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Radius anomaly in the diffraction model for heavy-ion elastic scattering
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The elastic scattering of heavy ions, Ne on Pb, Ne on U, "Kr on Pb, and Kr on Th,
is examined within the framework of Frahn s diffraction model. An analysis of the experiment us-

ing the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for Pb
than the radii for 'U and Th. It is shown that inclusion of the nuclear deformation in the model
removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular
momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained

by the earlier workers on the assumption of sharp cutoff.

NUCLEAR REACTIONS Elastic scattering, Ne+ Pb (161.2 MeV),
Ne+ U (175 MeV) Kr+ Pb (500 MeV) Kr+ Th (500 MeV), diffrac-

tion model, nuclear deformation.

I. INTRODUCTION

The semiclassical aspects of the heavy-ion elastic col-
lisions are well reproduced by Frahn's diffraction model,
which has been well reviewed by Frahn and Rehm. ' The
well-known features in the angular distributions of
heavy-ion elastic collisions closely resemble the charac-
teristics of Fresnel diffraction in optics. The Fresnel ef-
fects are associated with a strong Coulomb field and high
projectile energy. The semiclassical Fresnel cross section
has the property that its ratio to the Rutherford cross sec-
tion falls to one quarter at an angle O„corresponding to
the critical angular momentum l, . This is the well-known
"quarter point recipe. "

The analysis of experimental data using the above-
mentioned quarter point recipe of Frahn's diffraction
theory leads to an anomaly of the target radius. For ex-
ample, the analysis of the scattering of Kr by Th and

Pb reveals that the radius of Pb is greater than the
radius of Th. The apparent anomaly in the determina-
tion of the target radius was first indicated by Brink and
Rowley, and was later resolved by Rowley, taking nu-
clear deformation as an adjustable parameter in Frahn's
sharp cutoff diffraction model. However, the fit to the
elastic scattering data was very poor though the radius
anomaly was resolved. This is quite likely because the as-

sumption of sharp cutoff in the angular momentum space
makes the model inadequate in several respects. Frahn
recently generalized the diffraction model by considering
strong absorption and other quantal aspects of heavy-ion
collisions. The most important quantities required are the
values of critical angular momentum I, and the width 6
of the I-space "window" of partial waves that take part in

elastic and quasielastic collisions.
It is still very much an open question as to what extent

the generalized Fresnel model can resolve the radius
anomaly. The purpose of the present investigation is to

address this problem and to find out whether there is a
simple means of simultaneously obtaining quantitative fits
to the available heavy-ion elastic scattering data and
resolving the radius anomaly if one exists therein. This is
achieved by including gradual transition in 1 space of the
elastic partial wave S matrix and the nuclear deformation
in the Fresnel model. In addition to this, we have applied
the present model to resolve the radius anomaly, found in
the diffraction model analysis of elastic scattering data of

Ne on Pb and Ne on U. Therefore, the present in-
vestigation demonstrates the greater scope of the diffrac-
tion model in explaining the elastic collision of heavy de-
formed nuclei with a minimum number of assumptions
about heavy-ion interaction.

II. DIFFRACTION SCATTERING FORMALISM

f(8)= g (2l + 1)(1—St)Pt(cos8),
2k I=o

where

2i5)
SI——pre

(la)

(lb)

The evaluation of f (0) is based on an approximation of
the partial wave series by an integral over the continuous
variable k=l+ —,'; a replacement of SI, qI, and 5I by a
continuously differentiable function,

The diffractive collisions of heavy charged particles are
predominantly of the Fresnel type. A direct physical
description of the Fresnel type of heavy-ion elastic col-
lisions is provided by Frahn s model, which takes advan-
tage of an elastic scattering S matrix for strongly absorbed
particles, which is governed by high energy and a strong
Coulomb field.

One starts with the usual partial wave expansion of the
elastic scattering amplitude for spin zero particles
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S(A, ) =r/(A, )e '@~' (lc)

and the employment of the asymptotic form of P~(cos8)
With these changes, f(8) takes the form'

f(8)=f'+'(8)+f' '(8), (2a)
=—'[(—' —C)'+ ( —' —S)']F' for 8&8, (7b)

= 1+—,
' [(—,

' —C)'+ ( —,
' —S)']F'+(C+S—1 )F

O.g (8)

for 8(8, , (7a)

f' +'(8)-= —— dA, A,
' v)(A)e

k v'2vr sin8
(2b) where I' =I' [b—,(8, —8)] is a real function.

4+(A, ,8) =25(A, )+(A8 —m/4) . (2c)

III. CALCULATION OF A,,
FROM THE INTERACTION POTENTIAL

OF DEFORMED NUCLEI

The sharp cutoff model corresponds to g(A, ) = 1 for
A, & A.„and q(A, )=0 for A, & A,„where A,, is the critical an-
gular momentum. The critical angle 8, is given by

A,, =n cot(8, /2),
where n is the Sommerfeld parameter. With these condi-
tions, f (8}leads to Vc(R)+ Vg(R)+ VN(R) =E, (ga)

The diffraction model described in the preceding sec-
tion assumes that there is a certain critical angular
momentum A,, for which the height of the barrier formed
by the Coulomb, centrifugal, and real parts of the nuclear
potential is equal to the center of mass energy of the reac-
tion, i.e.,

= —,
' I[—,—C(8')) +[—, —S(W)] I, (4} where

where C(8') and S(W} are Fresnel's cosine and sine in-
tegrals and

Zz.Zpe
Vc(r}= Vq(r) =

2@r

~=&2n /~ sin —,
'.(8—8, )/sin

and p denotes the reduced mass. The position R of the
barrier is determined by

8, is the angle at which Fresnel's cross section falls to one
quarter of the Rutherford value (the quarter point recipe).

The sharp cutoff model is incapable of describing quan-
titative features of the elastic scattering cross section since
it neglects reflection of partial waves above the barrier, ab-
sorption of partial waves below the barrier, and deviations
from Rutherford orbits caused by the real part of the nu-
clear potential. The most important correction is owing
to the gradual transition in angular momentum space (A, )
of the elastic partial wave S matrix [Eq. (lc)]. The finite
width of this transition region is measured by a parameter
b, that defines the size of the A,-space "window" through
which the elastic scattering and most quasielastic reac-
tions proceed. Its effect on the scattering amplitude is
described by a function I'(M), defined as the Fourier
transform of the derivative D (A, ) =dq(k)/dA, ,

F(M)= f dA, D(A, )exp[i(A, —A,, )x] . (5)

With the following form of reflection function,

[Vc(r)+ Vg(r)+ Viv(r)]r g
——0,

r
(Sb)

VN(r) = VoexpI [r (R—p+Rr )]/—T I .
For a deformed nucleus, Rr and Rr are given by

Ri =Roi(1+pI Y2,o)

(9a)

(9b)

where i =P or T, p denotes the quadrupole deformation
present in the projectile and/or target, and Rp; ——rp A

Substituting the various potentials in Eq. (Sb) and dif-
ferentiating, we get

R =D (1+X),
where X =x /D,

x = g RpIP Y2p,

(10)

where the nuclear potential V~(r) is obtained by folding
the density distribution of the projectile with the real part
of the single nucleon optical potential of the target. ' For
spherical nuclei, this potential is approximately given by

ri(A, ) = 1+exp

we have

m.b,(8, —8)
sinh[m. b,(8, —8)]

(6a)

(6b)

i =P, T

and D is the position of the barrier when nuclei are not de-
formed. Finally, we get the following relation between the
critical angle 8, or I,, and the deformation parameter:

~C =cot (8, /2)
F(0)= 1 preserves the quarter point property of the simple
Fresnel formula: cr/crz ———,

' at 8=8,. The generalized
Fresnel formula for the differential cross section, with the
assumption of "smooth cutoff, " is then given in terms of
Fresnel integrals C:—C(

~

8'
~

) and S—=S(
~

W
~

) by

=cot'(8,'/2)(1+X)'+4oX(1+X),

where 8, is the critical angle for X=O, a=E/Vc, and Vc
is the Coulomb potential at r =D or X=O.
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TABLE I. Parameters used to calculate nucleus-nucleus in-

teractions. i=projectile or target.
TABLE II. Quadrupole deformation parameters P used in

the calculation.

Nuclei

Projectile
Target

Po
(fm )

0.186

Vp

(MeV)

—50.0

Surface
thickness

(fm)

0.54
0.65

Rp;
(fm)

1.O4&,'"
1/3

&or~r

Nuclei Ne Kr 208Pb 235U 232Th 209B1

0.870 0.207 0.000 0.259 0.267 0.000

Rp —rf(r) = —Tg (r +T)ln 1 —exp T
(14d)

IV. FOLDING MODEL POTENTIAL

The long range part of the nucleus-nucleus interaction
is obtained by folding the density distribution of the pro-
jectile nucleus with the real part of the single nucleon op-
tical potential of the target nucleus as follows ':

Vz(r)= f pp(rp)VY(rp —r)d rp, (12)
and

Sm T
g (r) =(r —Ro) 2r

3

——,
' [(r 2Rt ) +—(r —2Rz) ], (14e)

where pp(rp) is the density of the projectile nucleus, and
Vr (rz. rp r) is——the rea—l part of the single nucleon opti-
cal potential for the target nucleus. When pz and Vr both
have spherical symmetry, the integral of Eq. (12) becomes
a two-dimensional integral:

Rp ——Rp+Rp .

Here, Vo denotes the depth of the Woods-Saxon well and

po is chosen such that the normalization of pr gives the
mass number of the projectile.

V. NUMERICAL CALCULATIONS

V~(r)= f ds f dtPp Vr (sz —t ),

~Pp Vo
V~(r) = f (r)

4r
(14a)

where s =rz+rI and t =rp —rz.
When pt and Vr have the Woods-Saxon form with the

same surface thickness, the integral of Eq. (13) can be
evaluated analytically,

Now we will describe the numerical determination of
the quarter point for collisions of Ne on Pb at 161.2
MeV, Ne on U at 175 MeV, Kr on Pb at 500
MeV, and Kr on Th at 500 MeV. Our aim is to com-

pare the calculated quarter points with those obtained
directly from experimental data.

First, we solve Eq. (8b) to find the position of the bar-

rier, D, by changing the separation distance between target
and projectile in steps of 0.001 fm and keeping their radii
fi~ed. V~(r) and V~(r) are calculated from Eq. (14), tak-
ing both nuclei spherical (P; =0) and of equivalent surface
thickness

I(r) =
exp

g(r)
r —Rp

V„'(r)= — [f(r) Ir +I(r)],aPp Vp

4r

where

(14b)

(14c)

T=2+T; gT, .

The parameters used for calculating nucleus-nucleus in-
teractions are taken from the work of Brogila and Win-
ther and are given in Table I. The value [V&(r)]„D is
then calculated by numerical integration (24 points Gauss-
ian quadrature) of Eq. (13). Substituting V~(D), Vc(D),
and E in Eq. (8a), we get the critical angular momentum

TABI.E III. The target radius calculated on the basis of the quarter point recipe with and without nuclear deformation.

Target

235U

208Pb

208Pb

Nuclear
reactions

Projectile

Ne
Ne

84K.r
84Kr

row

(fm)

1.238
1.300
1.109
1.181

gp go

7.64
7.70
6.81
7.00

56.2
53.1

125.0
101.0

1.439
1.430
1.232
1.228

8.88
8.47
7.57
7.28

52.86
51.03

116.30
98.94

Radius of target nucleus
Without deformation With deformation

Rpz- ror Rpp
(fm) (fm)

56.2
53.1

125.01
101.0

92.1

91.0
108.4
156.6

Experimental
quarter point

properties
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FIG. 1. The elastic scattering cross section o{0)/o.~{0) of
heavy ions with sharp cutoff (dotted line) and smooth cutoff
(solid line). The circles represent the experimental values, taken
from Refs. 8—11.

VI. RESULTS AND DISCUSSION

Having found the target radius from the quarter point
analysis with and without nuclear deformation, it is of
some interest to compare the resultant radius and the elas-

A,, and hence the critical angle 8, . This process is repeat-
ed by varying rpT in steps of 0.0001 fm until the calculat-
ed critical angle agrees with the experimental value. The
determination of the quarter point within the framework
of the diffraction model discussed above leads consistently
to an anomaly in the radius of the target in question. For
example, the radius of a low mass nucleus turns out to be
greater than that of a high mass nucleus. Furthermore,
we also find that the radius of the same target changes
with the incident energies.

The above apparent anomaly can be resolved by consid-
ering nuclear deformation described by Eq. (9b). The
values of P; used in the calculations are taken from Ref.
12 and are given in Table II. The above procedure is then
again repeated to find A., and 8, .

tic cross section. We see from Table III that the inclusion
of the nuclear deformation will yield a consistently greater
radius for heavy mass nuclei compared to light mass nu-
clei. For example, the radii of U and Th are found
greater than that of Pb, as expected. However, this is
not the case when the deformation is excluded. Our
present analysis differs from that of Rowley in the sense
that the latter used nuclear deformation as a variational
parameter. The kinetic energy of relative motion in the
region of the barrier is large compared with the energies
of rotational levels of these nuclei, and they might not
have time to change their shape and size appreciably.
Therefore, it is physically more meaningful to use intrin-
sic deformation of nuclei determined from the experimen-
tal value of the ground state quadrupole moment as shown
in Table II.

Table III also shows the values of 8, which one would
obtain for scattering of spherical nuclei of radii Rpp and
RpT. It is interesting to note that the nuclear deformation
has pushed out the actual quarter point 8, to 6i„and
hence explains the cause of the radius anomaly.

Furthermore, we are able to achieve a much better fit to
the elastic scattering cross-section data, as shown in Fig.
l, with the help of the smooth cutoff model (solid line) in-
stead of the sharp cutoff model (dotted line) used by previ-
ous workers. ' "" The parameters 6 used in the smooth
cutoff model are 6.5 for Ne on U, 5.0 for Ne on

Pb, 2.7 for Kr on Th, and 6.2 for Kr on Pb
The smooth cutoff model, aside from the "cosmetic" ef-
fect of giving much better fits of the data, provides addi-
tional information through the parameter b, . We also no-
tice that there are large variations in the diffuseness pa-
rameter

where E is the wave number. Particularly, its values for
heavier projectiles are substantially smaller than for the
lighter projectiles. This is most likely to be attributed to
the quasielastic contamination of very heavy-ion data.

In order to test the consistency of the quarter point
analysis, the calculation is carried for the same target-
projectile system at different incident energies. The quar-
ter point properties are shown in Table IV and the corre-
sponding fits to the elastic scattering data are shown in
Fig. 2.

TABLE IV. Results for Ne on "U and Kr on Bi at different energies.

Nuclear reactions
Projectile Target

Elab
(MeV)

Radius of target
~oT
(fm)

Experimental
quarter point

properties

Ne
Ne

'4Kr
Kr

'4Kr

235U

235U

209B1

209B1

209B1

175
252
600
712
714

1.238
1.280
1.30S
1.334
1.356

7.64
7.90
7.7S
7.92
8.05

56.2
33.8
66.7
50.5
49.S

92.1

134.8
270.0
343.0
350.0
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84K„2098 ~ &ON ~2350
VII. CONCLUSIONS

1.0—
0, 8-
0.6-
Q. l

4

We make the following essential conclusions from the
present investigation:

The addition of nuclear deformation in the Fresnel dif-
fraction model resolves the radius anomaly, and the as-
sumption of smooth cutoff of the angular momentum
leads to a better fit to the elastic heavy-ion collision data.
The presence of the angular momentum space window
width, aside from its cosnmtic effects, provides additional
information about the nonelastic events. Clearly, by
analyzing a substantial amount of data one can hope to
give a vahd description of collisions of heavy-ion de-
formed nuclei in terms of semiclassical diffraction models
on par with the optical model analysis.

I t I I I i~ l. I I

0 20 3O 40 50 60 70 &O 2O 30 4, 0 50 60
e c,m.

FIG. 2. The elastic scattering cross section ~(8)lcr~(8) of
Ne on 3 U and Kr on 98i at different incident energies.

The circles represent the experimental values taken from Refs. 8
and 11.

Recently, through a similar analysis, Pandey' found
that the target radius anomaly is not only confined to very
heavy deformed nuclei, but the same could be seen in the
elastic collision data' of light deformed nuclei.
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