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Differential cross sections and analyzing powers of polarized proton elastic and inelastic scatter-

ing from l66Er l68Er, ' Yb, and l76Yb have been measured at 65 MeV. Analysis for J"=0+—6+

members of the ground state rotational band has been performed using coupled-channel calculations
for scattering from deformed optical potentials. Excellent fits have been obtained for both cross
sections and analyzing powers for 0+, 2+, and 4+ states and fairly good fits for the 6+ state. In the
coupled-channel calculations, the multipole moments of each part of the deformed optical potentials
were set to be equal. The quadrupole moments of the deformed optical potentials for these nuclei

were found to be 4—6%%uo larger than those of charge densities obtained by electron scattering and

Coulomb excitation. A folding model calculation shows that the main part of this difference is at-
tributed to the density dependence of the effective interaction. Mass number dependence of the

phenomenological range of the effective interaction can be also reproduced from the folding calcula-

tion using the density-dependent effective interaction.

I. INTRODUCTION

Recent progress in nuclear matter theory has stimulated
the study of nuclear reactions in terms of realistic
nucleon-nucleon interactions. In particular, the micro-
scopic optical potential has enabled us to describe elastic
scattering of protons' from spherical nuclei globally.
For the inelastic scattering from low-lying collective
states, it has just started to explain the scattering from the
microscopic standpoint. Experimentally, the progress in
high quality beams and high resolution spectrographs has
made it possible recently to measure the low-lying inelas-
tic scattering of hadrons and electrons from deformed nu-

clei in the 152&2 &190 region, where the theoretical
treatment is simple and clear. The recent central concern
in inelastic scattering from low-lying states in deformed
nuclei lies in interpreting the difference between multipole
moments observed by various probes. One of the keys to
solving this problem is Satchler's theorem, which states
that the multipole moments of the folded potential are
equal to those of underlying matter distribution if the ef-
fective interaction is local and density independent. How-
ever much evidence has been reported " that the effec-
tive interaction is density dependent; careful consideration
should be given in the application of Satchler's theorem.

Up to now, many experimental efforts' ' have been
devoted to resolve such problems, but some of their results
are complicated. King et al. ' have shown using 35 MeV
protons that the quadrupole moments of the deformed op-
tical potentials (DOP) are systematically ( &6%%uo) smaller
than those of the charge densities for 's Sm, ' Yb, Th,
and U. An experiment using 800 MeV protons was
performed at the Los Alamos Meson Physics Facility
(LAMPF) by Barlett et al. ,

' and their analysis has shown
that the multipole moments of the imaginary part of the

DOP are almost equal to those of the charge densities for
Sm and ' Yb. On the other hand, the quadrupole rno-

ments of the DOP obtained by inelastic scattering of the
polarized proton at 134 MeV on ' "Sm and ' Er by Ron-
ningen et al. ' are about 4—1 1 %% larger than the charge
quadrupole moments.

We have measured the cross sections and analyzing
powers of polarized proton elastic and inelastic scattering
from ' Er, ' Er, ' Yb, and ' Yb at 65 MeV. The ex-
periment using 65-MeV polarized protons' has many ad-
vantages. First, at this energy the influence of a giant res-
onance on the excitation of a low-lying collective state is
small and the reaction mechanism is relatively simple.
Second, the DOP parameters can be determined with less
ambiguities using the analyzing power data together with
the cross sections, and therefore the multipole moments of
the DOP can be determined precisely. Furthermore, in
this energy region the real central part of the optical po-
tential is deep, in contrast to the intermediate and high en-

ergy region„where the imaginary part of the optical po-
tential plays an important role.

The work presented here is aimed at extracting the mul-
tipole moments of the DOP and comparing them with the
charge multipole moments, and also interpreting them in
terms of the folding model and the properties of the effec-
tive interaction in this energy region. In this paper, we
describe the experimental method in Sec. II, and the
method of the data reduction in Sec. III. The convention-
al optical model analysis and the coupled channel analysis
are presented in Sec. IV. The comparison of the multipole
moments of the DOP derived from our experiment with
those of the charge densities is presented in Sec. V and
also the effect of the density dependence of the effective
interaction is discussed through the folding calculations.
A summary and some conclusions are given in Sec. VI.
The details of the folding calculation are described in Ap-
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pendix A, and the range of the effective interaction is in-
vestigated in Appendix B.

TABLE I. Thicknesses and isotopic enrichments of the tar-
gets.

II. EXPERIMENTAL METHOD Target
Thickness
(mg/cm ) Enrichment

The experiment has been performed using polarized
protons from the azimuthally varying field (AVF) cyclo-
tron at the Research Center for Nuclear Physics (RCNP),
Osaka University, and the data have been obtained using
the high resolution spectrograph RAIDEN. ' The polar-
ized proton beam from the atomic beam-type polarized
ion source' (PIS) is injected axially into the cyclotron.
The injection system is controlled by a microcomputer
system, so that the stable operation of the PIS is achieved.
The beam from the cyclotron was momentum analyzed by
double analyzing magnets, and deflected again by a
cleaning magnet to reduce beam background. The beam
spot size on target was about 1.0 mm in diameter.

During the experiment the beam polarization was moni-
tored by a sampling-type beam polarimeter, ' which was
located at the focal point upstream of the cleaning mag-
net. A stacked polyethylene target was periodically insert-
ed in the beam line for a few seconds with an interval of
10—50 sec. The beam polarization was monitored while
the polarimeter target was in the beam line. The measure-
ment with the spectrograph was carried out when the po-
larimeter target was out of the beam line. The direction
of the beam polarization was reversed every 0.5 sec by
switching the rf transitions at the PIS.

At the focal plane of the spectrograph, scattered parti-
cles were detected by a counter array consisting of a
two-dimensional position sensitive proportional counter of
1.5 m length, a dual single wire proportional counter, and
a plastic scintillation counter. The horizontal position
along the focal plane was measured by the charge division
method, and the vertical position was determined by
measuring the drift time of the electrons. A pileup re-
jecter was employed to prevent pileup signals from caus-
ing a yield at an unexpected position. An event signal was
generated by an energy signal from the plastic scintillator,
and when an event occurred, every signal was digitalized
by analog-to-digital converters (ADC's) and transmitted
into a PDP-11/44 computer through the raw data proces-
sor. At the PDP-11/44 computer, all data were record-
ed on magnetic tape in a list mode.

The targets used were self-supporting enriched metal
foils, and their thicknesses and isotopic enrichments are
summarized in Table I. The solid angles and angular ac-
ceptances were 1.2 msr and +0.46' for measurements at
farward angles (Ot,b&36') and 2.3 msr and +0.71' for
measurements at backward angles (O~,b & 36'). The abso-
lute scattering angle was determined with the accuracy of
0.05' by searching the scattering angle at which the sign of
the analyzing power of the p+ Pb elastic scattering
changes rapidly (O&,b

——29.81' at E~ =65 MeV). The angu-
lar distributions were measured from 11 to 70' in 1.0'
steps at forward angles and in 2.0' steps at backward an-
gles. The elastic peak was always kept at the same posi-
tion on the focal plane counter in the measurements of the
angular distributions in order to avoid the systematic er-
rors which might arise fram unevenness of the efficiency.

166Er

Er
»4Yb
176Yb

2.0
2.0
1.0
1.0

97.69%
96.24%
95.80%
96.68%

The overall energy resolution and beam intensities on tar-
get were 20—22 keV FWHM and 20 nA at forward an-
gles, and 24—26 keV FWHM and 40 nA at backward an-
gles. In the measurement of the very forward angles
(Ohb&15'), the width of the slits in the beam transport
system was adjusted in order to obtain proper counting
rate ( & 800 cps) and a better energy resolution. The well-

separated elastic peak from a '" Sm target with 2.0
mg/cm thickness was measured with good statistical ac-
curacy as a reference spectrum in peak fitting.

III. DATA REDUCTION AND RESULT

IV. ANALYSIS

In the analysis of the conventional optical potential and
coupled channel calculation, 3%%uo errors were added to the
statistical uncertainties in quadrature to include the un-

List mode raw data on magnetic tapes were sorted event
by event, and finally the position spectra were constructed
emplaying a particle identification gate. The overall dead
time corrections were carried out for the position spectra
assuming constant efficiency of the plastic scintillator,
and these did not exceed 6%%uo. These counting losses arose
mainly from the pileup rejecter and the dead time of
counter system and ADC's. Figures 1 and 2 show typical
position spectra for ' Er and ' Yb at O~,b

——48'. It is not-
able that the peak-to-valley ratio between 0+ and 2+
states is more than ten. Even at the very forward angle
the separation is excellent as shown in Ref. 2.

For the 0+, 2+, and 4+ states of the ground state rota-
tional band of Er isotopes and 0+ and 2+ states of Yb iso-
topes, peak areas were extracted using a peak fitting code
assuming that the peak shapes were identical for these
states. The peak shape function was extracted from the
elastic peak itself except for the tail at the low momentum
side, which was taken from the well-separated reference
spectrum of ' Sm. The X values per data point in the
peak fitting were 1.0—1.5. The statistical uncertainties of
the peak sums were calculated by solving the error matrix
(inverse of the matrix of second derivatives of X ) in the
peak fitting procedures.

The beam polarization was calculated for the spin up
and spin down modes independently for every run, and
they were nearly equal to 80%. The difference in the
beam polarization between the spin up mode and spin
down mode was less than 2%.

The experimental cross sections and analyzing powers
are plotted in Figs. 3—6. The error bars on experimental
data represent only statistical ones.
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FIG. 1. Typical position spectra of the focal plane counter
for the ' Er(p, p') scattering at 65 MeV. Spin up and spin down
spectra are shown at 01,b ——48 .

known systematic error and to avoid trapping in an un-

physical local X minimum as shown in the following
forms:

- 2 1/22
dtT dO

dQ dQ

5' =(My„„+0.03 )'~

+ X0.03'
dQ

(2)

A. Optical potential for elastic scattering

Conventional optical potential fitting to the elastic
scattering data was performed using the automatic search
code MAGALI (Ref. 24) of Raynal. The following optical
potential was used:

U(r) = Vc,~(r) —Vgf(r;r„,a„)
d

t W„f(r;r, a )+—4ia, 8; f(r;r „a,)
dr

2
d+ Vt, — f(r;rt„at, )(o"L),mc rdr (3)

where

I I I I I I I I I I I I I I I I
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FIG. 2. Same as Fig. 1 except for ' Yb.

f(r;ro, ao) = I I+exp[(r rQ '~—)/a ]ID

Ze r
g 1/3 2g 2/3

3—
C C

r &r,A'

Ze r &rcpt
/

All parameters except for the Coulomb potential were
searched. A renormalization of the experimental cross
sections was included taking account of the uncertainties
of the target thicknesses. The best fit optical potential pa-
rameters are shown in Table II. The 7 per data point are
0.3—0.5.

B. Coupled channel analysis

Coupled channel analysis has been performed for the

j =0+—6+ states of the ground state rotational bands us-

ing the automatic search code ECIS79 (Ref. 26) of Raynal.
It was assumed that these states are members of a X =0+
rotational band of the axially symmetric rigid rotor. In
the coupled channel calculation, the deformed optical po-
tential (DOP) was produced by replacing the radius pa-
rameters of each part of the optical potential (3) by
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FIG. 3. Measured cross sections and analyzing powers for the ' Er(p,p') scattering at 65 MeV. The error bars on the experimen-
tal data represent only statistical ones. The solid curves are results of the coupled-channel calculations with the DOP. The DOP pa-
rameters are listed in Tables II and III.

r'(~)=r~o 1 0+ QRY~o(~)
A,

(4)
The reduced multipole moments of the DOP are given

as follows: (In this paper, we mention this reduced mul-
tipole moment simply as the multipole moment. )

where the suffix j represents each part of the optical po-
tentials; the real central part, the volume imaginary part,
and so on. The deformation parameters p2, p4, and p6
were used. The DOP was expanded in multipoles up to
A, =12. The deformed full-Thomas term was used for
the spin-orbit potential. The Coulomb potential was that
of deformed Fermi distribution, the reduced radius r, and
the diffuseness a, were kept as r, =1.11 fm and a, =0.58
fm. These values were obtained from the electron scatter-
ing data and modified in consideration of the finite charge
distribution in the projectile proton itself. The influence
of the Coulomb distortion due to the deformation still
remains beyond the matching radius (20 fm), so we used
the Coulomb correction for the distortion beyond the
matching radius.

Q~= J V(r, B)Y~p(8)r + drdQ,J, (5)

where J, represents the volume integral of the DOP as

J,= f V(r, 8)r dr dQ .

Generally, in the coupled channel calculations of the de-
formed nuclei, there is a problem of how to relate the de-
formation parameters of each part of the optical poten-
tial. ' ' ' According to Satchler's theorem, a reasonable
constraint on each deformation parameter is the require-
ment that they produce equal multipole moments of each
part of the optical potentials, 3 although the same defor-
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FIG. 4. Same as Fig. 3 except for ' 'Er.

mation parameters, or sometimes deformation length (PR)
scaling, have been used so far.

Therefore we modified the ECIS79 by adding some sub-
routines to perform the following procedures. In each cal-
culation, the multipole moments of the real central poten-
tial were calculated first, and then the deformation param-
eters of the other parts of the optical potential were calcu-
lated so as to reproduce the multipole moments of the real
central potential by expanding them in the first order and
using Newton's method. For the differential type of po-
tential, the surface imaginary part and spin-orbit part, the
multipole moments of the deformed Fermi form factors
were calculated, not the differential ones. The Coulomb
deformation parameters were set to reproduce the charge
multipole moments obtained by electron scattering and
Coulomb excitation.

Using this modified Ects79, every part of the DOP pa-
rameters and multipole moments (i.e., deformation param-
eters) were searched with various combinations of the
search parameters. Usually 4—7 parameters were

searched at the same time. The calculation where each de-
formation parameter was set to be equal and the Coulomb
correction was not employed increased P about 10—40%,
and also increased the quadrupole moment of the DOP
about 0—2%. During the search of the coupled channel
calculations, renormalization factors for the experimental
cross sections were also adjusted.

Solid curves in Figs. 3—6 show the best fit calculations
to the data, and the DOP parameters are listed in Tables
II and III. As shown in the figures excellent fits have
been obtained for 0+, 2+, and 4+ states and fairly good
fits for 6+ states.

In order to investigate the sensitivity of the data to the
multipole moments, 7 values for each state were evaluat-
ed with a little variation of each multipole moment except
for the Coulomb potential. Typical results for ' Er are
shown in Fig. 7. In this paper, the uncertainties in the
multipole moments have been defined by the values where
the X value increases 10% from the minimum one.
These uncertainties are not statistical, but represent the
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sensitivity of the experimental data to the multipole mo-
ments.

V. DISCUSSION

A. Optical potential

The differences between the spherical optical potential
(SOP) which reproduces only elastic scattering and the
DOP derived from the coupled channel calculations have
been discussed in detail in our previous paper, so we men-
tion these briefly.

The volume integrals of real central potential per nu-
cleon of the DOP are about 14—17 MeVfm larger than
those of the SOP as listed in Table II. The effect of the
collective excitations on the real central potential is repul-
sive. This phenomenon was also observed in (a,a') reac-
tions, ' in (d,d') reactions, ' and in (p,p') reactions.

Another difference between the SOP and DOP is in the
shapes of the imaginary parts. In the SOP, the surface re-
gion of the imaginary part is deep, in contrast with the
spherical nuclei. This is because in the SOP the decrease

in the flux due to the collective excitation is taken into ac-
count by the imaginary potential whereas in the DOP it is
treated explicitly.

With regard to the spin-orbit potential, volume integrals
of spin-orbit potentials of the SOP are 20—30% smaller
than those of neighboring spherical nuclei, but those of
the DOP are very similar to the spherical nuclei as dis-
cussed in the previous paper.

B. Multipole moments

It is not reasonable to compare the deformation param-
eters directly with those obtained by the other experi-
ments, since they depend strongly on the geometry param-
eters of the optical potential. Therefore, we have corn-
pared the multipole moments of the DOP as proposed by
Mackintosh. ' Table IV summarizes the multipole mo-
ments of the DOP derived from the present experiment
and the other experiments. ' ' ' The multipole mo-
ments of the DOP are also shown in Fig. 8, indicated by
closed circles, and charge multipole rnornents are shown
as open circles together with the results of the folding cal-
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culation discussed later. The charge quadrupole moments
plotted in Fig. 8 are mean values between the electron
scattering data and Coulomb excitation data.
Since the higher charge multipole moments cannot be
determined precisely by the experiment of Coulomb exci-

tation, these were taken from the electron scattering
data.

As shown in the figure, first we notice that the trends
of the multipole moments of the DOP and the charge
multipole moments agree fairly well. However, it is re-
markably observed that the quadrupole moments of our
DOP are 4—6% larger than those of the charge densities
for all the measured nuclei. Taking Satchler's theorem
into consideration, these differences can be explained in
two ways.

(i) The density dependence of the effective interaction
causes the quadrupole moments of the DGP to be dif-
ferent from those of underlying matter distributions.

(ii) The quadrupole moments of the proton and neutron
distributions are different.

The proton inelastic scattering from ' Sm and ' Yb at

800 MeV (Ref. 13) suggested that the multipole moments
of proton and neutron distributions are almost equal.
Therefore in order to investigate the effect as listed (i), the
folding calculations using the density dependent effective
interaction have been carried out.

C. Multipole moments of the folded potential

The details of the folding calculation are described in

Appendix A. The density dependent (DD) effective in-

teraction used is the product of the DD function and
M3Y effective interaction. ' A 5-function exchange
pseudopotential was employed according to Satchler and
Love. Two kinds of the DD function were used. The
first one is parametrized so as to reproduce the results of
the Brueckner-Hartree-Fock (BHF) calculation for nuclear
matter by Jeukenne, Lejeune, and Mahaux (JLM). The
second one is conventional Green's density dependence as
(1.0—2.0p ~ ). Figure 9 shows the shape of these DD
functions. Both are normalized at one-third of the normal
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FIG. 7. g per data point for each state are plotted as a function of each multipole moment. Best fit value and its error (see text)
are also drawn as arrows.

Nucleus Reaction Q, (eb)

TABLE IV. Multipole moments of the DOP and charge densities.

Q4 (eb2) Q6 (eb') References

166Er (p p')

(e,e')

(a,a')

(a,a')

(a,a')

(a,a')

{p,p')
(a,a')

DDHF

65 MeV

50—320 MeV
Coulomb
excitation
Coulomb
excitation
Coulomb
excitation
Coulomb
excitation
134 MeV
50 MeV

2.511+0.032

2.41
2.378+0.011

2.432+0.OOS

2.419+0.009

2.40 *0.02

2.50 +0.08
2.684
2.45
2.42

0.242 +0.072

0 22+p. i6

0.06 p i8

0.32 +0.06
0.275
0.28
0.32

0.01 +0.03
—0.100

0.252 +0.020 —0.025 +0.007

0.294 0.0101
0.32 +0.16

This work

C. W. Creswell (Ref. 33)
I. Y. Lee et al. (Ref. 37)

H. Fisher et al. (Ref. 38)

H. J. Wollersheim et al. (Ref. 39)

K. A. Erb et al. (Ref. 40)

R. M. Ronningen et al. (Ref. 14)
D. L. Hendrie et al. (Ref. 16)
Negele and Rinker (Ref. 49)

168E1 (p,p')
(a,a')

{a,a')

6S MeV
Coulomb
excitation
Coulomb
excitation

2.564+0.038
2.43 +0.02

2.40 +0.02

0.198 +0.031 —0.078 +0.012
—p. is

0 20+p is

This work
I. Y. Lee et al. (Ref. 37)

K. A. Erb et al. (Ref. 40)

»4Yb (p p')
(e,e')'
(a,a')

(a,a')

(a,a')

65 MeV
95—325 MeV

Coulomb
excitation
Coulomb
excitation
50 MeV

2.547+0.039
2.28
2.439+0.012

2.433+0.012

2.750

0.23 +0.17

0.275 —0.088

0.025 +0.031 —0.099 +0.029
0.102 —0.060
0.21+p i8

This work
T. Sasanuma (Ref. 34)
H. J. Wollersheim et al. (Ref. 35)

J. S. Greenberg et al. (Ref. 36)

D. L. Hendrie et al. (Ref. 16)

»6Yb (p,p')
(e,e')

(a,a')

(p,p')
(p p')
(p,p')'
(a,a')
DDHF

65 MeV
50—320 MeV

Coulomb
excitation
35 MeV

SOO MeV
800 MeV
50 MeV

)P

2.29 +0.05
2.31
2.31
2.761
2.49
2.46

—0.09 +0.03
0.036
0.029

—0.169
0.057
0.049

2.436+0.032 —0.071 +0.020
2.30 —0.0128
2.325+0.019 0.28 p 2p

—0.104 +0.007
—0.054

—0.048
—0.053
—0.154

This work
C. W. Creswell (Ref. 33)
H. J. Wollersheim et al. (Ref. 3S)

C. H. King et al. (Ref. 12)
M. L. Barlett et aL (Ref. 13)

D. L. Hendrie et al. (Ref. 16)
Negele and Rinker (Ref. 49)

'Multipole moments obtained by model independent analysis.
Multipole moments of the imaginary central part of the DOP.
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density. The DD effective interaction used here repro-
duces the mean square potential radii as described in Ap-
pendix B. In the folding calculation, the point neutron
distributions are assumed to be identical to point proton
distributions derived from the charge densities.

The multipole moments of the folded potential are list-
ed in Table V and also plotted in Fig. 8. The open squares
in Fig. 8 represent the multipole moments using the JLM
density dependence and the open diamonds represent
Green's density dependence. The quadrupole moments of
the folding potential using JLM's DD and Green's DD are
about 4.5% and 6.0% larger than those of the charge den-

sities, respectively. The DD effective interaction deepens
the potential at the nuclear surface region, and hence the
quadrupole moment of the folding potential becomes
larger.

As shown in Fig. 8, the quadrupole moments of the
folded potential using the DD effective interaction are in
excellent agreement with those of the DOP derived from
the coupled channel analysis of the present experiment.
Therefore, the main part of the difference in the quadru-
pole moments between the DOP and charge densities can
be explained by the density dependence of the effective in-
teraction.

It was also found that the deviation of the multipole
moments of the folded potential from underlying matter
distribution depend on the density dependence of the ef-
fective interaction dominantly. The finite range M3Y ef-
fective interaction and zero range interaction of exchange
pseudopotential yield almost equal multipole moments if
we use the same density dependence.

Brieva and Georgiev have predicted recently that the
multipole moments of the DOP derived from coupled
channel calculation will vary with the incident energy.
The energy dependence of the multipole moments of the
DOP proposed by them is attributed to the fact that the
density dependence of the effective interaction varies with
the incident energy. It has been also reported by JLM
(Ref. 9) that the density dependence of the volume integral
of the effective interaction is altered with the incident en-
ergy by the BHF calculation. The enhancement of the
quadrupole moment of the DOP from underlying matter
distribution at 65 MeV in the calculation by Brieva and
Georgiev for ' Sm is about 4%, and this is consistent
with our data and also with our calculations (4.5—6%).

FIG. 9. Density dependence of the effective interaction. The
solid line indicates the density dependence based on the JLM
model (Ref. 9) at 65 MeV and the dashed line represents the
density dependence of Green's model. Both are normalized to
unity at one-third of the normal density.

D. Higher multipole moments

It is well known' ' that in the region of rare earth
nuclei, the hexadecapole moment has the largest positive
value near the Sm isotopes and then decreases gradually as
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TABLE V. Results of folding calculations.

Nucleus

166Er (p,p') exp. '
folded (no DD)

folded (JLM's DD)'
folded (Green's DD)~

Q2 (eb)

2.511 +0.032
2.410
2.524
2.562

Q, (eb')

0.252+0.020
0.294
0.320
0.330

Q6 (eb3)

—0.025 +0.007
0.010
0.010
0.009

(r') (fm')

35.68
30.01
33.41
34.56

16sEr (p,p') exp. '
folded (no DD)

folded (JLM's DD)'
folded (Green's DD)

2.564 +0.038
2.415
2.526
2.565

0.198+0.031 —0.078 +0.012 35.79
30.28
33.72
34.88

(pp ) exp
folded (no DD)

folded (JLM's DD)'
folded (Green's DD)

2.547 +0.039
2.384
2.489
2.523

0.025+0.031
0.102
0.101
0.103

—0.099 +0.029
—0.060
—0.073
—0.077

36.32
31.59
34.94
36.02

176~b (p p ) exp.

folded (no DD)
folded (JLM's DD)'

folded (Green's DD)

2.436+0.032

2.300
2.403
2.437

—0.013
—0.026
—0.030

—0.054
—0.064
—0.068

—0.071+0.020 —0.104 +0.007 36.17

31.67
35.01
36.10

'Multipole moments of the DOP derived from the present experiment.
Multipole moments of the folded potential using no density dependence. They are equal to charge mul-

tipole moments.
'Multipole moments of the folded potential using JLM's DD.
"Multipole moments of the folded potential using Green's DD.

the target mass number increases. Our data show the
same tendency as shown in Fig. 8. The hexadecapole mo-
ment changes its sign between ' Yb and ' Yb.

The excitation to the 4+ state is caused by the double-
step process through the quadrupole moment and by the
single-step process through the hexadecapole moment
dominantly. The observed difference in the angular distri-
butions of the 4+ state between Er and Yb isotopes is
based on the interference between these two different
dominant processes.

As shown in Fig. 8, the trends of the hexadecapole mo-
ments of the DOP and the charge densities are similar.
However, hexadecapole moments of the DOP are slightly
smaller than the charge hexadecapole moment, and this
phenomena cannot be explained by the density dependence
of the effective interaction on the assumption that the
proton and neutron distributions are identical. The
DDHF calculation by Negele and linker suggests that
the hexadecapole moments of the proton and neutron dis-
tributions are different. There is also a possibility that
these differences may arise from the different treatments
of the form factors in the analysis of the electron scatter-
ing ' and hadron scattering.

Although the hexacontatetrapole (A, =6) moments of
the DOP and charge densities have similar trends, the
hexacontatetrapole moments of the charge densities are
about 0.05 mb larger than those of the DOP in all three
nuclei. Since the higher order multipole moments are sup-
posed to be sensitive to the nuclear structure, for example,
the difference between the proton and neutron distribu-
tions due to the difference in the occupations of the nu-
clear shells, further precise and systematic measurements

are necessary for higher multipole moments using both
hadronic and electromagnetic probes.

E. Multipole moments in comparison
with other proton scattering

The multipole moments obtained by inelastic scattering
of 134 MeV polarized protons' from ' Er are listed in
Table IV. According to the JLM calculation the slope of
the density dependence of the effective interaction at 134
MeV which is normalized at one-third of the normal den-
sity is similar (although a little steeper) to that at 65 MeV.
Therefore the multipole moments of the DOP at 134 and
65 MeV are expected to be almost equal. The multipole
moments of the DOP at 134 MeV agree with our results
within the error, although the separation between the 0+
and 2+ states is not so good in the experiment at 134
MeV. This fact suggests that even in the intermediate en-

ergy region, the density dependence of the effective in-
teraction cannot be neglected.

It has been reported' that the quadrupole moments of
the DOP obtained by 35 MeV unpolarized protons are
systematically smaller ( & 6%) than the charge quadrupole
moments. This result cannot be explained by the density
dependence of the effective interaction. The density
dependence of the effective interaction causes the opposite
sign in the deviation in the quadrupole moment. It is sup-
posed that the reaction mechanism is not so simple at 35
MeV, or that the simple folding model would break down
at that energy.

It is also interesting that the experiment and the
analysis of proton inelastic scattering from ' Yb at 800
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MeV (Ref. 13) showed the multipole moments of the ima-

ginary central part of the DOP to be almost equal to the
charge multipole moments. This can be explained by the
fact that the scattering at 800 MeV is caused dominantly
by the imaginary part of the optical potential and also
that the impulse approximation is applicable fairly well at
that energy.

VI. SUMMARY AND CONCLUSION

We have measured the differential cross sections and
analyzing powers of elastic and inelastic scattering of 65
MeV polarized protons from ' Er, ' Er, ' Yb, and

Yb. We have analyzed for the members of the ground
state rotational band up to the J =6+ state using coupled
channel calculations assuming the axially symmetric rota-
tional model. In the coupled channel calculation, the mul-
tipole moments of each form factor of the optical poten-
tial were set to be equal. Excellent fits have been obtained
for both cross sections and analyzing powers for 0+, 2+,
and 4+ states and fairly good fits for the 6+ state.

We have compared the SOP that reproduces only the
elastic scattering with the DOP that was derived from the
coupled channel calculations and observed similar differ-
ences as reported in our previous paper. The volume in-
tegrals of real central potentials per nucleon of the DOP
are about 14—17 MeVfm larger than those of the SOP.
The effect of the collective excitations on the real central
potential is repulsive.

The multipole moments of A, =2, 4, and 6 of the DOP
have been compared with those of the charge densities.
They are generally in good agreement with the elec-
tromagnetic measurement. However, it was found that
the quadrupole moments of the DOP are 4—6% larger
than those of the charge densities. The folding model cal-
culations show that the quadrupole moments of the folded
potential using density dependent effective interaction are
about 5% larger than those of the charge densities.
Therefore, the main difference in the quadrupole moments
between the DOP and charge distributions can be ex-
plained by the density dependence of the effective interac-
tion.

The trends of the hexadecapole moments and hexacon-
tatetrapole moments of the DOP and charge densities are
similar, but the latter are slightly larger and these phe-
nomena cannot be explained by the density dependence of
the effective interaction on the assumption that the proton
and neutron distributions are identical. Since the higher
multipole moments are thought to sensitively reflect nu-
clear fine structure, further precise and systematic mea-
surements are necessary using both hadron probes and
electrons.

The precise experiment on the deformed nuclei using 65
MeV polarized protons has exhibited that the effective
two-body interaction between projectile and target nu-
cleons has density dependence. This reflects the dynami-
cal effect of a nucleus as a many-body system of the nu-
cleons.

APPENDIX A: FOLDING CALCULATION USING
DENSITY DEPENDENT EFFECTIVE INTERACTION

The folding equation using a density dependent effec-
tive interaction is written as

+opt(1 ) Jp(r ) Veff
r+r'

2
dr ', (Al)

where the effective interaction V,tt(r, p) is a function of
both the distance and the density.

The density dependent effective interactions used are
written as follows:

V,tt(r, p) = V (r)F(p),

V (r) = V~(r)+ V,„(r),
(A2)

(A3)

where V~(r) and V,„represent the direct and exchange
parts of the effective interaction, and F(p) represents the
density dependence. We used the midway density between
two interacting nucleons in the density dependent func-
tion. For the direct part of the effective interaction, we
used the isoscalar part of the M3Y by Bertsch et al. ' that
is parametrized to reproduce the harmonic oscillator ma-
trix elements of Elliott et al. for odd states and the ef-
fective G-matrix elements of the Reid soft-core potential
for even states. For the knock-on exchange, the pseudopo-
tential of the 5 function proposed by Satchler and Love
was used:

Vz(r) =(7999e "/4r —2134e "/2 5r) MeV', .

V,„(r)= —276(1.—0.005Ep/Ap)5(r) MeV,

(A4)

(A5)

where Ez and Az represent the energy and the mass num-
ber of the projectile. This form of the density dependent
effective interaction was proposed by Kovos et al. in the
double folding calculation of the alpha particle optical po-
tential. We used two types of the density dependence
function; the first one has the following form:

FJL~(p)=C( 1.0+ac ~) (A6)

where the parameters a, P, and C were chosen to repro-
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duce the results of the BHF calculation for nuclear matter
by Jeukenne, Lejeune, and Mahaux (JLM). At 65 MeV,
a =7.0, P=5.0, and C=0.159 were obtained.

The second one has Green's density dependence linear
2/3. 4—7

APPENDIX B: MEAN SQUARE RADII
AND THE RANCxE OF THE EFFECTIVE

INTERACTION

The mean square radii (MSR) of the potential are given
as follows:

FG(p)=C(1.0—Ap ) . (A7}

In our calculation, the density dependence coefficient A

and the normalization factor C were set as A=2.0 and
C=1.42. The value of the normalization factor C does
not affect the multipole moments of the folding potential.

The matter distributions were assumed to be deformed
Fermi distributions as follows:

p(r, 8) =po[ 1.0+exp[[r —R (8)]/a~ ] I (A8)

8 (8)=R 1 0+ g Pi. Fio(8) (A9)

TABLE VI. Matter distributions.

166EP 168E1b 174Ybb

R
am
pill

P4
pm

Q, (eb)
Q4 (eb')
Q6 (e bi)

6.090
0.470
0.3334
0.0171

—0.0148
2.41
0.294
0.010

6.114
0.470
0.3394

( —0.0132)
( —0.0382)

2.41
(0.15)

( —0.06)

6.310
0.470
0.3126

—0.0249
—0.0218

2.38
0.102

—0.060

6.334
0.470
0.3073

—0.0537
—0.0080

2.30
—0.013
—0.054

"These are point proton distributions of deformed Fermi forms
derived from the charge densities obtained by the electron
scattering data (Ref. 33) assuming that the diffuseness a is 0.47
fm.
'These geometrical parameters (reduced radius r and diffuse-

ness a ) are equal to those of the isotopes.

We assumed that the point neutron distributions are iden-
tical to the point proton distributions derived from charge
densities. ' The matter diffuseness was fixed as
a~ =0.470.' The mean square radius of the point proton
distribution and the charge distribution have a following
relation,

(r )~=(r ),h„s, 0 76—+0. 11(X./Z) (fm ), (A10)

where (r )~ represents the mean square radius of point
proton distributions. In this equation the correction from
the charge distribution in the neutron itself is included.
The deformation parameters Pi were calculated so as to
reproduce the equal multipole moments to the charge den-
sities. The matter distributions used are listed in Table
VI. For ' Er and ' Yb we used the same geometrical pa-
rameter (reduced radii and diffuseness) as ' Er and ' Yb.

The folding potentials were calculated in three-
dimensional coordinate space, and the results are listed in
Table IV. The accuracy of the numerical calculation of
the multipole moments of the folding potential was
checked using Satchler's theorem in the density indepen-
dent case.

(r )»t —— f Vz(r, 8)r drdQ,
Jv

(Bl)

where Vz(r, 8) represents the real central part of the DOP.
The MSR of the matter distribution are given by replacing
Vii (r, 8) with p(r, 8) in Eqs. (B1) and (6).

Table V lists the MSR of charge densities obtained
from electron scattering ' and the MSR of the DOP
that reproduced our experimental data. Also, the MSR of
the folded potentials using the density independent and
two kinds of DD effective interactions are listed in the
table. As shown in the table, the MSR of the folded po-
tentials using density independent effective interaction
(M3Y + 5) are about 15% smaller than those of our DOP.
However the MSR of the folded potentials using the DD
effective interaction are almost equal to those. This can
be explained by the same reason as the quadrupole mo-
ment, that the density dependent effective interaction
deepens the potential at the nuclear surface and therefore
the MSR of the potentials become larger.

Now we define the mean square range of the effective
interaction as follows:

(B2)

(r );„,=4 44+0 0702 .(fm ) .(JLM's DD),

(r )»t ——6.36+.0.8883 ~ (fm ) (JLM's DD),

(r );„,=4.69+0.0924 (fm ) (Green's DD),

(r )»,——6.69+0.9162 ~ (fm ) (Green's DD) .

Our experimental results' are as follows:

(B3)

(B4)

(B5)

(B6)

The systematic study of the elastic proton scattering at 65
MeV has exhibited that the range of the effective interac-
tion depends on the mass number of the target nuclei. '

Recently, Srivastava has pointed out the possibility of
explaining this mass number dependence in terms of the
density dependence of the effective interaction. Therefore,
we have calculated the folded potential for ' 0, Ca, Zr,
and Pb in order to examine this possibility. Since the
MSR of the nuclear matter distributions are linear in A ~,
where A is a mass number of the target nuclei, we
parametrized the range of the effective interaction and the
MSR of the potential as (aA ~ +b). According to Srivas-
tava, the range of the DD effective interaction is linear
in A' under some assumptions. However, the correla-
tion coefficient was found to be almost equal to unity even
if we fit it to the form as (aA ~ +b}. By the least-square
fit, we have obtained the following results.

The (M3 Y+5) effective interactions with JLM s densi-
ty dependence and Green's density dependence have the
following target mass number dependence:
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(r );„,=4.24+0.24+(0.132+0.013)A (fm ),

(r )~,——6.42+0.21+(0.937+0.012)A ~ (fm2) .

(B7)

(B8)
40— Mean Square Radius

The closed circles in Fig. 10 represent the MSR of the
real central part of the optical potential. Other data plot-
ted on the figure were taken from Ref. l. In the deformed
region, the MSR of the potential becomes large due to the
deformation effect. So we also show the MSR for these
nuclei in the open circles where all the deformation pa-
rameters are set to zero. The solid line indicates the MSR
of the folded potential using the density dependent
(M3Y + 5) effective interaction with Green's density
dependence. The dashed line indicates those with JLM's
density dependence. As shown in the figure, the effective
interaction with Green's density dependence reproduces
the MSR quite well. The mass number dependence of the
range of the effective interaction can be explained by the
density dependence of the effective interaction. The dot-
ted line shows the MSR of the folded potential using the
pure M3Y effective interaction without the 5 function of
the pseudopotential. The dash-dotted line represents the
MSR using the (M3Y+ 5) effective interaction without
density dependence. By the presence of the zero-range in-

teraction, the MSR of this interaction is smaller than the
experimental results. Although the DD effective interac-
tions employed here are semiphenomenological, it was
found that they reproduce the experimental results fairly
well.

30

0
CL

20

Ni3&+ 6 No DD

M3Y Na DD

I

10
A2/3

20 30

FIG. 10. MSR of the potential. The closed circles represent
the MSR of the optical potentials at Ep=65 MeV. The values
except for present experiment are taken from Ref. 1. The open
circles for deformed nuclei are MSR where all the deformation
parameters are set to zero. Four kinds of lines indicate the re-
sults of folding calculations.
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