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A recent claim that forbidden nuclear beta decay can, by the application of a high-intensity radio-

frequency field, be enhanced by many orders of magnitude is contested. The effect is shown to be nonex-

istent, at least within the theoretical model which has been adopted thus far.

I. INTRODUCTION

In two interesting recent publications' Reiss claims that
forbidden nuclear beta decay can, in the presence of an in-

tense, but readily achievable radio frequency field, be
enhanced by many orders of magnitude, the more so the
higher forbidden the decay is. Of course, this would be a
fascinating effect, both from a theoretical and a practical
point of view. Unfortunately, we find, at least in the frame-
work of the approximations and idealizations underlying this
work, his conclusions to be incorrect and the effect nonex-
istent.

The approach of Ref. 1 to nuclear beta decay in the pres-
ence of a strong external electromagnetic field treats the
weak coupling to first order of perturbation theory, but is

supposed to take into account the coupling with the external
field to all orders, at least approximately. Hence in Reiss's
model the state of the emitted electron is described by the
Volkov wave function, whereas the nuclear states are to be
well approximated by the so-called momentum translation
approximation (MTA) wave function. 4 We shall show in

Sec. II by explicit calculation that within this particular
model the total beta-decay rate is essentially independent of
the external electromagnetic field. Our argument turns out
to be independent of whether or not we employ a relativistic
description of the decay. Hence, for the sake of simplicity,
we shall first turn to a completely nonrelativistic description
within a long wavelength approximation for the applied
field. Once we have made our point, the generalization to
the fully relativistic problem is conceptually straightforward
and will be presented in Sec. III. Our conclusion that the
lifetime of a nucleus cannot be influenced by an external
field in the framework of the model adopted by Reiss leads
us to suspect that Ref. 1 includes a calculational error. In
Sec. IV we point out such an error. In order to understand

why Reiss's model cannot yield an enhancement of the nu-
clear decay rate we critically review the derivation and justi-
fication of the MTA wave function in Sec. V. By comparing
the "r E" vs "p A" form of the interaction Hamiltonian
we obtain an indication of why the MTA method is an un-
justified approximation. We then point out with the help of
gauge arguments that the MTA wave function is nothing
but the correct unperturbed state in the Coulomb gauge.
This statement can be corroborated by writing the S matrix
for the beta decay in different gauges. In this way we see
that in Reiss's theory only the interaction of the field with
the electron is incorporated exactly, whereas the interaction
with the nucleus is completely neglected. This fact is in
strict contrast to the statements and intentions of Ref. 1 and
leads to a completely different interpretation of the model.
If the interaction of the nucleus with the external field is
not incorporated into the model, a modification of the total
decay rate can only originate from the coupling of the elec-
tron to the field. It was recently shown that decays of neu-
tral particles are unaffected by the application of optical and,
even more so, radio frequency fields, to an excellent ap-
proximation. Consequently, since Reiss's approach to the
problem does not contain any genuine interaction of the nu-
clei with the field, it cannot yield any impact on the nuclear
lifetime. In Sec. VI we summarize our various criticisms of
Ref. 1.

II. FIELD INDEPENDENCE OF THE TOTAL
TRANSITION PROBABILITY

The starting point of the formalism of Refs. 1 and 2 is the
S matrix for nuclear beta decay. If we denote the weak in-

teraction, which causes the transition, by (gV), the nonrela-
tivistic limit to the S-matrix element to first order in the
weak coupling reads

Sf) —I' d'r dt+MTA( r, t)+t, )( r, t;p)+&„&( r, t;q)(gV)+MT„( r, t) (2.1)

The various terms in Eq. (2.1) are discussed below.
denotes the neutrino wave function, which is a plane wave
with momentum q. Following the procedure outlined in
Ref. 1, we take the wave functions of the charged particles,
i.e., the electron and the nucleus in the initial and final
state, to be in the Coulomb gauge. The electron wave func-

tion is then a solution of the Schrodinger equation

i %&,~( r, t) =—'[p —eA(t)]'e&, l( r, t)
9t ' '

2m
(2.2)

We use here natural units 0= c = l. Unlike the convention
in Ref. 1 where e = ~e ~, we denote the electric charge of a
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particle by e, so that, for instance, the ele«~«ch«ge is e = —(el. The exact solution of Eq. (2.2) is the nonrela-
tivistic Volkov wave function with momentum p,

1
*

ts j
P(,)( r, t;p) =exp —i Et —p r — [2eA(r)p —e2A2(r)]dr

2m ~
L

where E =p'/2m, so that our nonrelativistic theory is only
consistent for low energy emitted electrons.

The underlying nuclear model of Ref. 1 is the shell model
with an inert 0 core, which is affected neither by the beta
decay nor by the electromagnetic field, and one or more
valcncc nucleons 1n an aflgul81 momentum coupled state.
Thc nUclcar wave fUnctlons 'P and + 81c then derived
from a one-particle Hamiltonian. The initial and final nu-
clear states are approximated in Ref. 1 by the so-called
momentum translation approximation (MTA) wave func-
t1on. This wave function ls glvcn by

OMrA( r, t) = exp[ieNA(t) r ](po( r, t) (2.4)

i—C)0( r, t) =Hoq)0( r, t)
8t

where eN is the reduced nuclear charge [Eq. (6) of Ref. 1]
and 40 denotes the nuclear wave function in the absence of
the external electromagnetic field, i.c.,

with

HD= p2+ V( r ) (2.6)
mr

V( r ) denotes the nuclear binding potential, and m„ is the
reduced nuclear mass fEq. (5) of Ref. 1]. Since we consider
the nucleus initially and finally to be in an eigenstate Q„( r )
(n =i,f) of Ho with energy E„we shaH later use 4&0 in the
form

(2.7)

For the time being we shall adopt the MTA wave function
in the same way, as it is used in Ref. 1, and postpone a de-
tailed discussion on this subject to Sec. V.

The total transition probability pcr unit time is calculated
from the S-matrix element (2.1) by

(2.8)

If we insert the S-matrix element (2.1) into Eq. (2.8) using
the wave functions (2.3), (2.4), (2.7), and plane waves for
the neutrino, the total rate I takes the form

I = lim — d r d'r' dt dt'expfiEo(t' —t)] exp( —ie[A(t') r
' —A(t) r ]}(2~)6 r oo 7' ~ J —T/2

x G („)( r, t; r, t ) G ( ) ( I,t; r, t )'
(2.9)

Here Eo E; —E& denot——es the nuclear energy released in the beta decay. We furthermore used the relation e; —eI——e [see
Ref. 1, Eq. (49), and our convention for the sign of e]. In fact, this relation is only approximate, since the minor impact of
the external field on the nuclear core is neglected. The sum over the neutrino states is expressed in terms of 8 plane wave
Green's function with a dispersio~ E„=I ql,

G(„)( r ', t', r, t) = ' d3q Q(„)( r, t;q)+(„)( r ', t', q) = ' d3q exp[ —i (q((t' —t)] exp[iq( r ' —r )]

All the electronic contributions to the total rate I are contained in the nonrelativistic Volkov Green's function

G(,)( r ', t', r, t) = Jfd'p+(, )( r, t;p)+(, )( r ', t';p)

(2.10)

e= exp —i
2 pal

1

I j
A'(r)dv d'p x ep i p' — r' —r +—

~ A(r)dr p4 j 2m m "j

. m (r' —r)'
exp i , e—xp ie, A(~)dr

t —t t' —
I,

G(e)( t, t; r, t) =

The integral (2.11) can be reduced to a Gaussian integral and we find
r ' 3/2

1

xexp —i A (r)dr-
2m

1

J A(v)dv (2.12)

The A' term in Eq. (2.11) contributes to an effective mass (see Sec. III).
The essential field dependence of the total rate I is concentrated in the factors

exp(ie[A(t') r ' —A(t) r ]}
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1/2m(r' —r)'
2(Ep —E„) (2.13)

and the Volkov Green's function G~,~. In Ref. 1 the entire
effect of changing the degree of forbiddenness of the nu-
clear decay is derived from the factors exp(ieA r ) in Eq.
(2.4). We shall now show explicitly that these factors actu-
ally cancel out of the total decay rate against corresponding
terms in G~, ~ and hence cannot give rise to the effects cal-
culated in Ref. 1.

By inserting Eqs. (2.12) and (2.10) into the total decay
rate (2.9), we see that in the field-free limit the major con-
tribution to the time integral in Eq. (2.9) comes from time
differences t' —t, for which the phase of the integrand is sta-
tionary:

The estimate (2.13) is not significantly affected by the
external field, in particular, when there is no energy transfer
from the field to the electron, as Reiss assumes.

It was shown in Ref. 7 that in the classical limit h 0
only times t' infinitesimally close to t contribute to the total
transition rate I . In this limit the field-dependent exponen-
tials in the integrand of Eq. (2.9) are unity and only the
field-independent part survives. Thus in the classical limit
the total decay rate would be unaffected by the external
field. This is in agreement with the results of Ref. 7.

The remaining field dependence in I is then only due to
quantum effects. It will be found to be very small for the
parameters of Ref. 1, as we shall now demonstrate. We can
rewrite the space- and field-dependent exponential in the
electron Green's function (2.12) with the help of integration
by parts and find

~f t T

exp ie, dr A(r) =exp{ie[A(t') r
' —A(t) r ])exp ie J dr K(r)E(r)tl t Jf t

(2.14)

with

~/
K(r) = r

' —, (t' —r)t' —t
(2.15)

By inserting Eq. (2.12) with Eq. (2.14) into Eq. (2.9), we realize that the phase factors exp(ieA r ) cancel in the total decay
rate and we obtain

r= lim —' d r d r' dt dt'exp[iEp(t' —t)] G&t( r ', t'; r, t)
(2~) T oo T

2m~
i (t' t)—3/2

. m (r'- r)'
exp i , —expie ' dr R(r)E(~)

2 t' —t ~r

1

Ie2 P& 2 t~ — I

xexp —i
~

d~A .7. —,
~

de A 7
2m t —.t '

i

~ [@f'( r )(gV)y, (-r)][@,( r')(gI')'0f(-r')] . (2.16)

In Ref. 1, Eq. (74), the nuclear intensity parameter z,

z = (e IAIRp) (2.17)

which specifies the magnitude of the phase exp(ie A r ), was
assumed to be of order of unity. The actual remaining ex-
ponential with a field and space dependence in Eq. (2.16)
contains the integral

z'= (ecp{AIRo )'=z(o)Ro)', (2.19)

terms in Eq. (2.16) do not depend on r and can therefore
not change the degree of forbiddenness of the decay.

We also see from the estimate (2.18) that the actual
parameter that governs the field impact on the nuclear life-
time is

e „K(r)E(r )dr —eRolF-I lt —t I

2 '1/2
mRp—eR o~ I

A I

Ep
1 Cd

80 Eo

(2.18)

which is much smaller than z. This means that one needs a
much higher field intensity, or fields with a much shorter
wavelength than the one applied in Refs. 1 and 2, to pro-
duce a noticeable effect of the external field on the nuclear
lifetime.

III. RELATIVISTIC THEORY
Here Rp denotes the nuclear radius, and the length of the
time interval was estimated by Eq. (2.13). We furthermore
determined the amplitude of the electric field by IEI = culAI,
corresponding to a monochromatic plane wave with fre-
quency cu, and applied Eq. (82) of Ref. l. Equation (2.18)
shows that the field- and space-dependent exponential in
Eq. (2.16) is unity to an excellent approximation, i.e., the
factors exp(ie A r ), which are the origin of the large
enhancement obtained in Refs. 1 and 2, cancel. The A'

We shall now address ourselves to a relativistic treatment
of the electron in analogy with Ref. 1. For a quantitative
analysis this is indispensable because the electron energy
will, in general, be relativistic, and because the entire decay
process is intrinsically relativistic. However, the crucial
point of the preceding analysis, the actual replacement of
the superficial appearing gauge factors exp(ieA r ) by
exp[ie f dr R(r)E(r)] in the total decay rate, will proceed
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= „d'p ~(po)~(p' —m') gl'f I'

G d4x d4x'[Wf(x)y„(l &y5)+ (x)1
4m "

x [V,(x') (1+~y5)yp"f(x')]

x [+(,)(x )(1+y5)y G(+)(x',x)

x y" (1 —ys) +(.)(x)1 (3.1)

Here

G(+)(x',x) = „ld p 8(po)8(p —m2) E(x',p) (p+ m) E(xp)

(3.2)

is the homogeneous positive frequency Volkov Green's
function replacing Eq. (2.11), and we have written the Vol-
kov solution in the form

4'(,)(x p) =E(xp)u(p, s)

where u(p, s) is the free Dirac spinor so that

(p' —m)u(p, s) =0 .

We are again using the Coulomb gauge so that the nuclear
wave functions are given by Eq. (2.4).

The quantity 8, when summed over the final states of the
nucleus and the neutrino, yields the total decay rate of Eq.

completely analogously in the relativistic treatment. We
then shall have to examine the remaining expressions for
possible additional terms incorporating A r which might
yield the large enhancements claimed by Reiss. These wi11

have to be relativistic quantum terms induced by a radio
frequency field. Hence it is not likely that they will play any
significant role, and, in fact, they will not turn out to do so.

The starting point will now be the relativistic S-matrix
element Sf( as given in Eq. (7) of Ref. 1. As we did in Eq.
(2.8), we shall again sum over the electron's final momenta

p and spins s, obtaining

"" X/s~/'
210 spins

(2.8). The decisive point is that any Green s function in the
presence of an external field 3"(x) can be split ass

G' '(x', x) = $(x',x)G' '(x', x) (3.3)

where
I"x

@(x',x) =exp —ie J dx„A "(x) (3.4)

exp ie[ r A(t) —r 'A(t')] —ie "x
X

dx„A'(x)

Evaluating the line integral yields

r ~f I

JI ~„~"(x)= —, Jt d(kx)A(kx)k(x' —x)
(3.6)

where k„denotes the wave vector of the field A„(kx). 1n
the long wavelength approximation, which is finally also
adopted in the relativistic treatment of Ref. 1, Eq. (3.6)
reproduces the expression which we already encountered in
the nonrelativistic treatment. The exponential (3.5) is then
identical to the corresponding exponential in Eq. (2.9) with
the nonrelativistic Green's function (2.12), and the argu-
ments pointed out, following Eq. (2.12), apply to the rela-
tivistic case as well.

Finally, in order to make sure that the gauge-invariant
remainder G(+) in Eq. (3.3) does not, so to speak by the
back door, reintroduce corresponding exponentials, we shall
now write down the complete Green's function G(+)(x',x).
The easiest way to obtain it is by straightforward evaluation
of Eq. (3.2), given the Volkov wave functions E(xp). The
analogous approach has been folio~ed, e.g. , in Ref. 9, in
the case of the Feynman propagator. The result (for arbi-
trary polarization, i.e. , A'= $; )e;'A;($), (=kx, ke;=0,
e)ei = —St) is very closely related to the former and reads

is Schwinger's line integral which is to be integrated over a
straight line connecting x with x' [the definition can be
given in a path-independent way (see Ref. 8)], and
G' '(x', x) is gauge invariant, i.e., depends only on E and B.
Hence the entire gauge dependence is isolated in the line in-
tegral (3.4). Collecting now all the rA-dependent ex-
ponentials in Eq. (3.1) we obtain

1

G(+)(x',x) = —exp —is(m + T) —i
ds . 2 . (x —x)

,J — 2 4s
1

8 [s((' —g) ] —(g' —g) + m —2msJEy';M
2$

—d(g' —g) L;+i (g' —g) ysd e;,Mt+/ —(x"—x') L;+ s(g' —$)(L(2 —M)2)—
(

+iysk[ —et(x" x')Mt+2—s(g' —$)e JL MJ] +i sgn(s)J(5($' —g) O.7)

Here x' denotes the two vector components of x" transverse to k". We adopt a summation convention for the indices i and
j extending from 1 to 2, and ~,~= —

~&;, ~]2= 1. The functions I., M, and T are given by
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(3.8)

(3.9)

(3.10)

—j't'(x"—x' )L;, —i ysge, ~(x" x')—M~

We incidentally note that the quantity T(g', () in view of
Eq. (3.7) specifies a space-time-dependent mass correction.
It already showed up in the nonrelativistic treatment [cf. the
last exponential in Eq. (2.12)].

We now have to check whether Eq. (3.7) contains any
terms similar to cos(ea r —ea r '), which is the sole cause
of the enhancement in Ref. 1 [cf. Eq. (110)]. There are
two candidates in Eq. (3.7):

V. REVIEW AND CRITICISM OF THE MTA
WAVE FUNCTION

For a review of the MTA wave function from Reiss's
point of view we refer to Ref. 4. The MTA method claims
to be "gauge specific" for the Coulomb gauge (C gauge;
vector potential A and vanishing scalar potential Ap=0).
The Schrodinger equation in the long-wavelength approxi-
mation for the vector potential A then has the form

We notice that they are both only linear in (x"—x').
Hence they can at best reduce the order of forbiddenness by
one. Since they are proportional to jt', their order of magni-
tude is pie ~A~Rp= pi Jz, which has to be compared with the
electron mass m in the square bracket in Eq. (3.7). Since
pi/m « 1, in particular, for a radio frequency field, whatev-
er effect is caused by these terms will be very small, as was
to be expected.

IU. AN ALGEBRAICAL ERROR IN REF. 1

i qi( r—, t ) = [Hp+ H ) (t ) ]4' ( r, t )
Bt

with

2

Hp= p'+ V( r ), Hi(t) = ——A(t) p+ A'(t)2' M 2 f71

If one writes an ansatz for qi( r, t) in the form

qi( r, t) =exp[ieA(t) r ]~p( r, t)

(5.1)

(5.2)

(5.3)

The above considerations strongly suggest that there is a
computational error in Ref. 1. Hence we have cursorily
checked some of the calculations. In fact, it appears that
factors ( —i )i and i are missing on the right-hand side of
Eqs. (56) and (57) of Ref. 1, respectively, which should
read

i C( r—, t) = [Hp+H2(t)]iIi( r, t)
Bt

(5.4)

with

then the new wave function di( r, t) obeys the equation of
motion

exp( —ieA r ) =exp[ —iea r cos(kx+ p)] H2(t) = —eE(t) r (5.5)

and

Jt(ea r ) exp[ —ij (kx+ p)]( —i)t
J~ —oo

(4.la)

The so-called "momentum translation approximation"
consists of neglecting the perturbation H2 in Eq. (5.4) and
replacing ip in Eq. (5.3) by the unperturbed wave function
40, given by

exp(ie A' r ') = exp[ie a r 'cos(kx'+ p) ] i tip( r, t) =—Hp@p( r, t)
Bt

(5.6)

J (ea r ') exp[im(kx'+ p)]i™. (4.1b) We then obtain the MTA wave function as an approxima-
tion of the exact solution +:

These factors seem to be consistently missing. If they are
included, the crucial equation (110) of Ref. 1, op( r, t) = exp[ieA(t) r ]dip( r, t) (5.7)

XJz»(ea r —ea r ') =1 (4.3)

and there is no field induced enhancement of forbidden
beta decay, in agreement with the arguments previously put
forward in this paper.

g( —)»Jz»(ea r —ea r') =cos(ea r —ea r'), (4.2)
e

loses the factor ( —)» on the left-hand side and is changed
into

This procedure is considered to be justified if H2 is much
smaller than H~, in particular, when H~ is too large to be
treated as a perturbation with respect to Ho, whereas H2 still
is a small perturbation compared with Hp (i.e., the magni-
tude of H2 is small as compared with a characteristic energy
of the field-free problem). ' The condition "H2 small com-
pared with H~" means that the transition matrix elements
from an initial unperturbed state ~i) to a final unperturbed
state ~f) are much smaller when the transition is induced
by the residual interaction H2 instead of Ht. The states ~i)
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and If ) are eigenstates of Hp.'

Hpln) =E„ln) (5.g)

By using the commutator relation

[ r,Hp]=i~
N1

as well as

IEI =~IAI,

(5.9)

(5.10)

we find

I (fIH2«) li) I

l(flHg(t)li)I E; —Ef
(5.11)

If we use the interaction H;„,= H2, we find
T

F(T) =ie(fl r li ) J dt exp[ —i (E; —Ef)t]E(t) . (5.13)

For the case H;„,=H~, let us consider the situation where
the field is switched on at time t = 0 and that we are only
interested in the transition probability at time T, when the
field is already switched off, so that

A(0) =0, A(T) =0 (5.14)

This is the usual experimental situation. We can then
rewrite the integral in Eq. (5.12) by partial integration

pT
exp [ —i (E; Ef) t ]A(t )dt—

rT
J exp[ —i (E; —Ef) t ]E(t )dt . (5.15)

E; —Ef

We have now obtained a factor (E;—Ef) by replacing A by
E in the integrand, instead of the factor co, which entered
the relation (5.11) via Eq. (5.10). By using Eqs. (5.9) and
(5.15) we find for H;„,= H~ again the transition amplitude
(5.13).

This simple calculation sho~s that the transition probabili-
ty is the same whether one uses the interaction FI] or H2.

Hence in situations where the field frequency is much
smaller than the considered transition energy, the MTA
procedure might seem to be well justified.

As we have noted, central to the MTA is the condition
that the transition matrix elements for the interaction H2
are much smaller than for its counterpart H~. This applies,
in particular, to nuclear transitions in the presence of an op-
tical or even radio frequency field. But one must be careful
in drawing conclusions from or making approximations
based upon the estimate (5.11). Instead of transition matrix
elements, one actually has to compare transition probabili-
ties, which are the directly measurable quantities. As we

shall see below, the factor co/(E; —E~) does not occur after
integration over time and the two interactions H] and H2
give the same transition probabilities for any ratio of ~ over
(E; Ef). —

Let us repeat a supposedly well known argument. In the
interaction picture the transition amplitude to first order of
perturbation theory reads

f T

F(T)= —i „' dt exp[ —i (E; —Ef)t](f IH;„,(t) Ii)

(5.12)

This holds true to any order in the perturbation series. "
We can furthermore drop the restriction (5.14) and obtain
equal transition amplitudes F ( T) at any time T, if we take
into account that the same physical state is represented by
different state vectors in different gauges if A(0) &0 or
A(T) %0 (see next paragraphs). The error will therefore
be of the same order of magnitude whether one neglects the
interaction H2 in Eq. (5.4) or Ht in Eq. (5.1) for any ratio
of the field frequency ~ over the typical transition energy
Ej Ef Since the approximate solution 4 p of Eq. (5.4) is
an unperturbed wave function, these arguments indicate
that also the MTA wave function represents a noninteract-
ing state.

In order to see that the MTA wave function represents
nothing but a noninteracting state, we must consider the
different gauges involved in the problem. The wave func-
tions of all charged particles participating in any reaction or
decay process must be taken consistently in the same gauge.
The Coulomb gauge is convenient for the calculation of the
Volkov wave function of a free particle in the presence of
an external electromagnetic field. To derive the properties
of the nonrelativistic MTA wave function it is more instruc-
tive to begin with the electric field gauge [E gauge; vanish-
ing vector potential A=O and scalar potential —eE(t) r ].
Wave functions are transformed from the C gauge (notation
4) to the E gauge (notation 4) by the unitary transforma-
tion

4( r, t) =exp[ —ieA(t) r ]V( r, t) (5.16)

where A is the vector potential in long wavelength approxi-
mation for the C gauge.

The Schrodinger equation in the E gauge has the form
(5.4), which was derived at the beginning of this chapter in
a different context. If we entirely neglect the interaction of
the particle with the field to a zeroth approximation, we ob-
tain from Eq. (5.6) as an approximate solution the wave
function 40 in the absence of the external field.

In the present example of beta decay, the nuclear state
has to be determined from the Schrodinger equation in the
C gauge, i.e., from Eq. (5.1), since the electron wave func-
tion is given in the C gauge. If we approximate the solution
of Eq. (5.1) by the noninteracting state @p in the E gauge
and use the gauge transformation (5.16), we obtain the
wave function Wp of Eq. (5.7), the MTA wave function.
Although %"0 depends on the vector potential A, it still
represents a noninteracting state since a state vector which
does not include any interaction with the external field in a
particular gauge (here the E gauge), neither does so when
transformed to any other gauge (here the C gauge).

It should be mentioned that the wave function 40 is not
the correct noninteracting solution in the C gauge. In the C
gauge the operator of the canonical momentum p= —i V
differs from the operator of the kinetical momentum.
Hence in the C gauge the Hamiltonian Hp in Eq. (5.2) does
not describe the situation, where the interaction of the parti-
cle with the .field is entirely neglected. The correct pro-
cedure is first to transform from the C gauge via (5.16) to
the E gauge, where the vector potential vanishes and the
operators of the kinetical and canonical momentum are
identical, so that p'/2m is the operator of the kinetical ener-
gy. Hence in this gauge the Hamiltonian in Eq. (5.6) really
specifies the field-free motion, and 40 represents the state
in the absence of the field. The wave function in the C
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gauge, which completely neglects the interaction with the
field, is then given by Eq. (5.7), i.e., by the MTA wave
function. For a lucid and thorough discussion of gauge in-
variance in quantum mechanics see Ref. 5.

Applying this discussion to the nuclear beta decay, we see
that the S matrix (2.1) includes the exact electron state and
noninteracting nuclear states in the C gauge. In the nonrel-
ativistic approach the S matrix could also be written in the E
gauge. The unperturbed nuclear state is then given by the
field-free wave function 40, and the gauge phase
exp(ieAr) is incorporated in the corresponding Volkov
wave function, which we obtain from Eq. (2.3) and the
transformation (5.16). The entire field dependence is then
concentrated in the electronic wave function. This pro-
cedure yields the same analytical form of the S-matrix ele-
ment as Eq. (2.1).

The factor exp(ieA r ) always appears when one con-
sistently combines the nuclear state in the absence of the
field, which is related to the E gauge, with a Volkov state,
which can be calculated in a simple way for the C gauge.
This factor can be shifted from the nuclear to the electronic
wave function in different gauges and has nothing to do
with the interaction of the nucleus with the field. The iden-
tification of the factor exp(ieA r ) in Eq. (5.3) as a gauge
transformation was in the present context first pointed out
in Ref. 6. In Ref. 4„Reiss does not consider this factor as a
gauge transformation but rather calls it a "unitary transfor-
mation within the Coulomb gauge. " He then claims that
due to this phase factor the MTA wave function fairly
represents the effects of the applied field on the particle to
any order of interaction. Relying on this interpretation,
Reiss attempts in Ref. 1 to derive the entire effect of chang-
ing the degree of forbiddenness of a nuclear decay and of
enhancing nuclear decay rates from this factor exp(ieA r ).

If the interaction of the nucleus with the field is neglect-
ed, only the coupling of the electron with the field can still
modify the nuclear lifetime. But as it was shown in Ref. 7,
this can only happen for a field which is much stronger than
the one considered in Ref. 1, as long as the field frequency
is very small as compared with the nuclear decay energy.
Therefore the model used in Ref. 1 cannot result in an ap-
preciable change of the nuclear lifetime.

The basic formalism developed at length in Ref. 1 is
essentially the same as in Refs. 12 and 13 (cf. Ref. 14).
The theory of Ref. 1 only differs from this previous work by
using the correct noninteracting wave function harp (2.4) in-
stead of 4p (2.5) (but with the misguided intention of incor-
porating the interaction with the field) and by considering
linear polarization of the field instead of circular polariza-
tion. Whether the field is linearly or circularly polarized is
rather immaterial for the effects in question. Considering
linear in place of circular polarization mainly increases the
calculational labor without adding additional insight.

We ~ould like to concentrate on two central objections to
Refs. I and 2: (i) Contrary to its intentions, Reiss's model

does not include any interaction between the nucleus and
the field. Notably, the so-called momentum-translation
(MTA) wave function is nothing but the correct free wave
function in the Coulomb gauge, as was shown in Sec. V in
three different ways. (ii) The total decay rate cannot be in-
fluenced by an external field as chosen in Ref. 1, if one
describes the electron by the relativistic Volkov wave func-
tion and the nucleus by the nonrelativistic MTA wave func-
tion. This can be derived by general arguments from point
(i) and Ref. 7. We also prove this explicitly in Secs. II and
III. There we show that in a correct treatment the gauge
factors exp(ieA r ) (from which Ref. I derives its entire ef-
fect) mutually cancel in the total decay rate. Our argument
shows that this cancellation is independent of the polariza-
tion and pulse shape of the external field. The dramatic
enhancements of Refs. 1 and 2 seem to be due to an alge-
braic error. When this is corrected no enhancement
remains, in agreement with the results of Secs. II and III.

The physical concept underlying Refs. 1 and 2 differs
from the previous work (Refs. 12 and 13) by intending to
concentrate on forbidden beta decay in the presence of an
intense radio frequency field rather than an optical field.
Some final remarks on these two new aspects: (a) Chang-
ing the degree of forbiddenness of a nuclear decay by modi-
fying the nuclear states under the impact of an external field
is an exciting idea, but cannot be achieved by Reiss s
model, which only uses noninteracting nuclear states. In
particular, it should be emphasized that Reiss tries to treat
forbidden beta decay along the same lines as allowed beta de-
cay, i.e., a multipole expansion of the lepton wave functions
and relativistic corrections to the nuclear wave functions,
both of which normally enable forbidden decays to take
place, are not considered, since the dominant mechanism of
the enhancement is supposed to originate from the gauge
factors exp(ieA r ). (b) The advantage of radio frequencies
as compared with optical frequencies seems to lie in the fact
that larger values of the parameter (ea/m ) can be achieved
at much lower field strengths. But if very high intensity ra-
dio frequency fields with a wavelength of X —100 m (Ref.
2) are applied, the applicability of the Volkov solution,
which assumes a plane wave field of infinite extent in space
and time, seems very doubtful and certainly requires some
justification. A relativistic electron which moves freely in
such a field performs an oscillatory motion over a distance
of A. . Such electromagnetic fields also raise experimental
problems, since the atomic electrons tend to shield an exter-
nal low frequency field, reducing its field strength at the site
of the nucleus by orders of magnitude. "

We would finally like to emphasize that it remains an
open question as to whether properly including the interac-
tion between the nucleus and the field might yet lead to
some enhancement of forbidden beta decay, although we
believe that the orders of magnitude stated in Refs. 1 and 2

are very unlikely to be achieved by the latter mechanism.
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