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6-isobar production in proton-nucleus collisions
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The (p,b, ) reaction has been investigated in the general framework of the distorted-wave Born ap-
proximation. By the use of various choices for the spin-isospin transition interaction,
V,(NN~AN), it has been shown that the data on Li(p, h++) He at 1.04 GeV can be reproduced
well, both in magnitude and shape, by the one-pion —and —one-rho —exchange potential. Using only
the one-pion-exchange potential with the Landau-Migdal-type repulsive term it is found that the
magnitude of the parameter gq at high momentum transfer lies below 0.4.

I. INTRODUCTION

In recent years there have been increasing efforts to go
beyond the conventional approach to the atomic nucleus.
These efforts have been concerned with the investigation
of the relevance of and the role played by the non-
nucleonic degrees of freedom, like mesons, baryonic exci-
tations, and quarks, in the nuclear dynamics and the
correlations associated with the spins and isospins of nu-
cleons themselves. Out of them the knowledge about the
role of quarks in nuclei is, at present, very much in its in-
fancy. It is expected, that, due to their confinement in nu-
cleon bags of radius & 1 fm, quark effects should show up
in the process associated with short range nucleon-nucleon
separations, or equivalently high momentum transfer.
However, there does not yet seem to exist any compelling
unambiguous results to suggest such effects. The impact
of the quark structure of nucleons in nuclear physics,
therefore, currently lies more in new approaches than in
new results. ' On the other hand, the role played by
mesons in nuclei is very well established. A most con-
vincing example of their importance is the electrodisin-
tegration of the deuteron. Consequently, it is now a com-
mon feature to consider the effect of meson-exchange
currents (MEC)'s in the nuclear response to the elec-
tromagnetic probes at medium and low energies. In be-
tween these two fields lies the field of spin-isospin correla-
tions and b, (1232) isobars in nuclei. This is a developing
and hence most fascinating field. '

Experimentally, the spin-isospin correlations are
dramatically manifested through the strong excitation of
the isovector Gamow-Teller (GT) mode in the intermedi-
ate energy (p,n) reaction. The strengths of these and the
magnetic spin transitions at low momentum transfers are
also found to be quenched systematically by about 60% in
heavy nuclei. The source of this quenching, though under
considerable debate at present, seems to be intimately con-
nected with the b;isobar degrees of freedom in the nu-
cleus. These virtual isobars also show up in other pro-
cesses, such as the narrow width of the X hypernuclei,
through the renormalization of the pion propagator due to
4-hole excitations in nuclei. The magnitude of this effect,
of course, depends upon the knowledge, which is rather
poor at the moment, of the NN —+b,N coupling potential.

The real 5-isobar excitation is seen in the pion-nucleus
scattering and in the real or virtual photon-induced reac-
tions. The data on these reactions, therefore, have been
used to learn about the 5-nucleus interaction in the nu-

cleus and to shed light on the dynamical mechanisms re-
sponsible for it.

Yet another reaction, which we study in the present pa-
per and whose potential for the study of the non-nucleonic
aspect of the nucleus has been recognized only very recent-

ly, is the (p,h++ ) reaction. Though experimentally this
reaction is difficult to investigate, it is very rich theoreti-
cally. Because the 6++ corresponds to the S = —,, T= —,,
and Tz ———', state of the baryon, like the (p,n) reaction, it
can transfer ES=1 and b,T=1 to the nucleus. In addi-
tion, it also transfers large linear momentum ()250
MeV/c) and can excite nuclear states differing from the
ground state by even two units of spin and/or isospin.
Since the 5++ is free in the final state, the reaction pro-
vides an opportunity to learn about the b,-nucleus poten-
tial and the NN~Nb. coupling potential. The first reac-
tion of this type was detected recently on Li at 1.04 GeV
incident energy, where the differential cross section was
measured as a function of four-momentum transfer
squared (t) corresponding to the transition to the ground
state of He. The data were analyzed using the Glauber
framework for the description of multiple scattering. For
some sets of parameters a fair fit to the data was ob-
tained. s However, with its large number of free parame-
ters this approach does not seem appropriate for exploit-
ing the full potential of the (p,h++) reaction. In this
work we use an alternate theoretical framework. Since at
intermediate energies the measured cross section for the
(p,h++) reaction on a nucleus is very small ( & 100 pb) in
comparison to the total cross section of a few hundred mb
for protons on a nucleus, it should be adequate to describe
this reaction in terms of the distorted-wave Born approxi-
mation (DWBA). The validity of the DWBA for this re-
action is further suggested by the success of a similar ap-
proach for the (p,n) reaction and the dominance of the
Born approximation term in generating the spin-isospin
dependent forces in the boson-exchange model. ' In our
approach, the expression for the cross section consists, in
general, of three unknown ingredients: (i) the NN —+EN
coupling potential; (ii) the b;nucleus optical potential; and

29 1396



29 6-ISOBAR PRODUCTION IN PROTON-NUCLEUS COLLISIONS 1397

dt
=E EgEtEtil[4m(A c E,k ) ]( I Tttg I ), (1)

where the angular brackets around
I
Ttt„ I

denote the
sum and average over the spins in the final and initial
states, respectively. The transition amplitude, Tzz, is
given by

Tti~ ——X:, B,b, ++ g V«(i) A,p,X+-
l

(2)

where E„(k„)is the total energy (wave vector) of the par-
ticle x, t is the four-momentum transfer squared, and E,
is the total energy in the center of mass. X represents the
distorted wave in the initial and final states. V, is the ef-
fective spin-isospin transition potential for pp~nh++,
summed over the "active" nucleons in the target nucleus.
This potential, in principle, should depend on both the in-
cident energy and the transferred energy momentum.
However, for the present, since we are going to analyze
the experimental data at a single energy (1.04 GeV) only,
we will not worry about the incident energy dependence.
For the rest, the general form of the interaction, neglect-
ing the spin-orbit dependence, is

V', (co,Q ) = [VL (co, Q)S.Q o; Q

+ VT(c(),Q)(SXQ) (cr; XQ)]T w;, (3)

where co (Q) is the energy (momentum) transfer from the
incident proton to the ith nucleon in the nucleus, S (T) is
the spin (isospin) transition operator for p~A++, Q
denotes a unit operator, and VL and VT represent the
(co, Q) dependence of the longitudinal and transverse part
of the interaction, respectively.

Using the identities

(iii) the spin-isospin nuclear transition density. Using the
data on Li(p, b, ++) He, where the relevant nuclear transi-
tion density is known from the inelastic electron scattering
at high momentum transfer on Li,"we show that this re-
action can be used effectively to extract the other two
components pertaining to the 5-nucleus dynamics. Since
the sensitivity of the calculated results to the iIk-nucleus
optical potential is found to be weak, the experiment
determines the spin-isospin transition potential. Using the
longitudinal and transverse form for the coupling interac-
tions, in Sec. II we present the formalism. Section III
contains its application to the Li(p,h++ ) He reaction and
a discussion of various physical parameters extracted from
it.

II. FORMALISM

Considering the b, as an elementary particle, the dif-
ferential cross section in the DWBA for the A (p, h++)B
reaction is written as

—+ w w
&

—+

S& Q 0 2'Q =
3 Sl'o 2+ S12(Q),

(SiXQ).(cY/XQ)= —,Si cr2 ——,Si2(Q),
with the tensor operator

A A
Siz(Q)=3Si Qo'z. Q —Sl'cr2,

(4)

Q'=kp —kj, .

Using the following definitions for the transition matrices,
S andT,

( —,m~ IS& I

—,'m~) =(1—,'pm~
I

—', mt, ),
&,
—' + —'

I Tp I

—' +—'& =(1—'v+ —'
I

—'+ —'@i.+i

the spin-isospin transition corresponding to p—+6++ can
be calculated in Eq. (7), yielding

the interaction [Eq. (3)] can also be written in an alterna-
tive form,

V(Y„(co,Q) =[Vc(co,Q)S o';+ VNc(c0, Q)Si2(Q)]T w;, (5)

where V~ and VNc represent the central and noncentral
part of the interaction, respectively. In terms of Vt and
VT they are defined as

Vc(co, Q)= —,
'

Vl (co,Q)+ —,
'

VT(co, Q),

VNc(co, Q)=-, VL, (co,Q) ——, VT(co, Q).
Since V« in Eq. (2) has been identified as an effective

coupling interaction, in the evaluation of the transition
matrix Tzz, only the direct term need be considered.
Then the energy transfer co appearing in V«[Eq. (3)] is
going to be of the order of the nuclear excitation (i.e.,
—10 MeV or less), which, in comparison to the incident
energy ( —1 GeV), is very small. Of course, to this excita-
tion energy one should add the energy corresponding to
the recoil, which, for light nuclei, might not be small.
However, because of the large momentum transfer in-
volved this may not affect the behavior of V, much.
Therefore, in V«, we approximate co =0.

A. Evaluation of T~~

For evaluating Tie, we first write the distorted waves
in Eq. (2) in momentum space, i.e.,

Ting
——fd k gd k p X

*
( k t, )X+ ( k p )

P

k~~++
l

where k ' denotes the local momentum of the subscripted
particle, and Q', correspondingly, is the local momentum
transfer. Analogous to Q,

T~„=(—I)™+'(1,'mme
I ,'mtk—)f dk —pdk+ (k t, )x+-„(k p)

P

Vc
' ~- « i& kp

l

8m

+15
1/2

g( —))I'()(pm~2M)(kqi) VNc(Q)Yq M(Q')ger„(i)r i(i) ktA) (9)

p l
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Here, m ( =ma —m~) is the spin projection transferred to
the nucleus by the p~b, ++ transition. mq (mz) is the
same quantum number for the delta (proton). (abaP/cy)
is the Clebsch-Gordan caefficient. The first term inside
the square brackets corresponds to the central part of the
interaction and the second term to the noncentral part. In
arriving at expression (9) we used the definition for the
scalar product of two vectors given by

T(1) T(2)=g( —I)"Tq(1)T q(2) . (10)

The expression [Eq. (9)] for Tzz may be simplified be-
cause of the following observations:

(i) Since the energy region of interest is around 1 GeV,

the local momenta k ~ and k q of the continuum particles
would not differ much from their corresponding asymp-
totic values.

(ii) The momentum transfer Q in the (p,h++) reaction
is around 250—700 MeV/c for the angular range up to
about 40'.

(iii) The momentum dependence of the transition in-
teraction V, in this high momentum range is weak (see
Fig. 5.)

It is, therefore, reasonable to approximate the interac-
tions V(Q') in Eq. (9) by their values corresponding to the

+
asymptotic momentum transfer Q (=k~ —k~). This ap-
proximation then factorizes the expression for Tsz to

T~g ——( —1)™+'(1—,
'

mme I ,
'

mg—) Vc(Q)F " i(Q)+
15

' 1/2

VNC(Q) g( —1)"(1lpm 12M) Y2 M(Q)F((i" i(Q)
P

where F " is the "distorted" nuclear structure factor. In configuration space it is given by

F„" (gr)=( iQ)X:„"(r;)X+~(r;)rr„(i)r, (i) Al,

where v is the general notation for p and m.
p

"
i( r ) is the spin-isospin transition density and is defined as

(r,
" r(r)=(i) g 5(r —r;)rr„(i)r, (i) A) .

Corresponding to Eq. (11) for Tsz, ( I T~„
I

) is given by

& ITa~ I'&=[2(2J~+1)l ' g ITa~ I'
M~ M~

+1=—'(2J~+1) ' g g Vc(Q)F'-", -i(Q)
M~M~ m =—1

8m

15

' 1/2

VN«Q) g( —1)"(1 lpm
I
2M) Y2, -~«)F~",-i «) (14)

As one may notice from the abave expression, the contri-
butions of the central and noncentral part of the interac-
tion to the cross section are, in general, coherent. In cer-
tain cases, however, as we shall see later, they can become
incoherent.

The evaluation of (
I Ts„ I ), as is seen from Eq. (14),

requires the knowledge of three factors: (i) the interaction
V«, (ii) optical potentials to generate distorted waves for
protons and isobars; and (iii) the nuclear spin-isospin tran-
sition density p„ i in the high momentum transfer re-
gion. The actual expression for p, i, which might not be
simple, depends upon the nuclear configurations of the
states of the nuclei A and B. However, because of the where

+Cz(12M' —ML
I

1 —v)GpM (Q), (15)

high momentum transfer it is very important that these
transition densities be evaluated very carefully. Since at
present the experimental data exist only for
Li(p, b, ++) He (g.s.), in the present paper we evaluate it

only for Li—+ He (g.s.). This is done in the Appendix.
Using expression (A10) of the Appendix for the spin-

isospin transition density, the "distorted" nuclear struc-
ture factor F " [Eq. (12)] for Li~ He is given by

F„" i(Q) =Co%a„,—Goo(Q)
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Gr~ (g ) = (4 r)
r' ' f d r X:„"( r )X+-„(r )p, ( r ) ('r rr (r ) .

P

(16)

Here, pi(r) is the radial transition density and is normalized to unity. L is the transferred orbital angular momentum.
For a ( lp) configuration its values are limited to 0 and 2. Cp and C2, the weights for the transfer of these two values of
L, are determined by the configuration mixing coefficients for the description of the initial and final states of the nuclei
(see the Appendix}. For the following configurations,

q'6„,(1+ TA =o}=«A 'St+PA 'Pi+7'A 'Di }
I

TA =o Mr„=o&

%6H (0+,TB ——1)=(aB So+le Pp)
I

TB ——1,Mz. ———1}.

The C coefficients are given by

Co = 2aA—aB+2(3) pA pB

C2 4(10} 7 AaB+2(6) PAPB+3(5} yAPB

(17)

(18)

If we restrict the description of Li and He ground states only to the dominant Si and 'So configurations, the L =2
term in Eq. (15) would not be allowed. Consequently, the expression for (

~
TBA

~
) gets reduced to a simple form with

the central and noncentral terms of the interaction contributing incoherently, i.e.,

&
I

TBA
~

'& = —', [Vc(Q}+2VNc(Q}]
~
Goo(Q}

~

' (19)

With full configuration mixing [Eq. (17)], on the other hand, the final expression for (
~

TBA
~

} is quite complicated. It
gets coherent contributions from both values of L as well as from both pieces of the interaction.

B. Gl.((d (Q}

Since we are interested in the energy region of continuum particles around 1 GeV, GLM is evaluated by approximating
distorted waves X by the eikonal form. In addition, if we also take the distortion factor for b, along the incident direc-
tion only,

GLM (Q)=(4m) f b dbdzdgexp(iQ~~z —igz b)D-„(b z)D - - (b z)pi(r)YIJ(r (r)
P P

=i™m'' f bdbdzexp(iQ~~z)JM (Qib)D„(b,z)D - (b,z)pi(r)eLM (b,z),
P P

(20)

where the D's are the distortion factors. In terms of the
distorting potentials V they are given by

order Born term. Following this we have identified Vl
and VT of V,(pp —+nb, ++) with the one-pion —and —one-
rho —exchange potentials, respectively, i.e.,

D -(r) =exp+k f V(
)
r+ks

[
)ds

c2k
(21) 4~f f*„

VL, (co,q) = —
2 F (q)F'(q) (22)

where Q~~ and Qz are the longitudinal and transverse com-
ponents of the momentum transfer Q, and JM is the

L

cylindrical Bessel function. BL,~ is given byL

Vr(~, q) =—,F~(q)F~ (q)
4~fg~, q2

m' ~ ~ q2+m' —a)2
' (23)

Y,M (e,d)=eLM~(e)e' '

C. Choice of V

In order to learn about the V,(pp~nb, ++} from the
data on the (p,b.++ ) reaction, to begin with, it is necessary
that we start with some ansatz for it. For this purpose,
we take guidance from the (p,n) reaction for the corre-
sponding interaction in the NN~NN channel. For this
interaction, it has been shown by Brown et al. ' that the
V~ (pn~np) of Love and Petrovich, ' which fit the inter-
mediate energy (p,n) data, can be reproduced very well by
the one-pion —and —one-rho —exchange potentials. It is
also found that, in the spin-isospin channel, the dominant
contribution to this interaction comes only from the first

(25)

where f(F) and f*(F') are the coupling constants (form
factors) at the n.NN and m.NE vertices, respectively. m is
the mass of the exchanged boson. The structure of the
form factors was chosen to be of the monopole type with
the assumption that F=F*,

p2 2

F(q) =F*(q)= (24)
A+q

The values of the cutoff momenta A and the coupling
constants in Eqs. (22) and (23) are taken from those re-
quired for the description of mN scattering, np and pp
charge-exchange scattering, one boson exchange nucleon-
nucleon potentials, etc. ' These values are

f =0.081, f„=0.37, A =1.2 GeV,

fz 4.86, f&
——1.85', ——Az ——2 GeV .
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The values for excp exchange correspond to the s-
'strong p-exchange coupling. " o t e so-called

III. RESSULTS AND DISCUSSION
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6
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'
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+10

DO
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u 10

0
c9

very well, in magnitude as well as in shape, with the ex-

perimental data. Since this agreement is practically
parameter-free, it determines, in a direct way, that
the effective spin-isospin coupling potential V, (NN
~Nb, ) can be correctly described by the one-

pion —and —one-rho —exchange interaction.
The only source of uncertainty in the above conclusion

arises from the uncertainty in the b, -nucleus optical poten-
tial. In order to see the changes in the results due to the
variation of this potential, we show in Fig. 1 two more
curves. These curves correspond to 8'0 for 6++ in-

creased and decreased by 30% from that used for the con-
tinuous curve. Sensitivity of the results to the variation in
the real part of the potential, to the extent of +10 MeV, is

shown in Fig. 2. From these curves we observe that the
results do not change much. This suggests that the above
conclusion about the coupling potential can be accepted
with confidence.

The different curves in Figs. 1 and 2 for various values

of the b-nucleus optical potential also show that the accu-
racy in the experimental data has to be greater if one
wants to use the (p, b, ++ ) reaction to learn about this po-
tential. For completeness, Fig. 1 also contains the result
corresponding to the plane wave approximation for the
continuum particles.

In order to convince ourselves further that the
(lm+1p)-exchange interaction is the correct representa-
tion of the spin-isospin coupling potential V,(NN~bN),
we have also tried some other prescriptions for it. For
this purpose we consider the pion production (absorption)
in two nucleons (deuteron), pion-nucleon scattering, and,

again, the spin-isospin nucleon-nucleon interaction
V,(NN~NN). In the physical interpretation of the
empirically determined V,(NN~NN) in terms of the
one-boson exchange model, one normally includes, in ad-
dition to the one-pion —and —one-rho —exchange interac-
tions [analogous to Eqs. (22) and (23)], a correlation func-
tion g(r). ' ' The purpose of this function is to simulate
the repulsion at high momenta due to cu-meson exchange.
In the coupling interaction V,(NN~bN), however,
since the ~ meson has zero isospin, this repulsion would
not exist. Still, the inclusion of g(r) in V~, (NN~bN)
may be necessary to incorporate the repulsion due to mul-

tipion exchange and other dynamical processes, provided
the same is not included to the required extent in the form
factor F(F*). We have, therefore, calculated the cross
section using one-pion —and —one-rho —exchange interac-
tions [Eqs. (22) and (23)] with their central part modified
to Vc as

Vc(q)=(2m) ' f dkg(q —k)VC(k) (30)

where g is the correlation function in momentum space.
Following Brown et al. ' this correlation function is gen-
erated through the Fourier transform of [1—jo(g H].
This yields

Vc(q) = Vc(q) (4n.q, )—
&& f dk &[

I q —k
I

—a]Vc(k) (31)

where q, is the correlation parameter. It is taken equal to
3.93 fm '. We have not modified the noncentral part of
the interaction as it is already cut, at high momentum
transfers, due to opposite signs of the one-

pion —and —one-rho —exchange interactions [see Eq. (6)].
For the other choice of interaction we have taken the

potential consisting of one-pion-exchange only. The effect
of the other pieces of the interaction is included via the
form factor with the appropriate choice of the cutoff
momentum A. Values of A are taken equal to 2 and 4
fm '. The former value is consistent with the mN phase
shifts, ' while the latter, using single-nucleon and two-
nucleon absorption/production vertices, provides a reason-
able description of the total cross section for n+d~pp
and the inverse reaction pp —+w+d. '

The results corresponding to these potentials are shown
in Fig. 3. It is evident that, except for the (1m+ lp)-
exchange interaction [Eqs. (22) and (23)], the results due
to all other interactions do not agree with the experimen-
tal data.

In context with the processes involving small momen-
tum transfer in the literature, there also exists another ap-
proach for the description of V,(NN~NN). In this ap-
proach, the V, is written as a sum of the one-pion-
exchange potential without any form factor and a purely
phenomenological repulsive spin-spin term. ' For the
transition potential this interaction is

I

0.1

I I I f

0.2 0.3

(t i [(GeVIc) ]
FIG. 2. der/dt for Li(p, b, ++) He for various values of the

real part ( Uq) of the 6 potential. Q v'T,

cr S q +g,'~.s
q +m~

(32)
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Finally, with the ultimate aim of using the (p, b++) re-
action for the study of the nuclear spin-isospin excitations
in a most effective way, we explored the behavior of dif-
ferent ingredients in the transition matrix (

~
Tsz

~

). For
clarity we only consider the Si and 'So configurations of
I,i and He. %'ith this choice, as shown in Sec. II, the ex-

pression for ( I Tnq I ) factorizes into an interaction term
and the transition density term. In Fig. 6 we show the
behavior of the central term, Vc(Q), and the term
2' VNc(Q) ( = VNc) corresponding to the noncentral part
of the interaction, as a function of Q. Also shown is the
full interaction factor, (Vc+VNc)'~ [=(V +z)'~2].
From these distributions one observes that, while around
200 MCV/c the contributions of the central and noncentral
plcccs of thc lilfcl'Rc'tloil Ri'c about tllc saillc, bcyoild lt tllc
contribution of the noncentral term drops down to a small
value and that, due to the central term, rises and settles to
a constant value of about 400 MeV fm . The summed
square of these terms, V~+&, which finally determines the
(

~
T~~

~
), of course remains more or less constant over

the entire range of Q of interest (i.e., 250~Q ~700
MCV/c). This suggests that the shape of (

~
Tn~

~
) is

mainly determined by the transition density. The interac-
tion term determines only the magnitude of the cross sec-
tion. Therefore, from the point of view of simplicity, it
can as well be approximated by a Q-independent term.
Agreement with the Li(p,h++) He data suggests that the
magnitude of this constant interaction can be fixed around
375 MeV fm3.

Since with fully configuration mixed wave functions the

contributions of various terms corresponding to interac-
tion and configuration become coherent [see Eq. (14)], it
is not possible to say, a priori, what effect it will have if
we neglect the noncentral part of the interaction. There-
fore, using the fully configuration mixed wave functions
[Eq. (17)] for Li and He, in Fig. 7 we show the cross sec-
tions including (o) and excluding (oc), the noncentral
term in V,. It appears that the phase relationships
among various contributions in this case are such that for
the major part of the distribution the two results
(o and o c ) do not differ much. However, this may not be
the case in general, because, as we see in Fig. 5, the contri-
bution of VNc does remain significant up to Q=400
MCV/c.

IV. CONCI. USIONS

The findings of this paper demonstrate that the outlook
for exploiting the full potential of the (p,A++) reaction
for the study of the new modes of nuclear excitation and
the isobar-nucleus dynamics is quite good. It is possible
to extract this information from the experiments quantita-
tively and reliably. Specific conclusions reached may be
summarized as follows:

(i) Direct determination of the effective spin-isospin
coupling interaction V,(NN~Nb, ) is possible through
the p+A ~A +8 reaction.

(ii) The data on Li(p, b, ++
) He already suggest that this

interaction is correctly described by the one-
pion —and —one-rho —exchange interaction.
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(iii) With this interaction, the distorted-wave Born ap-
proximation seems to be the correct theoretical framework
in which the data on the A (p, h++)8 reaction should be
analyzed.

(iv) Sensitivity of the cross section to the 6-nucleus op-
tical potential is such that it requires better accuracy of
the data than presently achieved. Considering that these
kinds of experiments are difficult, it might be difficult to
learn about the finer details of the 5-nucleus optical po-
tential from this reaction.

(v) Within the model used for the description of the re-
action mechanism by us it seems that the value of the
repulsive parameter g~ at high momentum transfer is less
than 0.4.
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APPENDIX: TRANSITION DENSITY FOR Li—+ He (g.s.)

Spin (isospin) quantum numbers for Li and He (g.s.) are 1+ (0) and 0+ (1), respectively. Using a (ip) configura-
tion, the most general wave functions for these states in the "intermediate coupling" scheme are given by

MT ——0

l~ &=p6L(i+ T~ =0)=l:&~ '~1+P~ 'J'1+x~ 'D l@1„T"= o

M~ ———1

I&&='p6„,(0' TB=I)=[~B ~o+PB pol@TB 1——

(Al)

(A2)

where 4 denotes the isospin part of the wave function and the rest stands for the spin-spatial part. The latter has been
written in the spectroscopic notation +'Lq to denote the various quantum numbers. (a,P, y) are the configuration
mixing coefficients, to be determined from the considerations of the various properties of the state concerned. With
these wave functions, the spin-isospin transition density becomes

p&" 1(r)=(A
I
+5(r —r;)oz(i)T 1(i) IB&

=2 g CL/s/CL;s, (L;S;ML,Ms, I
IM. i )(LySgML&Ms&

I

l l

LfSf
Ml M~

ML M~f f
M~ Mg M~ Mg MT MT ——0

x&qL.s, (1,2)l~„(i)I~Ls (1,2)&&eT, ', (1,2)l. ,(1)I~T ", (1,2)&. (A3)

(A4)

In general, this matrix element would give a delta function corresponding to isospin transfer (b, T) equal to one.

Here, instead of writing the wave functions in detailed form, like Eqs. (Al) and (A2), we have used the compact form.
M~ M~

Each LS coupled wave function is denoted by I'Ls, and the corresponding mixing coefficient by CLs.
The isospin part of the matrix element in Eq. (A3) is simple to evaluate. It yields

MT Mr
( 1 )(1/2) —v

~ +TB (1 2)
I

r—1(1)
I +Tg (I 2) & 2 ~P —1/2(1)$ —1/2(2)

I

T 1(1)
I Pv(1)$ v(2) & =1 .

V
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The spin part of the matrix element yields

s M

(q, f(1,2) Ia„(1)Iq, '(,2))= g ( —,
'

—,'m,'m,' ISfM, )( —,
'

—,'m,
,m, , lS,M, ).

ms ms
1 2

I
ms ms

1 2

x (P', ( l)P', (2)
I
~„(1)

I P„, (1)P, (2) )

=( —1) ' f[6(2S;+1)]'i W(Sf —,
'

1 —,'; —,S;)(S; 2Ms—IJ,
I SfMs ), (A5)

where W(abed;ef) is the Racah coefficient. This expression clearly shows the spin selection rule that the spin transfer

(ES) in the reaction under consideration, like isospin transfer, is restricted to unity.
After integrating over the particle numbered "2," the spatial part of Eq. (A3) yields

M~~ M~

j. 24L 1,2 4L ' l, 2 =
r I

m]m2m]m2

(llm im2 I LfML )(llmimq
I L;MI. )P&, (1)gi~,(1)5m2m2, (A6)

where I is the single particle orbital angular momentum. In the present case of Li~ He (g.s.) it corresponds to a 1p or-

bit. Combining the angular part of the wave functions in Eq. (A6) we finally obtain

M~ 1+Ml +ML
r24L 12'. 12 = —1 f 2 +1 2I. +1 4

~QW(LflLI;IL;)(L;L MI,MI—
I Lf ML )(11—00

I
LO)pi(r, )YI.~ (ri) .

L

(A7)

Here, pi(r) is the radial transition density and is normalized to unity.
Combining Eqs. (A4) —(A7) and setting 1=1, we finally get the following expression for the spin-isospin transition

density:

p&" i(r)=( —1) ' 6(6/4n. )' g Cl. s CL, s (2Sf+1)[(2S;+1)(2L;+1)/(2Lf+1)]'
L;S;

Lf ——Sf
L=0,2

)& W(Sf —, 1 —,; —,'S;)8'(Lf 1L1;IL()W(1L;1Sf&S~L)

X(1LMr MI. I
1 p)(—1100

I
LO)pi(r)YLM (r) .

Considering the appropriate combination of quantum numbers summed in this expression, we get

BA (~) I.=0(~)+ I.=2(~)

where L, as seen in Eq. (26), is the transferred orbital angular momentum. The expressions for p are the following:

p&
=oi( r ) =Co5M &(4 ') pi(r) Yoo(r ),

Pp, 1(1 ) C2(»M' —ML
I

1 p)(4~)——'"pi(r)Y&M (") .

(A8)

(A9)

(A10)

(A 1 1)

Here, Co and C2 are the weights for L =0 and L =2 transferred orbital angular mornenta, respectively. In terms of the
configuration mixing coefficients of Eqs. (Al) and (A2), they are given by

Co ——2[ —C;('Si)Cf('So)+3 ' C;('Pi)Cf('Po)]

=2( &~&a+3 '"P~P—a»
Cz ——4(10) 'i C;( Di)Cf('Sii)+2(6) ' C;('Pi)Cf( Po)+3(5) ' C;( Di)Cf( Pii)

=4(10) ' yeas+2(6) ' PgPs+3(5) '
ygPs . (A12)
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