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Angular momentum projection on a mesh of cranked Hartree-Fock wave functions
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A method for projecting on angular momentum wave functions discretized on a three-
dimensional Cartesian mesh is presented. The method is based on a matrix representation of the ro-
tation operator. It is applied to cranked Hartree-Fock wave functions calculated for Mg with a
simple interaction. In this case, the accuracy of the projected matrix elements is estimated to be of
the order of 0.1%%uo. An extensive comparison of the projected and cranking energies is made. The
validity of the cranking method as an approximation to a variation-after-projection calculation
seems to be wider than usually expected. The study of the fission barrier of Mg for the channel
He-' 0- He shows that the cranking predictions for these very deformed states are quite reliable.

I. INTRODUCTION

((~~.)') =0 .

(ii) The deformation is strong

((~~-„)')»1 .

(l.la)

(1.1b)

(iii) The trial function
~

0') has a definite signature

(1.1c)

The cranked Hartree-Fock Bogoliubov (CHFB) method
has been used with considerable success for the description

A large number of self-consistent calculations of nu-
clear properties have been performed in the last few
years. ' They have been mainly devoted to the study of in-
trinsic nuclear states. It is well known that the Slater
determinants determined in this way violate most of the
symmetries of the nuclear Hamiltonian. The restoration
of rotational invariance requires in principle a variation
after projection on angular momentum (VAP) of the trial
functions. Calculations of this type have been performed
for a few light nuclei. ' The Hartree-Pock (HF) equa-
tions are constrained on one or a few collective degrees of
freedom (usually the quadrupole moment) and the result-
ing wave functions are projected on angular momentum.
Although the variational space has always been very re-
stricted, the intrinsic state has been found to change as a
function of angular momentum along a band. ' Together
with the angular-momentum projection, the variation
makes the calculation extremely tedious.

The cranking method provides an interesting alternative
to a VAP calculation. It can be demonstrated that within
a band, the relative energies calculated by the cranking
prescription are a good approximation to the VAP ener-
gies provided that three conditions are fulfilled: (i) The
nucleus is nearly axial. This is equivalent to the require-
ment that the dispersion in angular momentum in one
direction is very small

of high spin states in the rare-earth region (see the refer-
ences in Ref. 6). For these deformed heavy nuclei, the con-
ditions of validity of the cranking approximation are well
fulfilled except in the backbending region. Hara et al.
have recently performed a numerical test of this validity
by projecting CHFB wave functions on angular momen-
tum. They have confirmed the general trends of the re-
sults of the cranking method, although the moment of in-
ertia of the ground state band is decreased by a factor of
1.3.

The cranking method has also been extensively used to
describe light nuclei with Nilsson or Hartree-Fock wave
functions. ' In these calculations, a large number of rota-
tional bands are obtained. They correspond to different
energy minima as a function of the deformation, some of
them being even triaxial. The HF calculation of Refs. 8
and 9 have been performed with a new technique derived
from time-dependent Hartree-Fock (TDHF) calcula-
tions. ' The indi. vidual wave functions are discretized on
a three-dimensional Cartesian mesh and the HF equations
are solved on this mesh. This technique enables one to
avoid all the difficulties associated with the choice of a
basis and with its truncation. In particular, very different
configurations of a nucleus can be described on the same
mesh, while a unique basis is not adequate for that pur-
pose. The use of a simple Skyrme-type interaction
without spin orbit, the Bonche-Koonin-Negele (BKN)
+ Coulomb interaction, ' has permitted one to study a

very large number of bands leading to different fission
modes. Unfortunately, the validity of the cranking ap-
proximation is not established and is probably not uni-
form for all the bands determined for these light nuclei.

In this paper, we develop a new method for the projec-
tion of wave functions discretized on a mesh. This
method is very general and can be applied to any type of
wave function and nuclear interaction (including spin or-
bit). It is based on the properties of discretized forms of
the angular momentum operators on a mesh. In the fol-
lowing, we shall restrict ourselves to Slater determinants
having the symmetries imposed in Ref. 8 and to the
BKN + Coulomb interaction. The implementation of
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II. SUMMARY OF THE THEORY

A. The cranked Hartree-Fock model

The cranked Hartree-Fock wave function
~
4„) is a

Slater determinant minimizing the expectation value

E„=(%„~H coL„~ 4—), (2.1)

for a given value of the Lagrange parameter co. We have
introduced in (2.1) the total orbital momentum L„ in place
of the total angular momentum J„since we shall be deal-
ing with spin-scalar forces." The generalization to the
case of J„would be straightforward. Under conditions
(1.1), Eq. (2.1) has been shown to provide an approxima-
tion of a VAP calculation. The interesting physical
quantity is the energy

these symmetries and the use of a simple interaction will
enable us to study in detail the effect of projection on
cranked Mg wave functions.

In Sec. II, we summarize the cranked HF model with
emphasis on the symmetries imposed in Ref. 8 on the
wave functions of the model. We also show the conse-
quences of these symmetries on the projection method. In
Sec. III, we state the method used to rotate wave functions
on a mesh and discuss its accuracy through examples. In
Sec. IV, the method is applied to "Mg cranked HF wave
functions and discussed. The yrast line and fission barrier
are studied. Conclusions are presented in Sec. V.

B. Angular-momentum projection

For triaxially deformed wave functions, the general
form of the projection operator has to be used in order to
restore the angular momentum quantum number L, and its
projection M. The projection operator selects components
with a given angular momentum from the expansion of
the cranked HF wave function

~

e„)= g ai.Lx ~

ELK &

A,LK

The projected wave function is defined by

(2.5)

(see Sec. III).
In practice, for 41V nuclei studied with the BKN force

as in Refs. 8 and 9, a spin-isospin degeneracy is imposed.
Coulomb terms are treated in the equal- —,

' e-charge approx-
imation. The spin-isospin degeneracy restricts the values
of II and II„ to + 1. Hence, the real and imaginary parts
of

~

qi ) transform, respectively, according to the As and

+3g irreducible representations (IR) of D2s (Ref. 13) and
are thus orthogonal. The symmetries (2.4) can also be im-
posed on the individual wave functions tp; Th.e individual
wave functions can be partitioned into four mutually
orthogonal blocks according to their symmetries. The real
or imaginary part of P; corresponds to one of the eight
IR s of D2s. Therefore, matrix elements involving indivi-
dual wave functions whose real or imaginary parts do not
belong to the same block, vanish.

E=(~„IH
I ~.& =E„ (2.2) f D . (n)R(n)

~

qi„&dn. (2.6)

with L„=(L„). Since L„changes sign under time rever-

sal T, the wave functions obtained from (2.1) are not in-

variant under T

In (2.6), 0 represents the three Euler angles a, P, and y;
D~x is a Wigner function; and R(Q) is the rotation opera-
tor

Tiq„)= fe )'= ie ), (2.3)
A A A

iaL iPL iyL
(2.7)

but the time-reversed wave function leads to the same en-
ergies Eand E .

Both H and L,„commute with parity P and with reflec-
tion P through theyz plane. The cranked wave functions
are chosen as in Refs. 8 and 9 to be eigenfunctions of the

symmetry operators

p
~

qi„) = II
~

qi„),

p„~ qi„) =II„~qi. ),
(2.4a)

(2.4b)

with
~

II
~

=
~
II„~ =1. From (2.4b) follows the well-

known property (L„)=(L, ) =0. A further symmetry
restriction is conserved in the cranking model' and is im-
posed on the wave functions

Tp, ~q„)= ~e„) . (2.4c)

The three symmetry operations applied to the real or
imaginary part of

~

4'„) belong to the D2i, group. ' They
restrict the variational space. Moreover, the calculations
of matrix elements can be performed over one-eighth of
the configuration space, which reduces the computation
times. The exploitation of the symmetries will also reduce
the rotation times and thus the whole projection process

The insertion of (2.5) in (2.6) provides the expression

~q' )=pa„~uM), (2.8)

which shows that K is not a good quantum number.
The preceding equations are well known; let us special-

ize them to an intrinsic state
~
4„) exhibiting the sym-

metries (2.4). The relations

Lauir=( —) au. -i~=lIxau, ir (2.9)

are readily shown using (2.4b), (2.4c), and (2.5). They
prove that the coefficients aux are real or imaginary.
For K&0, the states corresponding to +K and Kare-
linearly dependent. For K =0, the states for which L ful-
fills ( —) +'=II„are forbidden. Moreover, (2.4c) and
(2.5) show that for II=+ 1 the even-K components belong
to the real part of

~

4 ) and the odd-K ones belong to its
imaginary part.

Since K is not a good quantum number, the best pro-
jected state

~

4 ) which can be obtained from
~

qi„) is
given by

I+' &= Xg I+' &. (2.10)
E&0
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where the gx- are solutions of the variational system of
equations

g (Hxx E—Nxx' )gsc' =0 .L L (2.11)

The matrix elements are given by

El.o ™n(Hrcz~Nice ) .
K

(2.13)

f Dxx (Q)(%'„~HR(Q)
~

0'~&dQ, (2.12)
8

and by a similar expression for Nzz. According to the
parity of L, system (2.11) has L +1 or L eigenvalues EI;.
Besides the lowest one El 0, other low eigenvalues may
have a physical meaning. In practice, for high values of
L„, the system (2.11) may be strongly redundant and be-
come difficult to solve if the matrix elements are known
with a limited accuracy. In this case, a useful upper
bound to the lowest eigenvalue is given by

erties. Several of them will be used in Sec. III C to check
the accuracy of the calculations. Let us quote here the re-
lation

(+[HR(~ ~—,p, y—) (~&=&e[HR(a,pq)
~

e'& .

(2.14)

This relation allows one to reduce the number of rotations.
Such a reduction is valuable since the main part of com-
putation time is due to rotations. Using the properties
(2.4) and (2.14), the integration domain in (2.12) can be re-
duced by a factor of 32. Moreover, this reduction allows
us to avoid Euler angles larger than —,

'
m, which is impor-

tant when the error introduced by an approximate rotation
increases with the angle. After reduction, (2.12) takes the
form

2I.+1 +a
Hgg~ = cx sin p A gg~ 0

Because of (2.4), the matrix elements between
~

%' & and
a rotated wave function satisfy numerous symmetry prop-

I

with

(2.15)

A xx(Q)=(fzx+fzx)Re[(+„~HR(Q)
~
4„&+(—) (4 ~HR(Q) ~%'"„&j (K+IC' even)

or

~xx(Q)=(fxx+frrc )Im&'p IHR(Q)
l

q' &+(—) (ffcx —&+~ )™&q'lHR(Q) lK& (&+&' odd)

where Re or Im denote the real or imaginary part of a c number. The real functions fg» and flax are given by

yR +&y
I d L (P)ei(Ka+K'yj+ ( )Id I (P)e c(Ka K'y)—

p(r, Q)= g [~ '(Q)];Q*;(r)R(Q)1( (r) (2.16a)

and

y(r, Q)= g [~ '(Q)]J, P'P*;(r). V'R( Q)g J(r)
EJ

are used. '" In (2.16), the overlap matrix M is defined by

(2.16b)

~z(Q)= f g*;(r)R(Q)QJ(r)dr . (2.17)

The determinant of ~(Q) provides the overlap matrix ele-
Lments necessary to compute Xz~. Since R commutes

with I' but does not commute with I'„, matrix M is com-
posed of two diagonal blocks, one for each parity, in place
of four in the case without rotations. Hence the densities
(2.16) are of positive parity but do not exhibit a particular
symmetry with respect to P„and I', . These densities thus
have to be calculated on half the configuration space.

C. Calculation of matrix elements

The projection on angular momentum requires the cal-
culation of matrix elements involving rotated functions
[Eq. (2.12)j. In spite of the resulting nonorthogonality of
the orbitals, the Hamiltonian matrix elements can be cal-
culated with the usual Hartree-Fock functional provided
that the modified densities

III. ROTATIONS ON A MESH

A. Orbital momentum on a mesh

On a three-diinensional mesh, an individual wave func-
tion is represented by the set of its (complex) values taken
at all the mesh points. In the following we shall assume
that the mesh is Cartesian with a constant mesh size h and
that it obeys the symmetries of the D2p, group. Let N„,
N~, and N, be the numbers of mesh points in the three
directions. For each direction, two types of symmetric
mesh can still be chosen, according as the number of
points is even or odd. We adopt for these cases the integer
or half-integer numbering shown in Fig. 1. The advantage
of this numbering is that a reflection is performed by
changing the sign of indices. We now have a more precise
definition of the representation of an individual wave
function l(;: it is a column matrix l(|; with N„N~N, com-
ponents labeled by a set of three positive or negative in-
teger or half-integer numbers.

On the mesh, an operator is represented by a square ma-
trix of dimension N„N„N, . The size of these matrices is
so large that they cannot be easily handled. Fortunately,
most of the necessary matrices are sparse or can be re-
duced by taking into account the symmetries of the mesh.
Let us now speciahze to the matrix approximating the or-
bital momentum components on a three-dimensional
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N odd
-3 -2 -1 0 1 2 3 L( L2 L3 L4

N cvcA
5 3 1 1 3 5
Y 2 2 2 2 2

Lz=
—L2 —L) —L4

I 3 L4 L) L2
(3.6)

FIG. 1. Numbering of the mesh points for even and odd

numbers of points.

mesh. Let us, for example, define the matrix L, corre-

sponding to L, through the matrix product

(L,ttt)7pgg — i g—c&(if!~+„„mPi—+„~„), (3.1)

where c„=0if
i p ~

)—,
' (E—1) (X odd). The coefficients

c& of an N-point Lagrange differentiation formula' verify

—L3 —LJ

where the submatrix L„maps points of the rth quadrant
of the xy plane into the first one. Except L i, the matrices
L„contain mainly zeros. (L3 is even easily shown to van-
ish. ) The dimension of the submatrices is about , N„N—»,

but care must be taken if invariant points exist, i.e., if X„
or X» is odd. The invariant axis points must then be
shared between the different L, to which they belong with
2 '» or 2 ' weight coefficients.

The transformation property of L, under time reversal

Cp = —C (3.2) I L„TI =0 (3.7)

and are given for %=5, 7, and 9 in Table I [For %=5, see
Eq. (25.3.6) of Ref. 15]. The remainder is proportional to
( —,'N ——, )! i! /N!'5 With %=5, (3.1) is equivalent to, but

simpler than, the corresponding expression of Ref. 8. In
the following, we shall use the accurate %=9 formula.
Indeed, it will become clear that the rotation computation
time is independent of X so that large values can be used.
However, the value of N should remain small with respect
to the numbers of mesh points in each direction.

The elements of the two-dimensional restriction of the

Hermitian matrix L, are thus given by

(Lt, )lm, !'ttl' !(lcm' m~ll™— l' l~mtn —). ' (3.3)

As expected, L, is independent of h. With (3.2), the prop-
erties

)i, i' ' (L )—i,—i'

shows that t(, k and —A, ~k are simultaneous (real) eigen-
values of L„with complex conjugate eigenvectors V k
and V*k. The symmetry properties of an eigenvector V~k
are provided by (3.5) and (3.7):

PVk ——mVk,

PxV k=~V k

PyV k=V*k

(3.8)

where ~ is the parity quantum number in the xy plane.
The real and imaginary parts of V k transform, respec-
tively, according to the A and 8 IR of the C, XC;
group of symmetries I j!,P», P, P„I in the xy plane. ' The
eigenvector V k corresponding to an eigenvalue k k of L,
may be written in block form

(L, ), —

=(L, ) ! (3.4)

are readily checked. In other words, because of the sym-

metries imposed on the mesh, L, verifies the same com-
mutation and anticommutation rules

U~k

V„k——2-'"

Now, let us introduce the auxiliary matrices

(3.9)

[L PJ IL P I IL P»I 0 (3.5) XiR = g XiR(r)L„, (3.10)

as the exact operator. A further property of the exact
operator (antisymmetry with respect to the exchange of x
and y) exists only if N„daNn» are equal. With (3.4), ma-

trix L, may be written in block form

where X&„(r) are characters of C, XC; IR's. ' Obvious

properties of the submatrices L„show that

Xgtt= (X~tt) (3.11)

TABLE I. Nonvanishing Lagrange coefficients c
~& ~

for
%=5—9.

R ~ I
Xgtt! ttk =lkttkUttk

R+Be ttk
—l Xttk V ttk

(3.12)

where the dagger denotes Hermitian conjugation. %'ith
(3.6) and (3.9), one obtains

2
3

3
4
4
5

1

12

3
20

1

5

1

60
4

105
1

280

where R (I) denotes the real (imaginary) part of u k.
Eliminating u k from (3.12) leads with (3.11) to the re-
duced eigenvalue problem

[(&~.)'&~.JU.'k =7.'kU."k . (3.13)
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TABLE II. Eigenvalues of I., for a 16)& 16 mesh.

0
1.33912
1.99988
3.91268
5.04830
6.99321
9.14375

11.7311

0
1.41308
2.52569
3.95390
5.27798
7.14359
9.35562

12.4297

0
1.66295
2.82933
3.98090
5.68108
7.47S56
9.67689

13.0308

0
1.85111
2.97822
3.99791
5.90634
7.64132
9.76869

13.0978

0
1.94817
3.09380
4.30776
5.94622
7.91089
9.78419

14.1465

0
1.97416
3.38346
4.60787
5.98491
7.98850

10.6022
14.2240

0
1.98715
3.68910
4.80568
6.25316
8.13901

10.88SO

17.2356

0
1.99807
3.73401
4.88608
6.81629
8.83690

11.4162
17.2381

0.50033
0.99999
2.53469
3.40287
4.99397
6.96655
8.88411

12.0953

0.74189
1.12536
2.62639
3.90441
5.10560
6.97001
9.43044

12.3374

0.86051
1.40115
2.71725
4.22665
5.72580
7.00992
9.68294

13.0291

0.89232
1.63048
2.87037
4.47840
5.73901
7.15792
9.83139

13.0955

0.95295
1.68909
2.96252
4.69709
6.04425
7.79724

10.3145
14.1138

0.98566
1.98981
2.99310
4.78382
6.42534
8.17743

10.4821
14.2524

0.99705
2.26629
2.99941
4.82193
6.81159
8.48701

10.8371
17.2339

0.99966
2.28845
3.04291
4.95452
6.85222
8.67313

10.9508
17.2398

The matrix in (3.13) is symmetric and semipositive defi-
nite. Its dimension is about 4%+Xy Once the A,„k and
v k have been computed, the v k can be obtained for
X.„~ofrom

U k=('~ k) (3.14)

Zero eigenvalues of (3.13) are associated with the existence
of invariant points. We shall show in Sec. III 8 that the
eigenvectors corresponding to these eigenvalues do not
need to be known.

As an example, the non-negative eigenvalues for the
case N =Nz ——16 (this number of points is typical of the

Mg ground-state band discussed in the following) are
displayed in Table II. To every positive eigenvalue in
Table II there corresponds a negative one. The positive-
(negative-) parity eigenvalues are a real approximation of
the even (odd) integer eigenvalues m of L„since

Prim%' ( )meimy

An examination of Table II shows that a significant part
of the eigenvalues are close to an even (odd) integer value.
Most eigenvalues, however, are not clearly related to an

I

even or odd integer. The underlined numbers represent
eigenvalues which can be considered as approximates of
an integer number. Their selection is based on properties
of the corresponding eigenvectors to be discussed below.
The physical eigenvalues correspond, in general, to a se-
quence of numbers close to, and smaller than, an integer
with the correct parity. Notice that in spite of their prox-
imity to an integer, some eigenvalues like 1.97416(~=+)
or 7.98850(n.=+) can unambiguously be rejected by the
eigenvector criterion. A part of the degenerate zero eigen-
values should also be physical, but the exact degeneracy
prevents us from classifying them.

The real parts [see Eq. (3.13)] of eigenvectors corre-
sponding to selected eigenvalues of Table II are depicted
in Fig. 2. For the sake of interpretation, the 64 com-
ponents of the eigenvectors are presented in an 8&(8
square box. These eigenvectors can be interpreted as an
approximation on an 8&8 mesh of the real part of an
eigenfunction of L, restricted to the first quadrant. This
interpretation is confirmed by the close similarity of the
solutions of Eq. (3.13) with values at the mesh points of
the functions

(p, p)=(1+6 o)
' a(8/~)' [J' (e'„')j 'J (e'„'p/a)cosmqr, (3.15)

where a =8 is the size of the box and the e„are zeros of(m)

the Bessel functions J
~ ~

(x).' The functions %„are
harmonic functions in a circle of radius a; they are also

A 2 A
2eigenfunctions of L „P„,and P~ with eigenvalues m,

( —1),and + 1. Moreover, they are normalized over one
quadrant of the circle.

The nodal lines of the y„~ are represented by straight
lines or circles in Fig. 2. In the upper part of Fig. 2, the
eigenvectors corresponding to five positive-parity eigen-
values approximating m =2 are presented. The n values
are given by the number of nodal circles with radius

. I

«„'/&„' ' (&' & n). A rather different example is present-
ed in the lower part of Fig. 2. The eigenvectors corre-
sponding to the best approximation of odd m values be-
tween l and 9 clearly exhibit angular lines of nodes at the
zeros of cosmic. The number of radial nodes is zero. It is
worth noticing that the eigenvectors nearly vanish in the
exterior of the circle of radius a, in spite of the completely
different symmetry of the mesh.

Eigenvectors corresponding to eigenvalues without
physical meaning are necessary to complete the orthogo-
nal basis. Most of them have a non-negligible component
in the exterior of the circle of radius a.
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1.99988 1.99807 1.98715 1.9t 8'17 1.85111

1

1 2 2 1

1 2

1 2

2 2

1 1

2 2 1

3 2 1

99990.9 2. 999J. I i.99397 6.96 655 8.88J 11

FIG. 2. Schematic representation of the normalized eigenvectors u k [Eq. (3.13)] associated with eigenvalues A, k of L, selected in

Table II. The 64 components, multiplied by ten and truncated from their decimal part, are displayed in an 8 & 8 box corresponding to
the first quadrant of the xy plane. (Negative values are surmounted by a bar. ) The straight lines and circles represent, respectively,

angular and radial nodal lines of the harmonic functions q„[Eq. (3.15)]. The dashed circles have been slightly displaced from their

exact location for the clarity of the figure.

B. Rotation around the z axis

First we consider rotations around one of the symmetry

axes, say the z axis. The rotation operator R, (a)=e'
performing a rotation of angle a around this axis is ap-

proximated on the mesh by the matrix R,(a)=e' '. This
matrix is not sparse but can easily be computed from the
eigenvalues and eigenvectors of L, . Its size can be re-
duced by considering rotations in each plane z =zo
separately and by taking account of symmetries of the in-
dividual wave functions. In the following, we assume that
all the indiuidual wave functions satisfy the symmetry prop

I

er ties (2.4).
For a given value zp of z, an individual wave function

defines a complex function

f(x,y)=P;( x, y, pz)

whose properties under rotation will now be studied.
Since rotations commute with the time reversal operator,
the real and imaginary parts of f can be rotated separate-
ly. Rotations also commute with parity but break the oth-
er symmetry properties (2.4). Since the real and imaginary
parts of f transform according to one of the four irreduci-
ble representations of the C, XC; group, the rotation
operator can be replaced by the set of operators

R,(a, IR1~IR2)= —,[1+Xntz(PY )Py ][1+XIR2(P)P]e *
—,
' [1+XtR,(Py )Py ][1+XgR,(P )P], (3.16)

[R(a,A ~B )],J ———[R(a,B ~A )],.
= —g [u ~k ];sin(aA, k ) [u k ]

k
(3.17)

[R(a,B~~B~)]q 5(~+ g [u k];[co——s(ale) —1][u k]J .
k

combining rotation and symmetry projection. Because of
parity conservation, eight of the sixteen operators (3.16)
vanish. Moreover, for a function of given symmetry A

or B only two of the operators (3.16) are necessary to ro-
tate and project it on the two possible symmetries, A and

B, with the same parity m The main a. dvantage of the
operators (3.16) is that rotations can now be performed
with functions defined in the first quadrant x &0, y &0
only, which on a mesh will save computer time and
memory.

Let us now transpose the operators (3.16) on a mesh.

Taking account of the action of P and P„on the eigenvec-

tors V k of L, (3.8), one obtains eight matrices, whose ele-
ments are defined by

[R(a A A )]~J=5~J+y[u /, ];[cos(al, /, ) —1][u k]J,
k

I

The expressions (3.17) are written in a form which avoids
the use of eigenvectors corresponding to zero eigenvalues.
The number of nonvanishing terms in the sum over k is
given by the rank of matrix Xz (Xq )t.

A rotation of a three-dimensional individual wave func-
tion around the z axis is performed as a succession of ,

'
N, —

planar rotations for the different values of z„. Each rota-
tion is performed with the same rotation matrix of reason-
able size (i.e., about ~N„Nr). The rotation matrices de-

pend continuously on the angle a but do not satisfy the
uniformity properties of rotations. An example of this
nonuniformity is presented in Table III. The wave func-
tion ~%' ) with L„=7.8 belonging to the Mg ground-
state band (see Sec. IV A) is rotated by an angle nm(n in-.
teger) around the x axis. For exact rotations, all the
moduli should be identical and all the phases should van-
ish. Table III indicates a regular decrease of the moduli:
about 1.5%%uo for each increase of rr. The error on the phase
increases by 2' for each additional m..

Since the mesh is symmetric, no angles larger than —,
' m.

are necessary [see (2.15)] which limits the magnitude of
the error. If the mesh exhibits the additional symmetry
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0

2'
3~
4m.

5m

6m

7'
8m

(e
~
Z.(a)

~
e)

modulus phase

—(~~H~. (a) l~&
modulus phase

1

0.983
0.971
0.956
0.942
0.933
0.915
0.897
0.882

0
—0.037
—0.070
—0.100
—0.128
—0.156
—0.182
—0.205
—0.225

185.72
182.47
180.32
177.65
174.87
173.36
170.04
166.85
164.01

0
—0.036
—0.069
—0.099
—0.125
—0.154
—0.179
—0.202
—0.222

TABLE III. n m. rotations around the x axis. operations, the moduli exhibit errors which reach 5%.
However, two points should be kept in mind: (i) For the
angles chosen, the matrix element is already rather small.
Its value is about l%%uo of the matrix element without rota-
tion. (ii) Except for the first and last matrix elements, the
other sets of angles are out of the integration domain of
(2.15). The error remains smaller than 3%%uo if only one an-

gle is larger than —,
'

m. Hence, we think that the maximum
error in the reduced integration domain is smaller than
1% and reaches this value when the integrant is already
rather small. We thus estimate the overall accuracy on
the projection as much better than l%%uo, presumably about
0.1 o.

N„=N~, angles larger than 4 ~ can be avoided using

R,(a) =R, ( z n )R,(a ——,
'

m) . (3.18)

In this case the —,~ rotation can be obtained exactly from

the exchange of the x andy coordinates.

C. Three-dimensional rotations

An arbitrary rotation of an individual wave function is
obtained as a succession of three rotations around the z, y,
and z axes. ' Let us emphasize, however, a small compli-
cation arising from the C, X C; symmetry restoration. For
given initial and final symmetries, two different paths of
intermediate symmetries occur in the succession of rota-
tions. A11 the possible cases are easily worked out and will

not be given here.
In order to estimate the accuracy of rotations, we have

studied different symmetries of the matrix elements of
A A

R(Q) and HR(Q). Most of these symmetries are not ex-

act on a mesh. Indeed, the angular momentum structure
relations are not satisfied exactly by L„,L~, and L, . The
error on the structure relations is of the same order of
magnitude as the error given for the Lagrange differentia-
tion formula (3.1). In Table IV are presented typical ma-

trix elements computed with nine equivalent formulae for
the same wave function as in Table III. If the phases
remain strikingly stable under the different symmetry

IV. APPLICATION TO Mg

A. Summary of cranked Hartree-Fock calculation for Mg
4

In the rest of this paper, we present the results obtained
by projecting on angular momentum the Mg wave func-
tions determined in Ref. 9. These wave functions are the
solutions of the cranked HF equations on a three-
dimensional mesh. A large number of bands have been
followed from L„=O up to the angular momentum for
which they either fission or become unstable. The main
conclusions of Ref. 9 can be summarized as follows (see
Fig. 3):

(i) The ground-state band remains yrast up to L„=14;
above this point, a configuration which is excited by more
than 10 MeV at L„=Obecomes yrast.

(ii) Many bands lead to symmetric fission [according to
(2.4a) only symmetric configurations have been con-
sideredj. No more local minima as a function of the de-
formation have been found above 24k'

(iii) An important result obtained in the rotating har-
monic oscillator model' (RHO) has been confirmed. It is
possible to show in the RHO that the moment of inertia
of a band decreases drastically beyond a critical angular
momentum related to the filling of the oscillator shells.
Although no basis of any kind has been used in Ref. 9, a
correspondence can be made for most of the bands with
RHO bands and a similar behavior is obtained at the criti-
cal angular momentum.

TABLE IV. Overlap and Hamiltonian matrix elements for different symmetry operations (a=20',
P=30', y=50').

(e~Z( pa, y) ~e)
(4 (R(a, m. —p, —y) (

4)
(%* [R(—a,~—p,y) [e)

('Il
(
R(n a, a P, y) (

'P—*)—
(e*

[
k(a, ~ p, ~ y) [

e)——
&e*~Z(~+a py)]e'&
&~~~(a,p, +y)[~')

&e* ~k(~+a, p, ~+y)
]

~'&

]
R( y, —p, —a)

f

4*)—

Overlap
103g modulus

9.27

9.03
9.03
8.80

8.79
9.47

9.47
9.68

9.27

phase

—1.11
—1.08
—1.08
—1.09
—1.09
—1.11

—1.10
—1 ~ 11
—1.11

1.78

1.72

1.72

1.68

1.67

1.82

1.82

1.86

1.79

1.99
2,02
2.02

2.02

2.01
1.99

2.00
1.99
1.99

Hamiltonian
modulus phase
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FIG. 4. Dispersions for the A1, D1, and E1 bands in the x
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FIG. 3. Selection of Mg rotational bands obtained in the

cranking approximation and their labeling according to Fig. 3 of
Ref. 9.

jection on the fission barrier

The behavior of the dispersions ((&L„) ), ((&&~) ),
and ((&L,) ) are shown in Fig. 4 for bands Al, Dl, and
El. The conditions of validity of cranking (1.1) are cer-
tainly met for Dl and El. For band Al, the dispersion

((AL, )2) is never very low. The RHO critical angular
momentum for this band is 12. Around this value, both
conditions (1.1a) and (b) are violated.

(iv) The BKN interaction does not lead to the correct
moment of inertia of the ground-state band. This could
be due to the lack of spin-orbit interaction, but it is also a
common feature of all the cranking calculations of Mg.
This discrepancy does not permit a quantitative compar-
ison with the experimental data.

The fourteen bands calculated in Ref. 9 correspond to
different fillings of the four blocks of individual wave
functions or to different minima as a function of the de-
formation parameters. Here, we have decided to consider
only states which remain orthogonal after projection. The
projection of nonorthogonal states would lead to redun-
dant information. To obtain meaningful results would re-

quire an extra orthogonalization which is beyond our
scope with a simple force like BKN. After rotation, two
Slater determinants are orthogonal if they are not com-
posed of the same numbers of positive and negative parity
individual states. It is easy to check that the only bands
which fulfill this condition are (according to the labeling
of Ref. 9) A 1 (three positive and three negative parity
states) D 1, (two and four, respectively), and El (four and
two). Their energies are plotted as a function of L„ in

Fig. 3. The ground state is triaxial and the ground-state
band is obtained by a rotation along the medium axis.
Rotations around the two other axes lead to bands A2 and
B1 which are degenerate with A1 at L„=O. The projec-
tion on angular momentum suppresses of course the dis-
tinction between these three bands. Band Dl becomes
yrast around L„=14and fissions around 24k' in He-' 0-
He. Its projection enables us to study the effect of pro-

B. Numerical computation of the projected matrix elements

The calculation of a "rotated" matrix element for a sin-

gle set of Euler angles already takes a rather long compu-
tation time. A typical time on a Cyber 170/750 computer
is one minute for a wave function belonging to the Al
band. It is therefore important to minimize the number of
integration points. Using the symmetry relations, the
domain of integration has been reduced in (2.15); in the
Euler-angle space, this domain is half a rectangular paral-
lelepiped. A fully parallelepipedic domain would be con-
venient for numerical integration. This can be achieved
by introducing in (2.15) new coordinates a+y and a —y
varying from 0 to ir. The doubling of the integration
domain does not cost computation time if (2.14) is uti-
lized: the necessary matrix elements were already present
in (2.15).

In the new domain, integration can be performed accu-
rately with a triple Gauss-Legendre' quadrature formula.
This method is suitable in the present case since the ma-
trix elements are infinitely derivable functions of a, P, and

y [see (3.17)]. Typical numbers of points for the quadra-
ture are 8 or 12 in band A1, and 4 or 6 in band Dl for the
a+y and a —y coordinates. For the P coordinate, the
numbers of points are larger: e.g., 8 to 24 for band A1 and
24 or 32 for the other bands.

In order to save computer time, it is essential to choose
the most economical Gauss-Legendre formula and not to
compute the integrant if it does not contribute significant-
ly to the integral. A good choice for the quadrature for-
mula and a first guess of the non-negligible points can be
obtained from the simple approximation formula
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+ —, ((&&,) &(1+cosP)[cos(a+y) —1]+ ,'i (—L„&sinP(sina—siny) I (4.1)

This formula generalizes and improves similar expressions
of the literature (e.g., 11.145 of Ref. 2). It is obtained with
a modified version of the method of Ref. 18. The main
advantage of (4.1) with respect to analogous formulas is
that it gives a better P dependence around a= —,'~,
y = ——,m. The decrease in this region indeed depends on

((&L„) & and not on ((&Lz) & like in other formulas.
This difference is important because ( ( &L„) & and

((&&~) & differ in an appreciable way (see Fig. 4), espe-
cially for band A1. Equation (4.1) gives a fair first ap-
proximation of the integrant for bands Dl and El. For
band Al, higher order formulas have also been utilized.
Besides the points selected with (4.1), small numbers of
additional points need to be computed.

The total numbers of points necessary for the numerical
integrations vary from less than one hundred (low states
of bands A 1 and Dl) up to more than four hundred points
for high L„values. We have checked the accuracy of the
quadrature by reprojecting the L =1.8 state of band A1
with higher numbers of points in the Gauss-Legendre for-
mulas. Finally, let us notice that the heads of bands Dl
and El correspond to axial states (i.e., eigenstates of L,
with zero eigenvalue) to a good approximation and can be
projected with a one-dimensional integration over p. Un-
fortunately, the other members of the same bands cannot
be eigenstates of L, as soon as L is different from zero.

C. Comparison of projection and cranking results

(4.2)

These probabilities are plotted in Fig. 7 for bands A1
and Dl. The strength obtained for each component of
band Dl is rather small (always less than 20%) with a

E
(Me%)

-150
A1

I

tational spectrum. The results are shown in Fig. 5 for
band A1 and in Fig. 6 for band Dl; we have drawn a
straight line joining the points for each L value. If the
cranking method is valid, the minimum of these curves
must be obtained for each L value at L =L, . One can see
that this property is verified to a large extent and that de-
viations are small. This result is not surprising for band
Dl which verifies conditions (1.1). However, the results
obtained for Al seem to indicate that the validity of the
cranking method is wider than expected from (1.1). This
VAP calculation is of course performed in the restricted
basis composed of the cranking wave functions, but this
basis covers a large range of deformations [see the trajec-
tory in the (Qo, y) plane of Fig. 4 in Ref. 9].

The cranking wave functions obtained for each value of
L„can be decomposed into their L components. The
probability of finding the L component can be calculated
from (2.5):

We have projected five wave functions of band Al
(L„=O, 1.8, 5.0, 7.8, and 15.7), six of Dl (L„=O, 3.7, 7.4,
12.0, 17.3, and 20.8), and one of El (L„=O). The mesh
size used in all these calculations is h= 1.0 fm. Band El
being very excited, we have in this case limited our calcu-
lation to the projection of the bandhead. No state with
angular momentum around 12'' has been projected for A1,
the conditions of validity of the cranking method (1.1a)
and (1.1b) being strongly violated for this angular momen-
tum (see Fig. 4). The very low values of the dispersions in
the three directions indicate that the integration of a
cranking wave function in this region requires a very large
number of Euler angle values. Moreover, the decomposi-
tion of the L„=12.0 wave function of band A1 into eigen-
functions of L„shows that its structure is very different
from the structure of the other members of the band.
This wave function is dominated by the E„=12 com-
ponent which has a weight equal to 90%, while for the
other wave functions, the weight of a component is never
larger than 25%%uo. One can therefore expect that the pro-
jection on angular momentum for L„=12.0 will not im-
prove the energy obtained by the cranking method as
much as for the other L values, and we have preferred to
avoid this tedious calculation.

Since it does not require much additional work to pro-
ject the wave functions corresponding to a given L„on all
the angular momenta, we have obtained for each L„a ro-

-160
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0 5 10 15 L~

FIG. 5. Projected energies labeled by their L value for dif-
ferent cranking wave functions of the A1 band.
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estimation of the 0+-2+ separation energy. The interest
of this result is that the L„=O state is much easier to pro-
ject than the other states of a band since it is time-reversal
invariant. The numerical integration of the overlap and
energy kernels also requires a smaller number of triplets of
Euler angles. It is even the only wave function for which
in some cases (like for bands Dl and El) an axial integra-
tion is sufficient. This rather easy projection could be
used in the future to include the 0+-2+ separation energy
of some deformed nuclei in the fit of nuclear interactions.

D. Discussion of ~ Mg spectrum

The bands obtained after projection on angular momen-
tum are shown in Fig. 8. For each value of L, we have
selected the cranking wave function leading to the lowest
eigenvalues (see Figs. 5 and 6). The diagonalization of Eq.
(2.11) leads to L+1 eigenvalues for L even and to L
eigenvalues for L odd. For band Dl, the second eigen-
value is always very excited and we have only plotted the
lowest one. The wave functions of band A1 being triaxial,
the projection of this band leads for each L value to
several low-energy eigenvalues. In Fig. 8 we have joined
the energies which form a rotational band and labeled
these bands by the L value of their bandhead.

The projection confirms qualitatively the results ob-

EL
(&eV

40

30

20

tained in Ref. 9 for the ground-state band, and for bands
D1 and E1. The ground-state band remains yrast up to
L = 12 (instead of 14 in the cranking calculation), a value
above which it crosses band D1. The interest of this result
is that these two bands will remain orthogonal even if one
introduces the spin-orbit interaction. One can therefore
predict that this crossing will remain present even if an in-
teraction more sophisticated than BKN is used. There is
no clear correspondence between the bands 81 and A2 ob-
tained in the cranking calculation and one of the bands
obtained by projecting A1.

The good agreement obtained here with the cranking
calculation is very encouraging for the cranking method.
It indicates also that the projection on good angular
momentum does not improve the wrong moment of iner-
tia obtained for the ground state band of Mg. However,
our calculation enables us to analyze the origin of this
wrong moment of inertia. The 1+ state obtained after
projection is very excited; it is possible to find for each
higher angular momentum an excited eigenvalue forming
a band with this 1+ state. The interpretation of the other
eigenvalues is not so easy. In the inset of Fig. 8, we have
plotted for L=2—8 the first three eigenvalues as a func-
tion of L(L+ 1). If one considers that eigenvalues aligned
along a straight line form a band, the first L =2 eigen-
value composes a band with the second L =4, 6, and 8
eigenvalues. Although K is not a good quantum number
and a K value cannot be attributed to the eigenvalues of
(2.11), it is tempting to relate this band to the experimen-
tally known K =2 band, although it is at too low energy.
The ground state will then form a band with the second
L =2 eigenvalue and the first ones for higher even L
values. The far too compressed spectrum obtained with
the BKN interaction can then be related to the too low
K =2 band which is strongly mixed with the ground-state
band. The reduction of the triaxiality of the ground state
would increase the gap between the bands. ' The Mg in-
trinsic state obtained in a HFB calculation using the D1
interaction and in a HF calculation using the Skyrme
force SIII indicate that the spin-orbit interaction has the
desired effect. However, in both cases, the nucleus be-
comes axially symmetric in its ground state indicating
probably too strong an effect of the spin-orbit interaction.
The electric quadrupole moment obtained with the
Skyrme force is smaller than the moment calculated with
BKN (53 e fm compared to 70 e fm ). The effect of this
decrease will also be to decompress the band.

10.

0 1

2 4 6 8 10 12 14 16 18 20 L

FIG. 8. VAP energies of the "Mg nucleus in the cranking
space as a function of the angular momentum L. The bands
0+-3+ are obtained by projecting A1 cranking configurations.
The inset displays the rotational structure of the low part of the
spectrum as a function of L (L + 1).

E. Fission barrier

In Ref. 9, it has been found that Dl fissions in He-
' 0- He around L„=24. The fission barrier can be deter-
mined by performing for each value of L„a cranking cal-
culation with a second constraint on the quadrupole mo-
ment. The resulting curves are shown as dashed lines in
Fig. 9 for L„=20, 22, and 24. To see the effect of angular
momentum projection on the fission barrier, we have pro-
jected the wave functions obtained for an L, value inter-
mediate between 20 and 22 (L„=20.8) and for three
values of the quadrupole moment (Qo ——400, 450, and 550
fm ). The barriers obtained for L =18—24 are indicated
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FIG. 9. Mg fission barriers as a function of the intrinsic
quadrupole moment Qo in the constrained cranking approxima-
tion (dashed lines, labeled by their L„value} and as a result of
the projection of the L„=20.8 cranked wave function (full lines,
labeled by their L value).
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V. CONCLUSION

We have shown in this paper that it is possible to pro-
ject with a reasonable accuracy wave functions construct-

as full lines in Fig. 9. We have also included in this figure
the points previously calculated by projecting the
L„=17.3 wave function, which corresponds to a quadru-
pole moment Qo ——279 fm . The slope of the projected
barrier is slightly lower than for the cranking barrier.
However, the qualitative agreement between both calcula-
tions is very good. For L=20, one obtains a barrier of a
few MeV; it decreases to a few hundred keV for L=22
and disappears for L =24.

ed on a mesh. The method proposed here is limited nei-
ther to Hartree-Fock wave functions nor to a simple nu-
clear interaction. The reduction of the integration domain
in the Euler angles space made in Sec. II and the construc-
tion of a matrix representation for the orbital angular
momentum operators made in Sec. III can be extended
without major difficulties to the case of the total angular
momentum J. The inclusion of a spin dependence will
mainly lengthen the calculation of the matrix elements but
will not make its principle more complicated.

The test of the cranking method made on Mg wave
functions leads to several interesting results. The projec-
tion of band A1 opens the problem of validity of the
cranking method. Conditions (1.1) are sufficient condi-
tions under which the cranking method is a good approxi-
mation of a VAP calculation, but it has not been proven
that they are necessary. The results obtained in the case
of A1 seem to indicate that the validity of the cranking
method is wider than deduced from (1.1). A VAP calcula-
tion using a less restricted basis than the cranking basis is
of course necessary to strengthen the confidence in this as-
sumption.

We have seen in Sec. IV D that the projection of triaxial
states may lead to many bands. However, no clear con-
nection can be made between these bands and the ones ob-
tained by the cranking of a triaxial state around each of
its three symmetry axes. Some caution seems therefore
necessary in the interpretation of such bands in the crank-
ing method. The projection of the fission barrier of band
Dl has shown that the predictions of the cranking method
for these very deformed states are quite reliable. The an-
gular momentum of 22fi has been confirmed as the value
above which the Mg is no more stable against fission.

Another conclusion of this paper concerns the projec-
tion of the lower part of the spectrum. The projection of
the L„=O state, which is time-reversal invariant, provides
a good approximation of the 0+-2+ separation energy.
This projection being rather easy to perform, especially
for axial nuclei, the 0+-2+ energy difference could be used
as a valuable constraint on effective nuclear interactions.
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