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Emission of particle unstable resonances from compound nuclei
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The sequential emission and then decay of particle unstable resonances (such as He) from com-

pound nuclei is discussed. Calculations (based on a statistical model) of yields and energy spectra
for the final stable products are presented. The effect of this sequential decay process on coin-
cidence measurements is discussed.

I. INTRODUCTION

The statistical model of Friedman and Lynch' predicts
multiplicities and energy spectra for the evaporation of
particles from compound nuclear systems. This model is
Aexible enough to permit calculation of the probability for
evaporation of several unstable resonances as well as stable
particles. We make use of this flexibility here to calculate
the effects of these resonances on observable quantities. A
different statistical method was employed earlier by
Mekjian, who also calculated some of these effects at
higher energies. His results are sensitive to the thermo-
dynamic volume parameter of his model.

Calculations based on the statistical model of Ref. 1

show that the multiplicities for evaporation of resonances
such as n, He, H* (the singlet state of the deuteron),
He*, He, and Li can be significant. For example, the

multiplicity of He can be of the order of 10% of the mul-

tiplicity of individual protons evaporated separately.
Since each He decays into two secondary protons which
are detected (the resonances dealt with here typically trav-
el less than several hundred Fermis before decaying) such
effects can be significant, especially in predictions of two-

proton coincidence spectra or in the ratio of deuteron to
proton yields. Moreover, the yield of protons and neu-
trons arising from the secondary decay of resonances can
in some cases be 40% or more of the total evaporative
yield for these particles.

In Sec. II we will describe a method for calculating the
energy spectra of the final stable particles and show how
the total yields are effected by secondary emission. In Sec.
III we will use these spectra to construct coincidence cross
sections and correlation functions. We will give sample

calculations of some of these quantities.
In all the calculations below we include only particles

resulting from evaporation of the compound nucleus. The
calculations presented are for illustrative purposes. In
subsequent papers, however, we will make direct compar-
isons with experimental data.

II. CALCULATION OF SINGLES SPECTRA

In this section we will consider the emission and subse-
quent decay of a resonance from a compound nucleus, as
shown in the velocity diagram Fig. 1. The velocity of the
resonance (of mass mo) relative to the compound nucleus
is vo. The resonance then decays into two secondary frag-
ments, one of which has mass m and velocity v, relative
to the frame of the resonance. We calculate the spectral
distribution of the secondary as seen in the frame of the
compound nucleus, dN;„/dE, where E= 2mu . This is

normalized so that

J dE=N;„.

Here, N;, is the average number of stable particles of type
i which came from resonances of type r We have.

where N„ is the average number of resonances of type r
evaporated from the compound nucleus, and b;, is the
branching ratio. [For example, if the average number of
He evaporated per compound nucleus were 0.17, then we

would have N;„=(0.17)(2)=0.34.]
We first determine dN;„/dE for all the resonances

which yield stable particles of type i, and also determine
the spectrum of particles of type i evaporated from the
compound nucleus in one step, dN„/dE. Then the total
spectrum of particle i is the sum

FIG. 1. Velocity diagram for the evaporation and subsequent
decay of a resonance. The symbols are explained in the text.

dE „ dE

where dNt /dE is the spectrum (in the frame of the com-
pound system) of particles of type i to come from the
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To calculate (db;„/dE)(Eo), note that for any value of vo

d'b;„

v

d'b;„

d vg

Since v, is assumed to be isotropic

S S

where

m mE, =E+ Ep —2 EEp
mp mp

1/2

cosQ .

For some line shapes db;„/dE„ the integral (3) may be
evaluated analytically. For example, it is well known that
if db;„/dE, =b;„5(E,—p ), then the graph of
(db;„/dE)(Eo} vs E has the shape of a box. If the
resonant energy is g and the full width at half maximum
(FWHM) is I, then we can consider the Lorentzian

compound nucleus. Since we assume that vo (and also v, )

are isotropically distributed vectors, dN;/dE will be iso-
tropic in the compound system frame, and may be further
transformed to the laboratory frame when the compound
nucleus has a nonzero velocity. The transformation is ac-
complished by setting

2 1/2
d N; 1 E),b dN;

dE),bd Q),b 4m E dE

The statistical model of Ref. 1 supplies the important
ingredients to calculate dN;/dE. A computer program
implementing it gives the spectra of the directly evaporat-
ed particles dN„/dE and also the spectra of resonances
dN„/dEo, where Eo —,

' mo——vo . We can calculate the nor-
malized spectrum of particles of type i to come from reso-
nances of type r, (db;„/dE)(Eo), if we are given a value of
Eo and some distribution for E,. If this spectrum is sub-
ject to the normalization

db;,f (Eo)dE=b;„(for all Eo),E dE

then

d¹„db;„dX,= I „«o)„dEo.

The substitution of Eq. (4) into Eq. (3) allows
(db;„/dE)(Eo) to be evaluated analytically.

If both secondary particles have charge, then Eq. (4)
may be unsuitable because the Coulomb repulsion will
tend to suppress db;, /dE, for small values of E,. In this
case we instead use a Maxwell-Boltzmann line shape

8(E,—V)(E, —V)' e ', (5)

where we set

I
G

mp —m

mp

mp —m

mp

6
2

'

sin 5(k)
(6a}

where 5(k) is the phase shift and trik is the relative
momentum. Similarly, for He we use the modified line
shape

sin 5(k)
e 2mn

(6b)

where g is the Sommerfeld parameter.
For the A =5 resonances ('Li and He), the value of g is

taken to be the Q value for the reaction, and I from
tables. The He* assumed to be composed of several ex-
cited states and capable of decay into the n, He or p, H

because in Eq. (5) the peak value occurs at V+6/2 and
the full width at half maximum is approximately 1.795 G.
When Eq. (5) is inserted in Eq. (3), (db;„/dE)(Eo) can be
obtained by numerical integration.

For the purpose of generating the resonant contribution
to the singles spectra we use experimental data to estimate
g and I which are used in Eqs. (4) and (5). For A =2 res-
onances, low-energy phase shift data is available.
Neglecting the possible effects of the Coulomb field from
the compound nucleus, we follow the theory of final state
interactions, and estimate I' and g from the shape of the
spectral distribution

= 8(E, )
m /2+tan '(2p, jb, )

6/2
(E,—p) +(&/2)

(4)
,r

(MeV)
Particle

(&)

TABLE I. Decay channels and values of decay parameters
for the resonances considered in this paper. 6;„ is the branching
ratio, and g and I are the resonant energy and full width at half
maximum, respectively.

Resonance
(~)

where to correct for recoil, ' we set

mp —m

mp

mp —m
A=I

mp

He

N
4He*
'He*
'Li
'He

p
p of n

n

por H
n or He
p or 4He

n or He

2
1

2
0.33
0.67
1

1

0.8,2.8
0.07,0.5
0.12,1.0
0.8,1.0
1.1,1.0

1.97,1.5
0.893,0.60
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FIG. 2. Percentage of the total proton yield coming from the H*, He, He*, and 'Li resonances. (a) shows this percentage vs
maximum compound nuclear temperature for three different compound systems. (b) shows the partial percentages contributed by the
various resonances. (c) shows the total percentage as a function of compound nuclear mass. The lines represent a given laboratory
energy for an ' 0 beam and the points represent the targets Al, Fe, ' 'Ag, and ' Au. Intermediate points (not shown) can deviate
from the lines by a few percent of the yield.

channels. The values of b;„, I, and g are roughly estimat-
ed from scattering data. Table I summarizes the values
of the parameters used in this calculation.

Some of the systematic effects of secondary emission on
the yield of protons is shown in Fig. 2. For a given initial
compound nuclear temperature, Fig. 2(a} shows that the
fraction of evaporated protons to come from resonances
increases with the mass of the compound nucleus. This is
mostly due to our choice for the Fermi energy, which is

an important input to the statistical model. For the
A =43, 124, and 213 systems, we use Fermi energies of 25,
30, and 38 MeV, respectively. Figure 2(b} shows the
secondary contribution to the proton spectrum broken
down according to the various resonances. The H and
the He give the greatest contributions, with the competi-
tion between these two strongly infIuenced by the
Coulomb barrier, especially at the lower temperatures.

Figure 2(c) shows the contribution to the proton yield
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FIG. 3. Spectrum of evaporated protons (a) and neutrons (b)

in the compound nuclear frame. The contributions from the
various resonances are shown. The compound system has

A =213, Z=87 and a maximum temperature of 10 MeV. Be-
cause of secondary emission, protons appear below the primary
Coulomb barrier and neutrons appear above the thermal peak.

FIG. 4. Spectrum of evaporated protons (a) and neutrons (b)

in the compound nuclear frame. The compound system has
A =43, Z =21 and a maximum temperature of 10 MeV.

neutrons coming from resonances are essentially the same
as those which evaporate in one step.

from secondaries as a function of compound nuclear mass
for a fixed energy projectile. In this graph the lines

represent a given laboratory energy for an 0 beam, and16

the points are compound nuclear systems formed by fus-

ing ' 0 and various targets. For small A, the curves have
a negative slope because the temperature drops sharply
with increasing A. For larger A, this decrease in tempera-
ture is more than offset by the Fermi energy effect dis-
cussed in connection with Fig. 2(a).

Figure 3(a) shows a dX~/dE (in the compound nuclear
frame) calculated by Eq. (1) for evaporation of protons
from ' 0 fused with ' Au having an initial temperature
of 10 MeV. Note that some protons are predicted below
the primary Coulomb barrier. To understand this, consid-
er the evaporation of a H". When the temperature is not
too high, a significant amount of the H" kinetic energy
will come from acceleration in the Coulomb field of the
compound nucleus. But when the H" decays the proton
and neutron share this energy. This same effect can be
seen to produce neutrons at energies above the thermal
peak in Fig. 3(b). Figure 4 shows proton and neutron
spectra from a less highly charged system, ' 0 fused with

Al, also with an initial temperature of 10 MeV. With
the lower Coulomb barrier, the energies of the protons and

III. CALCULATION OF COINCIDENCE SPECTRA

A more direct consequence of the evaporation of un-
stable resonances from the compound nucleus is given by
the coincidence signatures of these events. In this section
we calculate coincidence quantities from the results ob-
tained in Sec. II.

Figure 5 shows a velocity diagram for a sequential de-
cay. The velocity of the compound nucleus relative to the
laboratory frame is v, . As before, vo is the velocity of the

Vc

FIG. 5. Velocity diagram for the evaporation and subsequent
decay of a resonance into two fragments of equal mass. The
symbols are explained in the text.
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d X1f(x(,xz, . . . , xk)=-
dX1dX2 ' ' dxk

so that

f f(x~~xz, . . . , xk)dx~dxz dxk ——1.
Equation (7) gives

d v1d v2 ——d v„1d vo,

since v, is a constant, so that

f(vt vz)=f(v ] vo) .

But if we assume independence of the distributions for
the vectors v„1 and vo, then

resonance relative to the compound nucleus, and v„1 is the
relative velocity between the two fragments. Fragment 1

has a laboratory velocity of v
&

and lands in detector 1 at
laboratory angles 8~ and P&, and similarly for fragment 2.
If we specialize to the important special case where

m1 ——m2 ——Pl,
—+ 1 —+V1= 2 Vrel+ VO+ Vc

1 ~V2= —
2 Vre1+ UO+ Uc

In accordance with Fig. 5 we can also define

1 2 1 2
E1 ———,mv1, E2 ———,mv 2,

and

E„)———,[E(+Ez—2(EzE()' cosP] i

Eo = —,
' [E,+Ez+2(E~Ez)' cosP]

+v, [mv, —(2mE& )
' cos8~ —(2mEz)' cos8z],

cos/3=cos8&cos8z+sin8~sin8zcos(P] —Pz) .

It will be convenient in this section to define a general
normalized distribution

nH, (1,2)= [N~(N„—1)—2NH, ]f (E&,Q, )j (Ez, Qz)

+2NHQ(E), Q),Ez, Qz) .

If we know the cross section for compound nucleus for-
mation Op, then we can transform nH, (1,2) into a cross
section

d4o

dE, dEzd Q,d Qz
(10)

We can also transform nH, (1,2) into a dimensionless
correlation function CH, (1,2),

nH, (1,2)
CH, (1,2)=

Np fp(E„Q, )fp(Ez, Qz)

This correlation function differs from the one calculat-
ed by Koonin. ' The latter does not include sequential de-
cay of unstable resonances, and primarily gives informa-

tons evaporated completely independently from the same
compound nucleus, which are detected in coincidence.
Let NH, and N~ be the total multiplicities of He and pro-
tons, respectively, and f~(E~, Q ~ ) be the proton spectrum
[Eq. (2) at detector 1, normalized to unity].

We construct the quantity nH, (1,2) equal to the total
number of coincidence counts per (MeV sr ) per com-
pound nucleus when the detectors look for coincidences at
(E~,Ez, Q&, Qz). nH, (1,2) should contain a term

2NH j"(E),Ez, Q ),Qz),

to represent the coincidences which stem from a single
He. We also wish to normalize

f nH, (1,2)dE)dEzdQ)dQz Np(N——p
—1),

because this is the maximum number of coincidences
(twice the number of pairs) if no proton can enter both
detectors. We can therefore approximate nH, with the
simple form

f(v. i vo)=f(v. &)f(vo) .

This leads to

1f(E),Ez, Q), Qz) =
4m

E1E2
E;1EO

1/2

f(E„i)f(Ep) .

yO

He f, 2) (lV!eV sr )

.-5x )Q

Thus, the differential coincidence probability
f(E&,Ez, Q&, Qz) is expressed in Eq. (8) entirely in terms of
laboratory quantities and calculable spectra. According to
the definition of the f 's we have

f f(E),Ez, Q(, Qz)dE)dEzdQ(dQz ——1 .

To calculate the average number of coincidence counts
per (MeV sr ) per compound nucleus at a given
(E~,Ez, Q~, Qz), we must include counts in addition to
those represented by Eq. (8). The counts from the latter
equation arise from fragment particles (say protons) which
both came from a single resonant particle (a specific He),
as shown in Fig. 5. However, we can also have two pro-

pO

FIG. 6. Number of p-p coincidence counts per (MeV sr ) per
compound nucleus vs laboratory energies E1 and E2, for labora-
tory angles 8~ ——82 ——25 and P=5'. The compound system is
formed by fusing 400 MeV ' 0 with ' C. E1 and E2 take on
values between 11 and 40 MeV.
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f(E,.() = .
7l

e 2&7'

sin 5(k)
Erel (2.0 MeV

(12)

bexp( cE„&—), E„&~ 2.0 MeV,

where a and b are chosen so that f(E„~) is both normal-
ized and continuous at E„~——2.0 MeV, and c is a free pa-
rameter that we have set equal to 1 MeV

In a similar way, we can study the effect of the H' res-
onance on n-p coincidence spectra. If we specify that the
neutron enters detector 1, we can modify Eq. (9) to give
the number of n-p coincidence counts, nD(1, 2). We take

tion about the temporal and spatial size of the interaction
region. The correlation function given by Eq. (11), how-

ever, neglects the interactions among particles evaporated
independently, which we assume are events well separated
in time.

Figure 6 shows a plot of nH, (1,2) (for protons) vs Et
and Eq for the example of a compound system formed by
fusing 400 MeV ' 0 with ' C. The laboratory angles are
8t ——82 ——25, and p=5'. One advantage of using a light
compound nuclear system was suggested by Fig. 2(b)—a
large Coulomb barrier tends to inhibit He production,
especially at the lower temperatures. In this example, the
statistical calculation gives NH, ——0. 162, N~=2. 43, and a
maximum compound nuclear temperature of 9.4 MeV. If
we assume a geometrical value for cro, then the peaks in

Fig. 6 correspond to a value of about 0.2 mb/MeV sr for
the coincidence cross section in Eq. (10). The valley along
the line E~ ——E2 is mostly due to the Coulomb repulsion
of the two protons, and deepens very rapidly as the open-
ing angle P is decreased.

Because the line shape f(E„t) is critical for these plots
we used a better fit to Eq. (6b) than is supplied by Eq. (5).
Experimental data" suggest that the final state interaction
formalism is valid up to relative energies of at least 2
MeV. We therefore take

nD(1, 2) = (N„Np —ND )f„(Et, Q ) )fp(E2, Q2)

+NDf(Et, Qt, EzA2),

where N„and ND are the number of neutrons and H
resonances evaporated per compound nucleus, and
f„(Et,Q&) is the neutron spectrum [Eq. (2) at detector 1,
normalized to unity].

Figure 7 shows n~(1, 2) for 420 MeV ' N on ' Au at
0,=02 —60' and p =2'. Here, the statistical model
predicts N„= 18.1, N~ = 1.05, and ND ——0.164, and a max-
imum compound nuclear temperature of 5.3 MeV. For
f(E„~), we use a line shape similar to Eq. (12), except the
Coulomb suppression factor is absent. If we again assume
a geometrical value for oo, then the peaks in Fig. 7 corre-
spond to a coincidence cross section value of about 1.4
mb/MeV sr . Note that the peaks in Fig. 7 occur at a
lower energy than those in Fig. 6, primarily because the
compound nucleus has a smaller speed relative to the labo-
ratory. The valley along the line Ej ——E2 is due to the
phase space suppression of the quantity in Eq. (6a) for
small values of k. The background is asymmetric because
the Coulomb field of the compound nucleus inhibits eva-
poration of low energy protons.

Finally, we will mention several interesting effects that
may occur in the case of the H*. If the resonance decays
while it is still in the strong Coulomb field of the com-
pound nucleus then the proton will gain an additional
amount of energy relative to the neutron. If the 2H' de-

cays a distance r from the compound nucleus then

ZceAE=

where Z, is the charge for the compound nucleus aver-
aged over the evaporation process. We have

1/2
0

~o(f, p) (Mey ~sr 2)

-. )x]O ~

the product of the speed and lifetime of the resonance.
Putting Z, =50 and I =0.5 MeV we obtain

6MeV /

1/2Eo

Also, the tidal force of Coulomb repulsion may polarize
the 0" and may cause it to disintegrate before its free
lifetime of A'/1. This premature breakup would cause
collision broadening of the line shape, thus increasing I
and AE, but smearing out the structure in Fig. 7 some-
what. This polarization may align v„&, along the direc-
tion of vo, and thus invalidate the condition of indepen-
dence of these two vectors. We plan to treat the 0" reso-
nance in more detail in future papers.

IV. CONCLUSION

FIG. 7. Number of n-p coincidence counts per (MeV sr ) per
compound nucleus vs laboratory energies E& and E2 (E~ is the
neutron energy). The laboratory angles are 0I ——02 ——60 and
P=2'. The compound system is formed by fusing 420 MeV '4N

with ' Au. El and E2 take on values between 0.5 and 15 MeV.

We have presented some of the systematic effects of
secondary emission on proton yields. The mathematics
necessary for computing both singles and coincidence
spectra for emission from compound nuclear systems
when unstable resonances are present have been described.
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Illustrative examples of spectra have shown emission of
protons below the Coulomb barrier, and neutrons above
the thermal peak, especially from high-Z systems. Other
calculations show how unstable resonances can leave
"fingerprints" on a coincidence spectra, even if relatively
few of the resonances are evaporated. In future papers we

will compare the results of our calculations with experi-
mental data.
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