boson E2 operator can be obtained by excluding the g boson from the model space. Using
lowest order perturbation theory, the higher order corrections to the E2 operator can be obtained from the diagrams of
Figs. 8(a) and (b), for the diagonal reduced E2 matrix element (IiiT(E2)iiI), and the g.s.b B(E2+~I—2) value,
respectively. These diagrams correspond to

(s 'd iie,dgiis "d ' )(s "d '
g iag Q is d )

1

(14a)

(s d" iiedgiis d ' )(s d ' g iKQQ is "'d" )
EE2

(14b)

where b,E
&

——ed —es and EE2 2' —Ee&.' Us——in—g as the
interaction Hamiltonian the quadrupole-quadrupole force
~g Q, with the extended quadrupole operator of Eq. (10),
the renormalized effective E2 operator becomes, after
some Racah algebra,

5T(E2)=e,gaP [(d d )' '(dd)' ']' '

1

(15a)

and

ST(E2)=;,P' '[(s'd')"'(d -d)"']"'+H.c. ,
2

(15b)

corresponding to the expressions (14a) and (14b), respec-
tively.

These effective two-boson transition operators are
shown on the right-hand side in Figs. 8(a) and (b). The
vertex now affects two bosons in the E2 transition. The
magnitude of these higher order terms could in principle
be calculated from the knowledge of a, P, Ir, and the ener-

gy denominators AE1 and AE2. Using the values from
Ref. 12, one obtains the order of magnitude of the effec-
tive two-boson transition operator as -0.01 e b.

I

In conclusion, we have shown that nuclei with triaxial
features can be described in the framework of the IBM by
considering cubic terms in the model Hamiltonian. The
effect of this addition to the Hamiltonian was studied in
the three different limits of the IBM and visualized by
taking the classical limit of this extended Hamiltonian.
This study pointed out clearly the occurrence of a stable,
triaxial minimum if one considers the L=3 cubic term.
As an illustration of the usefulness of this approach, we
presented an application to the triaxial nucleus ' Ru.
With regards to electromagnetic properties of the ground-
state band, we showed that these are not changed drasti-
cally by cubic terms in the IBM-1, unless these higher or-
der terms are treated consistently in Hamiltonian and
transition operators. Finally, we indicated that such cubic
terms result as an effective interaction in the sd-boson
model space, as a result of excluding higher angular
momentum bosons from the model space.
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