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An analysis is carried out of an extension of the Lee model which describes the interaction of
three fermions, V, X, and 8' with a scalar boson 0 through the virtual processes VAN+0 and

IVIV+0. It is shown that the amplitudes for the physical processes V+0—+ V+0 and
V+0~N+20 can be obtained from the solution of three-particle equations which differ from
those of the Amado-Lovelace type as a result of the presence of the absorption channel
V+0~ W —+ V+0. The techniques used to derive the equations are not peculiar to the model, since
they rely mainly on unitarity and analyticity in the subenergy and total energy variables, and hence
they can be applied to realistic systems.

NUCLEAR REACTIONS Modified three-particle equations for V —0 sector of
extended Lee model.

I. INTRODUCTION

The most general framework for dealing with the in-
teractions of mesons with nuclei is quantum field theory.
In principle such a theory contains an infinite number of
degrees of freedom, whereas in practice only a finite num-
ber are important. Reducing a quantum field theory to
manageable proportions is therefore a problem of some in-
terest.

For some model field theories it is possible to carry out
an exact reduction of the theory to tractable form for cer-
tain processes. Such a theory is the Lee model, ' which de-
scribes the interaction of two fermions, V and N, with a
scalar boson 8 through the virtual process V~AN+0.
This model is tractable because of the conservation of
charge and baryon number, and the lack of antiparticles in
the theory. The processes that have been analyzed in
some detail in this model are N —8 scattering' and V —8
scattering. In particular, in Ref. 3 (hereafter referred to
as L) it is shown that the amplitudes for the processes
V+8~V+8, V+OWN+28, and N+28~N+28 can
be obtained from the solution of an Amado-Lovelace
type of three-particle equation. The technique used in L
to derive this equation depends in an essential way on the
restricted nature of the states in each sector of the Lee
model, and therefore cannot be used to treat field theories
with particles and antiparticles present.

In Ref. 5 (hereafter referred to as E) an extension of the
Lee model, which contains an antiparticle 0, was
analyzed, and an Amado-Lovelace equation for V —8
scattering was obtained. The technique used in E for
deriving this equation is based on a dispersion relation ob-
tained from an exact formal expression for the
V+0—+N+20 production amplitude. The dispersion re-
lation is written in terms of the energy co of one of the 8
particles in the final state. The function dispersed, which
is a part of the full production amplitude, has a branch
cut for co)p, where p is the 0 mass. The discontinuity
across the low energy end of the cut (p & co & Mi

—M~+2p) is related linearly to the function itself. By
assuming this discontinuity is valid for all co &p, a linear
scattering integral equation is obtained. This technique is
closely related to an approach used by Amado to derive
three-particle equations by imposing subenergy unitarity
and analyticity on the isobar expansion for production
amplitudes.

It turns out that the technique developed in E is still not
general enough to treat actual physical systems. This has
to do with the fact that in V —I9 scattering there is no ab-
sorption channel present, since conservation of charge
prevents a V and a 8 from combining to form a V or an N.
As we shall see here, the lack of an absorption channel has
the consequence that the function dispersed in E vanishes
at infinity, and hence no subtraction is necessary. The
presence of such a channel introduces an unknown func-
tion of the total energy into the dispersion relation.

In order to see how to extend the dispersion relation
technique developed in E to allow for the presence of an
absorption channel, we shall here analyze an extension of
the Lee model considered some time ago by Bronzan and
Chen-Cheung. In this extension there is an additional W
field introduced so that the basic processes are V~AN+0
and WE~V+0. This leads to an absorption channel
(V+8~ W~ V+8) in V —8 scattering. As in the origi-
nal Lee model, this model is tractable because of conserva-
tion of charge and baryon number, and the lack of an-
tiparticles in the theory. In particular, the Hilbert space
for V —8 scattering is spanned by the bare states,

~
VO),

~

N28), and
~

W). It is not difficult to extend the deriva-
tion in L to include the bare W state, and thereby derive
three-particle equations. This will not be done here, since
the purpose of the present work is to develop a technique
for deriving three-particle equations which is of general
vahdity.

We shall see that the unknown function introduced into
the dispersion relation by the absorption channel can be
determined from the unitarity relation for the elastic
scattering amplitude, and is related, not too surprisingly,
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to the dressed propagator for the 8'particle. The expres-
sion for the V —8 elastic scattering amplitude that
emerges is similar in structure to that found by other au-
thors for the n-N elastic scattering amplitude, with the
important difference that the expression developed here
includes the effects of three-particle unitarity. Thus, the
present work has the important consequence of suggesting
a way of including three-particle effects in existing models
of the n. Nam-plitude; moreover, it provides a method for
calculating the production process N +m —+%+2m.

The Hamiltonian for the extended Lee model is given
in Sec. II, and its basic features are summarized. In Sec.
III the formulas for the N —8 T matrix are given without
derivation, since it turns out that the analysis of the
V —N8 sector is identical to that of the original Lee
model. ' The N —t9 T matrix plays an important role in
the three-particle equations for V —8 scattering developed
in Sec. IV. A brief discussion is given in Sec. V.

The bare vacuum characterized by

ViO&=WiO&=N iO&=a(k)iO&=O

is also the physical vacuum, i.e.,
H iO)=O.

The single particle states

i
k & =at(k)

i 0&,

iN) =N'io),
satisfy

H it)=p)k ik),
H

i
N ) =M)v iN),

(7a)

(7b)

(8a)

(8b)

which shows that the 8 and the X are not dressed by the
interaction.

II. THE MODEL III. THE V —NH SECTOR

The Hamiltonian for the model is given by

H =Hp+H),

Ho ——My'V V+M~'8 8'+M~N N

+ a ka kook,

H) ——f d k[a(k)J(k)+at(k)J (k)],
where

(lb)

(lc)

The V —NO sector is characterized by baryon number 1

and charge 0. The states of interest are the physical V-

particle state
i V)+ and the N —8 scattering states. Ex-

act expressions for these in terms of the bare states can be
found just as in the Lee model, since the W particle has
charge —1, and therefore does not mix in. We will not
need the expression for the V and N —8 state vectors, but
we will need the results for the N —8 T matrix. Accord-
ing to Eqs. (32), (49), and (30) of I., this is given by

V N+e,
V+8, (3b)

J(k) =u (k)(gp V N+fpW V) . (2)

Here, Vt, 8'~,N~ and V, 8' N are creation and annihilation
operators, respectively, for the corresponding particles,
and obey the usual anticommutation rules for fermions.
The bare masses Mv(') and Mw(P) are reno~a1ized to Mv
and M)v by the interaction, while for the N-particle mass
there is no renormalization. The operators a (k) and

a ( k ) create and annihilate 8 mesons with three-
momenturn k and energy cok ——(k +)M )'~, and satisfy the
usual commutation rules for bosons; the boson and fer-
mion operators commute with each other. The interaction
H) contains a cutoff function u (k) and describes the pro-
cesses

Z ( )
gu p qu

h (z)

h (z) =(z —b, ) 1+(z —b, )gf, (10)
(a)q —b, ) (p)q —z)

1/2R=Zv So ~

Zv ——(V
i V)+,

E=Mp —M~ . (13)

Here g is a renormalized coupling constant and Z~ is the
wave-function renormalization constant for the physical
V-particle state.

We see that h(z) has a simple zero at z=5 and a
right-hand cut beginning at z =p. The discontinuity of
T(p, q;z) across this cut leads to the unitarity relation for
N —8 scattering. This relation implies that the on-shell T
matrix has the form

with bare coupling constants gp and fp, respectively.
It is straightforward to show that the following opera-

tors commute with H:
T(q, q;co~+i e) =—

+i5(co ),
e ' sin6(a)q)

Nq )P ~

4K /COD

(14)

8 =N'N+ V'V+ 8'8',

Q =N N —8' 8' —f d ka (k)a(k) .

(4a)

(4b)

Clearly B is a baryon number operator and Q is a charge
operator. The particles N, V, 8', and 8 have been assigned
the charges 1, 0, —1, and —1, respectively. The existence
of these operators and the absence of antiparticles is the
reason the model is tractable.

IV. THE THREE PARTICLE EQUATIONS

~N +8+8 . (15b)

We now turn our attention to V —0 scattering. From
the conservation of charge and baryon number it follows
that the possible reactions are

(15a)
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The eigenstate of H with energy

E =My+cok, (16)

which describes these reactions, we denote by
~
kV)+,

where the plus sign indicates an in state. According to
Eqs. (26) and (27) of E, the amplitude for the production
process (15b) can be obtained by adding to

+(N ia(p)J (q)
i
kV)+

=gu (q)5 ( p —k )

with

&(p)
gu (p)

(19)

At this point it is possible to either use bare states for in-
termediate states in (18) and proceed along the lines of L
to obtain three-particle equations, or to use physical states
and follow E. The second method is preferable in that it
does not depend very much on the peculiarities of the
model, and thereby illustrates a procedure of general
value. Following E we find

+gu (p)gu (q)F(E +i e M—~ co&,E—), (17)

the same expression with the meson momenta p and q in-
terchanged. Here

lim (z b)F(Z—,E)=+(V
~ j ~

kV)+,
z~h

(20)

F(z,E)=+(N
~ J j ~

kV)+,
M~+z —H

(18)
which according to Eq. (12) of L is essentially the V —8
elastic scattering amplitude, and

F(coq+ie, E) eq —F(coq ie,E)=—2mi- '
2is(roq) . . g u (q)

h (coq+ie)

We define

G(z,E)=h (z)F(z,E),
and find with the help of (9), (10), and (14) that

G(b, ,E)=+(V ~g ~
kV)+

and

5(coq —cok )
+4irqcoqF(E+ieMz co' —,E},— &p .

gu
(21)

(22)

(23)

5(coq —cok ) G(E+ie M~ mq—,E)—
G(coq+ie, E) G(coq i—e,E)=——2~ig u (q) +4m'qcoq

gu (q) h (E+ie Mz —co—q)

Using Cauchy's theorem we can write

G(Z, E)=G(00,E)+ . I [G(co+ie,E) G(cg ie,E—)] . —1 ~ dc'
2&l P CO —Z

COq )P . (24)

(25)

From (26), (16), (23), and (19) it follows that

X(k,k;E+ie) =+( V
I
J'«)

I
k V&+

The essential difference between the development here and
in E is that here G( oo,E)&0. At this point this may ap-
pear to be of minor importance; however, we shall see that
the nonvanishing of G(ao, E) is owing to the presence of
the 8 absorption channel, i.e., V+0~8'~ V+0.

If we let

(29)

X(p,k;E+ie) =gu (p)G(E+ie M~ co—&,E), (26)—
we find

X(p,k;E +i e) =gu (p)G ( ao, E)+B(p, k;E +i e)

+ f d qB(p, q;E+ie)
X(q, k;E+ie)

h (E+ie MN —coq)—

(30)h (z) ~ zzi,
[z )~oo

(27)
and using (22), (18), (19), (2), and (11)we obtain

gG( oo,E)=f( W
~

k V)+,
(28)

where
~

8') is a bare 8'-particle state and

where
(31)

gu (p)gu (q)
p~q ~Z

z —M~ —co —cou e

which is the elastic V —8 scattering amplitude. If
G ( ao,E)~0, then (27) becomes a standard Amado-
Lovelace three-particle equation. We now proceed to see

what modifications of these equations are brought about

by the presence of this additional term.
From Eq. (10) and Ref. 1 we find
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f=Zv"fo . (32)

Clearly the nonvanishing of G( ao,E) is owing to the pres-
ence of process (3b). If we contract

'„, f d'q &X la(q}J'(q
E —M~'

(34)

(E —II) ikv&, =0
with & IV

~

and use (1) and (2), we find
If we insert (17) into (34) and use (11), (32}, (22), (26), and
(31) we obtain

fu (p)fu (k) f 3 fu (p)fu (q) X(q,k;E+ie)
E M~—o' E —M~0 h (E+iE M—tt to—, )

' (35)

which when combined with (27} shows that the modifica-
tion of the standard three-particle equations owing to (3b)
amounts to the addition of an energy dependent separable
potential to B(p, q;z).

A somewhat undesirable feature of this potential is that
it contains the bare mass Mg' and a coupling constant f
which is not completely renormalized. Also, the deriva-
tion that led to (35) depends very much on the peculiari-
ties of the model under consideration. For these reasons
we consider an alternative procedure for obtaining
G ( ao, E).

We introduce two auxiliary functions as solutions of the
equations

Y(p, q;z)=B(p,q;z)+ d xB(p,x;z) Y(x,q;z)
h z —M~ —co„

(36)

&p iX(z)
~ q &=X(p,q;z),

and similarly for Y(z) and B(z); also

&p ~t(.)
~

q&=
&'(p —q )

h (z —M~ —
to@)

(42)

(43)

t

where G~(z) is an unknown function which we shall
determine from unitarity. From (28) and (36), it follows
that Y(p, q;z) is symmetric in p and q, and hence so is
X(p,q;z). If we set q =k and z =E +is in (41) and com-

pare with (38), we see that we have written & W
~
kV&+ in

a factored form. We will see that the dispersion relation
for G~(z) is quite simple, whereas one for & IV

~
kV&+

would be fairly complicated.
In order to make the manipulations we are about to car-

ry out as transparent as possible, it is useful to introduce
an operator notation. We write

R (p;z)=u (p)+ d q B(p,q;z)
R (q;z)

h z —M~ —toq

It is now easily verified that (27) can be rewritten as

X(p,k;E+ie)= Y(p, k;E+iE)

+ R (p;E+ie)f &
8'

~

k V&+,

where we have used (31).
According to Eq. (7) of L,

(37) &p iR(z)&=R(p;z),

&p i
u &=u(p),

f I
p&d'p&p

I
=1 ~

In this notation (36) and (37) become

Y(z) =B(z)+B(z)t (z) Y(z)

=B(z)+Y(z)t (z)B(z)

(44}

(45)

(46)

(47a)

(47b)

~

kV&+= a"(k)+ . J(k)
~
V&+,

so that

(39)
and

I
R (z}& =

I
u &+B(z)t (z)

~

R (z) &

&R(z*)
i

= &u
i + &R(z*)

i
t(z)B(z) .

(48a)

(48b)

& IV
i

kV&+ ——&8'
i . J(k)

i V&+ . (40}

If we insert a complete set of physical states (
~

IV&+,

~

VH &+, ~
%28&+ ) in (40), we find that & IV

~

k V&+ /u (k)
is analytic in the complex E plane except for a pole at
E =M~ and a right-hand cut beginning at E =M~+p.
This suggests that we try to find & W

~

k V&+ from a
dispersion relation. We shall see that the necessary disper-
sion relation can be obtained from the unitarity equation
for the V —0 elastic scattering amplitude.

It turns out to be convenient to define a completely
off-shell extension of X(p,k;E+ie) by means of the rela-
tion

X(+)=X(E+ie),
DX =X(+ )—X( —),

(49)

(50)

and it will be understood that all discontinuities that we
are dealing with are for E)M&+p.

We will first determine the discontinuity of ~R(z)&.
From (48a) and (47), we have

[1—B(+)t(+ )]D
~

R & =[&Btj
~

R ( —) & (51)

It is easy to see that (47b) is equivalent to (47a) by com-
paring the iterations of the equations, while (48b) follows
from (48a) by simply taking the adjoint. As a shorthand
notation, we write

X(p,q;z) = Y(p,q;z)+R (p;z)f'G~(z}R (q;z), (41) and
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[1+Y(z)t(z)][1—B(z)t(z)]

= [1 t—(z)B (z)][1+t (z) Y(z)]= 1 . (52)
Gw(E+ie}

(W
i
J(k)

i V&+

fu (k)E
(65}

Using (52) to solve (51), and doing a little bit of algebra
with the help of (47b) we obtain

which can be simplified to

Gw(E+ie) —& E (66)

I (E)=Dt+t(+)[DB]t(—) . (54)

In exactly analogous fashion it can be shown that

D(R
~

= —(R ( —)
~

t(+)[DB]—(R( —)
~

1(E)Y( —) .

(55)

It follows from (28) that

(p IDB
I
q&=0 pip peak or ~q p~k (56)

so the first terms on the right-hand sides of (53) and (55)
vanish on shell.

The discontinuity relations for X(z) and Y(z) are

DX =X(+ )I (E)X(—), on shell,

DY = Y(+ )I (E)Y( —), on shell,

(57)

(58)

where "on shell" means, e.g., ( p ~

DX
~ q & with

co& ——co~=cok. The derivation of (58) from (47) is similar
to the derivation of (53) from (48a), while (57) could be
obtained from (27} and (35). In more realistic field
theories it might not be possible to obtain the analog of
(35); however, one would still have an equation such as
(57), since this relation is simply an expression of unitarity
for the elastic scattering amplitude.

In our operator notation (41) becomes

D
~

R & = [DB]t( —)
~

R ( —) & + Y(+ )I (E)
~

R ( —) &,

(53)

where

with the help of (2), (12), and (32). Assuming (66) is true
for all z and applying Cauchy's theorem to Gw'(z), we
find, using (60) and (63), that

2 m

Gw'(z) =z —Mw' — f D(u
~

t
i
R &

=z Mw' f—( u
~

—t (z)
i
R (z) &

(p) ~2 d p u (p)R (p;z)=z —Mp —J
h (z —M~ —co~ )

(67)

Gw(z)= ( W
i i

IV& .
1

z —H
(68)

The physical 8' mass M~ can be obtained by solving
Gw'(z) =0, and the resulting equation can be used to elim-
inate Mw' from (67). From (41) and (67), it is possible to
determine the residue of the 8' pole in the V —8 elastic
scattering amplitude, and thereby express f in terms of a
completely renormalized coupling constant. This has been
carried out by Bronzan. It should be noted that his Eq.
(18) and Eq. (41) of this work are essentially the same.

Here Mw' simply plays the role of an arbitrary constant;
however, it can be shown to be the bare 8'-particle mass
by turning off the interaction, so we write it as such.

By comparing with the work of Bronzan and Chen-
Cheung, it can be shown that Gw(z) is the Fourier
transform of the time-dependent 8' propagator, more pre-
cisely,

X(z)= Y(z}+ lR(z}&f'Gw(z}(R(z')
l

. (59) V. DISCUSSION

and

Dt ~R&=[1+t(+)Y(+)]1(E)~R( —)&

(R(z )
i
=(u

i
[1+t(z)Y(z)],

(61)

(62)

which combine to give

(R( —)
~

I (E)
~

R ( —) & =D(u
~

t
~

R & . (63)

In order to solve (60) for Gw(z), we need to know its
behavior for large ~z ~. From (37) we have

R(p;z)/u(p) ~ 1. (64)
iZ i

—+00

Upon comparing (41) and (38), and using (40), we find

If we insert (59) in both sides of (57) and use (58), (53),
(56), and (55) to simplify the result, we obtain

DGw Gw(+)f (R(———)
~

I (E) ~R( —)&Gw( —) .

(60)

The matrix element on the right-hand side of (60) can be
written in a more convenient form. If we use (53), (54),
(48b), and (52), we find

It is worthwhile at this point to briefly summarize and
interpret what has been carried out in detail in the preced-
ing section. Recall that when we add to (17) the same ex-

pression with the meson momenta p and q interchanged,
we obtain the production amplitude for V+8~N+28.
On the energy shell E =M~+coz+co~, so that the first ar-
gument of F(z,E) in (17) becomes co&, the energy of one of
the final state 8's. This gives the physical interpretation
of the variable z in (18). The analytic structure of F(z,E)
in z for fixed E is rather simple; a pole with a residue re-
lated to the amplitude for V+0~ V+9 and a right-hand
cut for z)p [see Eqs. (20) and (21)]. By multiplying
F(z,E) by the denominator function of the N —8 T ma-
trix [see Eqs. (9) and (22)], the pole in F(z,E) is removed
and a simpler discontinuity relation is obtained [see Eqs.
(23) and (24)]. Applying Cauchy's theorem leads to the
integral equation (27). In this equation appears the sub-
traction "constant" G( oo,E), which, as pointed out previ-
ously, is owing to the presence of the absorption channel
( V+8~ W—+ V+ 8). This unknown function of E [see
Eqs. (31) and (40) and the remarks following Eq. (40)] has
a simple pole at E=M~ and a right-hand cut for
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E)M&+p, and is determined by the unitarity relation
for the elastic V —8 scattering amplitude.

As these remarks should make it clear, by combining
subenergy unitarity and analyticity with unitarity and
analyticity in the total energy E, we have been led in an
unambiguous fashion to Eqs. (36), (37), (41), and (67).
With these equations the amplitudes for V+8—+V+8
and V+8—+%+20 can be calculated, as well as the 8'
propagator.

The question arises as to whether or not the techniques
developed here are adequate for obtaining three-particle
equations for physical systems. The answer is a tentative
yes. A derivation of three-particle equations for the n. N-
system based on the Chew-Low model' has almost been
completed. Using the techniques of E, the derivation
without the inclusion of the absorption channel
(tr+N~N~n. +N) was completed some time ago. The
motivation of the present work was supplied by the need
to extend these techniques so as to incorporate the effect
of this channel.

It should also be possible to apply the methods
developed here to the cloudy bag model" of the pion-

nucleon system. In this model, as dictated by the quark
picture, the 6 resonance plays just as elementary a role as
the nucleon. It should be possible to treat the 5 channel
(m+N~A~m +N) just as the W channel has been han-
dled here. We have talked about the 8' particle as if it
were stable, but this need not be the case.

Both the Chew-Low model' and the cloudy bag
model" neglect nucleon recoil. It is of course desirable to
develop equations for the m-N system which do not con-
tain this approximation, and especially to see if the tech-
niques used here can be extended to the relativistic
domain. Some time ago relativistic three-body equations
were developed for the nNsy. -stem by Aaron, Amado, and
Young. ' In that work the existence of a linear scattering
integral equation was assumed, whereas using the tech-
niques developed here and by other authors, ' it should
be possible to derive equations from an underlying quan-
tum field theory Hamiltonian. At the very least, the
structure of the equations found here should provide the
necessary phenomenology to extend the existing equa-
tions' so as to include the effect of the direct nucleon
pole and the b, resonance.
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