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The structure of °O is studied in the alpha cluster model with parity and angular-momentum
projection for several nucleon-nucleon interactions. The method differs from previous studies in
that the states of positive and negative parity are determined without the customary restriction of
the variational space to cluster positions with certain assumed symmetries. It turns out that a num-
ber of variational results in the literature are spurious under unrestricted variations. We demon-
strate that the alpha cluster model of %0 is capable of explaining most of the experimental T=0
levels up to about 15 MeV excitation. In particular, the 6.05 MeV rotational band is reproduced re-
markably well. A shell-model analysis of the excited cluster-model states shows the necessity of in-
cluding a very large number of shells. The evidence for the recently proposed tetrahedral symmetry

of some excited states is also discussed.

I. INTRODUCTION

The properties of %0 have been studied in a variety of
approaches, including Hartree-Fock, shell-model, and
cluster-model calculations (for reviews see, e.g., Refs.
1—3). Each method has had only limited success in repro-
ducing the experimental spectrum of '°0 over a satisfacto-
ry energy range without readjustment of the interaction.
Especially the low-lying rotational band based on the 05
state at 6.05 MeV has a much higher calculated excitation
energy in many cases. Shell-model calculations* which fit
the experimental spectrum have problems with spurious
contributions to the wave functions. Hartree-Fock (HF)
studies predict a deformed excited state at about 15 to 30
MeV intrinsic excitation.’~® Projecting out states of de-
finite angular momentum would probably reduce this en-
ergy considerably, because no energy is gained for the
spherical ground state. No such calculation has yet been
performed except in Ref. 10, where, however, the excita-
tion of excited states has been used to adjust the parame-
ters of the force. Some calculations using cluster
models'!~13 reproduce the experimental spectrum fairly
well, but only by adopting different forces for different
energy regions. Similar problems exist for the negative
parity states. Only part of the low-lying levels has been
obtained in shell-model'* and random-phase'® approxima-
tion (RPA) calculations. Here, the rotational band based
on the 15 state at 9.63 MeV is particularly difficult to ap-
proximate.

These problems have motivated us to study the low-
lying spectrum of !0 again. In doing so we will use
Brink’s alpha-cluster model (ACM).!® The model has suf-
ficient flexibility to describe shell-model-like states (e.g.,
the ground state) and states with a well-developed cluster
structure (such as rotational bands). As intrinsic states
without reflection symmetry are easily constructed in the
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ACM, it also comprises negative-parity rotational bands,
which in the Hartree-Fock approach require particular
modifications.

A number of calculations have been performed for %0
using the ACM.!"=2% All of them, however, have restrict-
ed the model space by assuming a priori certain geometri-
cal arrangements for the four alpha clusters, such as
tetrahedrons, rhombs, or chains. The energy is then mini-
mized within this limited subspace only. This procedure
may lead to erroneous results, as we have previously
shown?6—22 for sd-shell nuclei. It may turn out that the
cluster positions of the true minimum-energy state and the
usually assumed configurations have different point sym-
metries. We note here that a discrepancy exists for the
ground state of !°0, which is usually thought of as a regu-
lar tetrahedron, but has been claimed?® to have a more
elongated tetrahedral shape.

An alpha-cluster description of °0 is of great interest
for the problem of tetrahedral symmetry in light nuclei
that has been discussed recently.”*® In the ACM
angular-momentum eigenstates can be projected from in-
trinsic many-body states with tetrahedral symmetry. This
can be compared with the previous assignment of group
theoretically allowed states based on a phenomenological
adjustment of the parameters of a molecular Hamiltonian.
If %0 has a common intrinsic tetrahedral state for bands
of positive and negative parity, then the level scheme
should differ from what is usually believed.

This paper has two parts. The first one deals with the
intrinsic states obtained from unconstrained minimiza-
tions in the alpha-cluster space. We discuss the resulting
local minima and compare with previous results that turn
out to be unstable in many cases. In the second part we
study the rotational bands of both positive and negative
parity that result from angular-momentum projection of
the above-mentioned intrinsic states, and compare the cal-
culated bands with the experimental spectrum.
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II. INTRINSIC STATES

A. The model

Brink’s alpha cluster model has been discussed in detail
in the literature (e.g., Refs. 16 and 31), and we recall here
only the basic definitions. The intrinsic variational
many-body states ® of the nucleus are constructed as
Slater determinants of 1s harmonic-oscillator single-
nucleon orbits centered around given cluster positions I_ij:

¢:(X;)=(bv'm) = exp[ — (X; —R;)*/2b2 X,

(i=1...,4;j=1,...,4/4). (1)

Here, i labels the nucleons and j the cluster centers, X;
denotes the spin and isospin part of the wave function,
and b is the oscillator width. All states are occupied by
four nucleons. A wave function of this type can describe
states of a shell-model character (all ﬁj are equal or close
together), as well as states with a pronounced cluster
structure where the positions ﬁj are well separated. This
property makes the model well suited for calculations in
160 where both types of states exist. The assumption of
fourfold occupation prevents, however, the description of
particle-hole excitations other than 4p-4h, 8p-8h, etc.

In general, this kind of many-body wave function will
neither be a parity nor an angular momentum eigenstate.
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So components with good quantum numbers have to be
projected out of the intrinsic state. For the parity opera-
tor, this is achieved by using the linear combinations

| ®(R;)) + | ®(—R;)) .

In this model negative parity states can be described as
easily as positive parity ones, provided that

| ®(R;))# | D(—R;)) .

The angular momentum projection is more involved and
will be discussed in the next section.

The projection operators can be applied either before or
after the variation of the parameters. For nonaxial con-
figurations the angular momentum projection involves a
three-dimensional integral that leads to long computing
times. Therefore we project onto good angular momen-
tum only after variation, whereas the parity projection is
always performed before variation. We note that this may
lead to inaccuracies because a large energy gain has been
found for a variation after projection of the ground state
of 1%0.17 This will be discussed later.

The variational parameters of the model are the cluster
positions ﬁj and the oscillator width 5. Usually the clus-
ter positions are assumed to have certain geometrical
properties that restrict the number of parameters. In con-
trast to that procedure we perform an unconstrained vari-

TABLE 1. Energies E, root mean-square radii », and charge moments Qo and Q, for the intrinsic states of positive (P =+1) and

negative (P = —1) parity. The excitation energies are relative to the ground-state energy for the same force as given in the upper
part.

Configuration P Method Force E (MeV) r (fm) Qo (fm?) Q, (fm?) Ref.
tetrahedron +1 ACM B1 —94.4 2.68 0. 0. this work
tetrahedron +1 ACM B1 —94.4 2.62 0. 0. 17—19,22
(000)(001)(010)(100) +1 HF B1 —93.0 2.65 0. 0. 6
tetrahedron +1 ACM STII —120.5 2.66 0. 0. this work
(000)(001)(010)(100) +1 HF SIII —128.2 2.69 0. 0. 33

expt. —127.6 2.64—2.73 0. 0. 34-36
bent rhiomb +1 ACM B1 15.2 3.16 67.0 10.7 this work
planar rhomb +1 ACM B1 17.1 17,18
kite +1 ACM B1 15.7 22
(000)(001)(010)(002) +1 HF B1 17.8 3.09 60.4 12.0 6
kite +1 ACM B1 16.2 3.22 76.0 11.4 this work
square +1 ACM B1 20.5 17,18
kite +1 ACM STII 32.8 3.11 61.3 6.7 this work
asymmetrical chain +1 ACM B1 23.5 4.80 313. 0. this work
symmetrical chain +1 ACM B1 24.8 4.62 290. 0. 18,19
equidistant chain +1 ACM B1 24.8 17,22
asymmetrical chain +1 ACM SIII 49.0 4.50 257. 0. this work
tetrahedron —1 ACM B1 8.1 2.76 0. 0. this work
tetrahedron —1 ACM B1 8.1 17,22
tetrahedron —1 ACM STII 13.4 2.73 0. 0. this work
kite -1 ACM B1 20.7 3.61 115. 12.5 this work
kite -1 ACM B1 22.5 22
kite —1 ACM STII 37.0 3.28 78.9 6.5 this work
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(a)

(c)

(d)

\ (e)
/

FIG. 1. The various configurations found in the uncon-
strained variation. The parity reflected configuration is shown
in dashed lines. The sizes are arbitrary. (a) Tetrahedron. (b)
Bent rhomb. (c) Kite (positive parity). (d) Chain. (e) Kite (neg-
ative parity).

ation of all 3-4—6+1=7 variational parameters (here the
six spurious rigid-body degrees of freedom are subtracted).
Numerical searches for energy minima may yield more
than one of them. These correspond to the ground state
and the excited intrinsic states on which rotational bands
may be built. Finding minima different from the ground
state turns out to be quite complicated. Energy minima
have been determined numerically, starting at arbitrary
points in the variational space. The iterative minimiza-
tion usually leads to the ground state, and only occasional-
ly results in an excited local minimum which, if suffi-
ciently deformed, may correspond to a rotational band.
Actually such local minima are found only if the starting
point is already close to the minimum. As a grid search is
impractical in seven dimensions, some uncertainty
remains regarding whether all minima have been located,
even though a number of attempts to find additional mini-
ma failed.

In order to see whether the results depend on the nu-
clear force in the Hamiltonian, we have used two different
forces, the Brink-Boeker force B1 (Ref. 32) and the
Skyrme force STII (Ref. 33). The two forces represent two
rather different types. The B1 force has a finite range and
saturates through its odd state repulsion; the SIII force
has range zero and is density dependent. In all cases the
Coulomb interaction was included exactly and the com-
plete (one- and two-body) center-of-mass term was taken
into account. This eliminates problems with spurious
states which occur in shell-model calculations.?

B. Results for intrinsic states

In this subsection we discuss the results obtained for the
intrinsic states. They are summarized in Table I. For
positive parity and for both forces the lowest energy state
has cluster positions ﬁj that form a regular tetrahedron
[see Fig. 1(a)]. We do not find that a deformed structure
yields more binding as claimed in Ref. 23, where Coulomb
effects have been neglected. Although the resulting dis-
tance between the centers is 1.27 fm for B1 and only 0.57
fm for SIII, the calculated rms radii differ by only 0.02
fm. The Bl energy is identical to the result of Refs.
17—19 and 22; there is, however, a discrepancy in the ra-
dius. The results of HF calculations® are very similar in
the B1 case. For SIII almost 8 MeV are missing in the
binding energy. This shows that clustering is less favored
by SIII than by Bl, in accordance with previous find-
ings.2® The radii are in good agreement with experiment,
B1 underbinds considerably, as usual in this mass region,
whereas STII is close to the experimental binding energy.

Our results for excited intrinsic states differ more
markedly both from previous ACM calculations and for
the two forces. The first excited O1 state is usually as-
sumed to consist of a planar rhomb configuration of the
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four clusters. In our unconstrained calculation it turns
out that such a configuration is unstable against bending
about the shorter diagonal. Another instability which
leads to a kite shape (see the following) has been noted in
Ref. 22. We find a stable configuration which is slightly
nonplanar [see Fig. 1(b)] but maintains the overall shape
of a rhomb. The gain in binding energy is almost 2 MeV
(the B1 force) as compared to the planar rhomb and also
to the HF result. For the SIII force no state has been
found with a rhomb-like configuration.

Since the shape parameters Q, and Q, cannot be de-
fined unambiguously for such a triaxial state, we have
chosen the axes such that |Q,| is minimum and Q, is
positive. All values refer to charge quadrupole moments.
The experimental quadrupole moment of the excited state
can be extracted from the measured y-decay rate
I, =(2.7£0.3)X 107> eV (Ref. 34) for the transition 2+

(6.92 MeV) to 0% (6.05 MeV). The formulas®’

B(E21)=175/4m{#c /E,)’T, , )

B(E21)=5B(E2l), 3)
and

B(E21)=5¢2/16mQ} @)

yield Qp=(58+4) fm? which is in good agreement with
our result. However, the assumption of the rotational
model in Eq. (4) may not be well fulfilled in light nuclei.
An earlier estimate® from experimental B(E2) values yields
Qo=64+4 fm? and a HF calculation’ Qy=57 fm? for the
first excited 0% in !0, .

A second excited state in the ACM is believed to have a
square ﬁj configuration.!” This shape also turns out to be
unstable against bending about the diagonal. We find no
stable state of a similar shape but a local minimum with a
kite shape for both B1 and SIII [see Fig. 1(c)]. For Bl it
is 4 MeV below the (spurious) square of minimum energy.
The SIII excitation energy is almost twice as high as in
the Bl case, whereas the shape parameters are similar.
We find no evidence for a different kite shape that has
been studied in Ref. 22. Our kite is very close in energy
and shape parameters to the bent rhomb. The configura-
tion is quite interesting since three of the four alpha clus-
ters form an almost equilateral triangle with a side length
very close to the ground-state configuration of 2C. In
this sense the state has a >C+a structure. Such a cluster
model of %0 was proposed earlier,’® and there are resonat-
ing group calculations using a '>C+a partition.'> Thus
the ACM result provides a justification for this previously
conjectured structure.

In the last positive parity excited state the clusters form
a linear chain. In all previous calculations'’ %22 the four
clusters of the chain have been arranged symmetrically
with two or three equal distances. Thus only intrinsic
states with positive parity have been considered. In con-
trast to this we find for both forces that the stable solution
has three different distances [see Fig. 1(d)]. We emphasize
that the linear arrangement and the stability against bend-
ing is a result rather than a constraint of our variation.
For B1 the gain in binding energy over the symmetric con-
figurations'’~!?2 is more than 1 MeV. Again, SIII gives
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about twice the excitation energy of B1, but only margin-
ally different shape parameters.

For negative parities two local minima have been found.
The lower configuration is a regular tetrahedron with
separations between the clusters that are almost twice as
large as for positive parity: 2.59 fm for Bl and 1.04 fm
for STII. We therefore consider this state as an octupole
vibration of the ground state, corresponding to the lowest
3~ state (cf. Sec. III). The SIII force has higher excitation
energy than Bl but a similar rms radius.

Previous constrained ACM calculations!”?? have led to
a tetrahedral configuration with negative parity. In addi-
tion to that we find a second local minimum with negative
parity. The configuration has a kite shape [see Fig. 1(e)]
different from the kite-shaped positive-parity minimum.
It also differs from the one assumed in Ref. 22 which
seems to be unstable. The size of the triangular substruc-
ture is larger than for positive parity and very close to the
lowest configuration of negative parity in '>C. Thus both
intrinsic “kite” states in '%0 are consistent with an a+2C
structure. For SIII we find again a higher excitation ener-
gy and a somewhat smaller deformation than for BI.
Hartree-Fock results with negative parity are not available
for comparison.

Summarizing the differences between B1 and SIII, we
note that, because of the much higher excitation energies
in the latter case, it is unlikely that the projected energies
can be close to the experimental levels. This is not pecu-
liar to the ACM, but has also been observed in HF calcu-
lations.!® In the next section we will therefore consider
only the Bl results. The shape parameters are similar for
the two forces, with STII leading to somewhat smaller de-
formations. The degree of clustering can be seen better
from density contour plots which will be discussed in the
following.

In order to study the discrepancies between our results
and previously published values for the intrinsic configu-
rations, we restrict the variational space by parametrizing
the cluster positions in the following way:

R;=(d,,0,—d), (5a)
R,=(—d,0,—d), (5b)
R;=(0,d,,d) , (5¢)
R,=(0,—d,,d) . (5d)

This corresponds to two orthogonal dumbbells that are
2d, and 2d, long and separated by a distance of 2d. Most
of the configurations considered in the ACM can be
parametrized in this way: tetrahedron (d;=d,=V"2d),
planar rhomb (d;s£d,,d =0), and square (d,=d,,d =0).
A bent rhomb is given by d5£d, and ds40. The shell-
model ground state is obtained for d, =d, =d =0.

For each value of d, we have minimized the energy with
respect to dy, d,, and the cluster size b. The results are
shown in Fig. 2 for positive (P=-+1) and negative
(P = —1) parity and for a calculation without parity pro-
jection (P=0). For all values of d, a symmetric
minimum exists with d;=d,. This curve contains the
tetrahedral ground state which lies at finite d for P= 41
and P=—1. For P =0, however, the minimum is ob-
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FIG. 2. Energy of the two-dumbbell configuration as a func-
tion of the separation for positive (dashed line), negative (dotted
line), and no (solid line) parity projection.

tained for d =0, and corresponds to the shell-model
ground state. A second and third minimum occur at
small values of d except for negative parity. The second
one has an asymmetric shape (d,5d,) and goes over into
the rhomb for d =0. This configuration is a saddle point
in the restricted space. At finite d a local minimum is ob-
tained only for P= + 1, which is the bent rhomb previous-
ly described. The existence of this state depends on
whether the parity projection is performed before or after
variation. A similar observation has been made in a HF
calculation.*®* The third minimum finally goes over into a
square for d =0, which is again only a saddle point. No
minimum is found, however, for finite d in this case.
Therefore the previous variation of a square-shaped ACM
state has led to a spurious result.

The low symmetry of some intrinsic configurations
(bent rhomb, chain with three different separations) may
be surprising. An explanation for this is given in Fig. 1,
where the parity-reflected configuration is shown in
dashed lines. Here the combined density of solid and
dashed circles together corresponds to clusters with pro-
late deformation. The resulting cluster configurations
would be more symmetric if the clusters were allowed to
deform. This explanation would also apply to the chain
structure in '2C that has been found to be unstable against
bending, except for a finite hinge angle.*

The prolate deformation can also be seen in the contour
plot (Fig. 3) for the density of the chain after projection
onto positive parity. Figure 4 shows the density of the
kite configuration in the plane of the kite. Because of the
parity projection, the characteristic '?C+a distribution of
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1fm
FIG. 3. Density contour plot for the chain configuration for
the B1 force. The coutours are plotted in steps of 10% of the
peak density.

Fig. 1(c) is not visible here. It is apparent from the plot
that the cluster structure is more pronounced for Bl than
for STII. Generally the odd-state repulsion of Bl tends to
favor clustering, as already noted earlier.?’

C. Comparison with shell-model wave functions

For vanishing cluster separation the ACM wave func-
tion goes over into a shell-model wave function. The
tetrahedron, e.g., approaches the ground-state configura-
tion (15)*(1p)'? in the limit of vanishing side length.'® For

FIG. 4. Density contour plot for the kite configuration for (a)
the B1 and (b) the STII force.
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finite separation such a one-to-one correspondence does
not exist. We have therefore studied an expansion of the
ACM wave function in terms of shell-model states. Such
an expansion will be of some interest because of the failure
of the shell model to describe the low-lying rotational
bands.

The number of possible shell-model states increases very
rapidly with the number of shells. In order to have a
manageable set we consider only one kind of particle (e.g.,
neutrons with spin up). This still requires 10° states for
the nonplanar configurations. The number is greatly re-
duced for planar or linear configurations because then
only 1s orbits contribute in one or two directions.

The results are shown in Fig. 5. The probabilities for
the positive parity ACM configurations are plotted versus
the number of oscillator quanta in the shell-model wave
function. Here 0w denotes the shell-model state with no
particle-hole excitation. The 27w terms include both the
excitation of one particle by two major shells and the
simultaneous excitation of two particles by one shell each.
The states with more oscillator quanta are constructed in
the same way. Because here only one particle of each
(T =0,S =0) quartet is considered, the label 17w actually
already refers to a 4p-4h excitation.

The probability for the tetrahedron is seen to be concen-
trated at Ofiw: The ACM configuration does not deviate
very much from the simple shell-model ground state. For
all other states the probability is spread out over many
shells. Therefore a shell-model calculation in a basis
which is large enough to cover an adequate portion of the
ACM wave function will be impractical. Earlier )C+a
orthogonality-condition model studies had similar re-
sults.! The lowest excited state, e.g., is assumed to be of a
4p-4h type in the shell model. The corresponding rhomb
configuration has, however, only 29% overlap with this
state, and in order to exhaust 90% of the ACM state the
inclusion of 5%iw would be necessary. The situation is
even worse for the chain which is treated as an 8p-8h state
in the shell model. The ACM chain has almost no over-
lap with this state. The shell model fails for these states
because the number of shells taken into account is much
too small. However, a significant increase in this number
is beyond present computing capabilities.

A marked difference exists between the results for Bl
and STII. In the latter case the number of oscillator quan-

J

2J +1
872

Piy | 6(R;))) =

Spectra are then calculated as expectation values of the
Hamiltonian with these projected states. The threefold in-
tegration over the Euler angles has to be performed nu-
merically. Though the necessary computing time can be
reduced by a judicious choice of the meshpoints,’! it is
still too long for projections before variation. Only for ax-
ial states, such as the chain, does the integral reduce to a
one-dimensional one which is much easier to handle.

The possible K bands and corresponding J values can be
determined by group-theoretical methods without per-
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FIG. 5. Probability to find various shell-model states in the
ACM configuration.

ta needed is much smaller: The ACM states are much
more shell-model-like. We have found in the preceding
subsection that the excitation energies are much higher for
STII. These two facts may be related such that a low exci-
tation energy is found only for states which deviate
strongly from the shell-model form.

III. ANGULAR MOMENTUM PROJECTION
AND SPECTRA

A. Point symmetry and K-selection rules

As pointed out already in Sec. II A, the ACM many-
body wave functions are in general not eigenfunctions of
the angular momentum operator. So it is necessary to
project out states of good angular momentum by using the
Peierls-Yoccoz projection operator:

T 27 2 . -
[, dBsinBdiy(B) [ da [ 7 dy "MK | 4R a) R B)AAYR,)) . (6)

forming the integration.!® If the intrinsic state is invari-
ant under a finite group of rotations ¥ with g elements,
then the number of states with a given angular momen-
tum J is not greater than

N=1 S xis), 7
8 ser

where the sum runs over all group elements and X’(S)
denotes the corresponding character. If the symmetry
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group is not too large, simpler formulas can be given:

(i) For axial symmetry, only K =0 is possible with the
states 07,2%,4%,... or 17,37,57,.... This applies to
the chain.

(i) For an axis of n-fold symmetry, K may be
0,+n,+2n,.... For K =0 we have again the states of (i),
whereas for K=0 the possible states are [K |,
|K|+1,|K|+2,... for positive and negative parity.
This applies to the bent rhomb and to the kite with n =2.

The tetrahedron is more difficult because of the large
symmetry T;. The above formula and the character table
for T; (Ref. 41) lead to the following possible states:
0t,3-,4%,6%,77,8%,.... Different K values are degen-
erate in this case.

B. Tetrahedral symmetry in °O

For B1 we have studied the positive and negative parity
states with intrinsic tetrahedral symmetry because of
Robson’s recent investigations®>*° of such a symmetry in
light nuclei. In this work the rotational states of the
tetrahedron are identified with the experimental levels 3~
(6.13 MeV), 4+ (10.35 MeV), and 67 (16.29 MeV). Using
the Hamiltonian for tetrahedral molecules*? with the pa-
rameters fixed by these three states, a 7~ and an 8% level
are then predicted at 21.19 and 29.18 MeV, respectively.
This level assignment is completely different from the
conventional one.

Positive and negative parity states are obtained from the
same intrinsic state in Refs. 29 and 30. Our solutions for
plus and minus parity turn out to have different intrinsic
states. If one performs the variation before parity projec-
tion to maintain a common intrinsic (P =0) state, the
tetrahedron collapses (see Fig. 2) to a point and this solu-
tion has J™=0% only. The variation after (P = +1) pro-
jection leads to a tetrahedron with a side length of 1.27 fm
(solution I); the (P = —1) result is 2.59 fm (solution II).
The angular momentum projection of solution I gives the
37 level at 13.26 MeV, the 41 at 25.45 MeV, the 6T at
26.87 MeV, the 7~ at 38.55 MeV, and the 8% at 50.25
MeV. For the corresponding projections of solution II we
find these levels at 12.52, 22.58, 26.11, 35.75, and 46.22
MeV, respectively. All these excitation energies refer to
the 01 ground state of the particular solution (I or II).
The energies are considerably higher than those obtained
in Ref. 29. They are lower for solution II, which has a
larger separation of the clusters. The energies are lower
for a bigger tetrahedron, but then the charge radius be-
comes too large.

We have also used our calculated energies of the 37,
4%, and 6% states to determine the parameters B, D,, and
D, of the Hamiltonian for tetrahedral molecules,*

H=BJ(J+1)—D,[J(J+1)]*~D,(0,,,,) (8)

(the numbers (0, ) are given explicitly in Ref. 42). An
extrapolation of the J7=7~ and 871 energies in the same
way as in Ref. 29 then gives 43.57 and 87.40 MeV for
solution I and 37.22 and 65.07 MeV for solution II. These
values for the molecular Hamiltonian differ from the en-
ergies obtained from angular momentum projection by up
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to 37 MeV. It should be noted that Eq. (8) accounts for
interaction terms up to the fourth order. Obviously, with
increasing angular momenta (such as 87%), the higher or-
der terms in the interaction become important, and may
lead to large deviations from the exact angular momentum
projection.

It is conceivable that the full variations after projection
onto 37, 41, 67, 77, and 8% would lead to ACM results
that are closer to that of Ref. 29. However, the ACM re-
sults obtained so far (parity projection before and angular
momentum projection after variation) do not agree with
the concept of a molecular motion with tetrahedral sym-
metry, even though the intrinsic ACM ground state is a
regular tetrahedron.

C. States of positive parity

In this subsection we will discuss all positive parity
bands that can be projected from intrinsic minimum-
energy states. In addition to the tetrahedral states men-
tioned above, there are K =0 and K =2 rotational bands
for both the bent rhomb and kite shape, and a K =0 rota-
tional band for the chain. All levels up to J =10 and 30
MeV excitation energy are shown in Fig. 6 together with
the negative parity states that will be discussed in the next
section.

Since the energies of a rigid rotor are

E ~ﬁ—2[J(J+1)-K2]+-h—2—K2 )
K= 26, 20,
the level spacings of such rotational bands follow certain
rules that can be checked easily without knowing the mo-
ment of inertia.
The spacing within a band with a definite K value is
given by
hZ
[Ejx —Egx1/[J(J+1)—K(K +1)]=——=a=const .

20,
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FIG. 6. Calculated levels for positive and negative parity.
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From

.  # #
E;x—E;)/K'=————=B=
[Ex —Ejol/. 26, ~ 20, B=const (11)
it follows that all K bands with the same intrinsic state are
parallel. High K values lie much higher in energy because

Ejy—E;o=4(E;;—Eyo)

for J >4. Therefore, K =4 and higher bands have not
been calculated. We also do not take into account a possi-
ble mixing between K =0 and K =2 bands.

The calculated rotational bands show rather diverse pat-
terns as compared to the rigid rotor. The kite and chain
give rise to bands very close to the rigid-rotor case. For
the kite we find rotational constants, averaged over the
band members, of a=192 keV for K =0 and 188 keV for
K =2. The spacing between the K =2 and K =0 levels
yields S8=257 keV. These values are close to the classical
moment of inertia of the corresponding arrangement of
four a particles. For the chain we find a =64 keV for the
angular momentum projection, in exact agreement with
the classical calculation (S is not defined in this case). On
the other hand, the bent rhomb is not a good rotor. The
K =0 band does not follow a J(J +1) spacing. The K =2
band differs even from the normal level ordering of in-
creasing energy with increasing angular momentum: The
7% state lies above the 871 state. Such an inversion had
been found previously.** Although angular momentum
projection must not lead to the normal level ordering, such
a deviation may indicate that the intrinsic minimum ener-
gy state depends on the angular momentum and should be
projected before variation. Still it is remarkable that simi-
lar configurations such as the rhomb and kite show such
different behaviors in their rotational spectrum. The ex-
traction of a and 8 does not seem meaningful in this case.
The same is true for the tetrahedron.

We turn now to a comparison of the calculated spec-
trum with the experimental levels.>* In Fig. 7 we have
plotted the excitation energy versus J(J +1) to facilitate
the identification of rotational bands. All experimental

FIG. 7. Experimentally known levels in %0 with positive or
unknown parity and isospin zero or unknown. For points in
parentheses the spin is uncertain. The band assignments are dis-
cussed in the text.

states with positive or unknown parity and zero or un-
known isospin have been included. States with an uncer-
tain J™ assignment are in brackets. No 5% or 7% states
are known experimentally, and only one 87 is.

Only two positive-parity rotational bands are well estab-
lished. The first one is the low-lying band based on the
0% (6.05 MeV) state, which is known at least up to 6*
(16.28 MeV), and up to 8 (22.5 MeV) with some uncer-
tainty. The other band is the high-lying band associated
with a linear configuration of four a clusters whose band-
head (0%) has not been observed. In Fig. 7 we have indi-
cated some more level sequences that possibly form rota-
tional bands. The band assignment relies mainly on the
J(J +1) spacing of the levels. This involves, of course,
some ambiguity. In fact, some bands have been assigned
differently in Ref. 44, a search based on the experimental
spectrum, and in Ref. 45, an attempt to use an eight-
particle liquid-drop plus shell-correction approach with
large readjustments for the bandheads. The band assign-
ments of Fig. 7 partly follow earlier proposals.*® We find
a K =2 band based on the 2% (9.85 MeV), an additional
K =0 band based on the 0F (11.25 MeV), and a corre-
sponding K =2 band starting at 2+ (15.26 MeV). All
these bands can be traced up to 6™, with the 5% states
missing in the K =2 bands. No additional rotational band
can be identified with a bandhead below 15 MeV. So alto-
gether we have three K =0 and two K =2 bands.

This number coincides with the number of rotational
bands resulting from our calculation. Therefore, a one-
to-one correspondence can be established. The identifica-
tion is rather unambiguous for the band associated with
the chain. We obtain the bandhead at 16.27 MeV and a
rotational constant of 64 keV, in very close agreement
with Refs. 17—19 and experimental data (16.75 MeV and
63 keV, respectively). The lowest band at 6.05 MeV com-
pares well with the one obtained from the rhomb. The
calculated band starts at 5.45 MeV and the 8* is found at
23.43 MeV instead of the experimental 22.5 MeV. Thus
the calculated level positions reproduce the experimental
values, in particular the bandhead, with an accuracy that
is extraordinary for a microscopic calculation with a stan-
dard nucleon-nucleon interaction and without adjustable
parameters.

The calculated K =2 band has large deviations from the
J(J +1) spacing as noted above, and such behavior is not
seen experimentally. Also the calculated spacing between
K =0 and K =2 states of fixed J” is much too small.

We identify the remaining band, with the kite-shaped
intrinsic state, with the 11.25 MeV band. It is about 4
MeV too low in energy, but the rotational constant
a=192 keV is reasonably close to that deduced from the
experimental spacing (about 200 keV). This time the
difference between K =0 and K =2 is larger than for the
rhomb, but still too small. The calculation yields 0.90
MeV rather than 2.24 MeV for the 2% state. The 41 and
6™ states projected from the tetrahedron lie too high to be
unambiguously identified with experimental levels.

Not all experimental positive-parity levels of °0 can be
classified in terms of rotational bands. Some are possible
candidates for vibrational states. The states (0+,2%,47)
around 11 MeV have been proposed as candidates for a
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two-phonon triplet.*s A recent 27w shell-model calcula-
tion*’ suggests a 2p-2h character for these states. Both ex-
planations lie outside the scope of the present paper. The
calculation of vibrational states requires the treatment of
the cluster position as generator coordinates, and for 2p-
2h states the quartet symmetry has to be broken.

D. States of negative parity

The number of negative parity states obtained in the
ACM is much smaller than that for positive parity. Only
two rotational bands are found, associated with the kite-
shaped intrinsic state, and some states projected from the
tetrahedron. The only tetrahedral state that can be identi-
fied in the experimental spectrum is the 3~ state at 6.13
MeV, for which the calculation yields 4.86 MeV. The 7~
is too high to be assigned to a specific experimental level.
As for positive parity, the kite gives rise to a rotational
band which is close to the rigid rotor form. The rotation-
al constants are a=141 keV for K =0 and 140 keV for
K =2 and B=331 keV, deduced from the angular momen-
tum projection. This is in close agreement with the a
value for the classical moment of inertia.

Experimentally a K =0~ band is well established with
the members 1~ (9.63 MeV), 3~ (11.60 MeV), 5~ (14.66
MeV), and 7~ (20.86 MeV). The position of the bandhead
is close to the calculated one, whereas the experimental
slope of the band is larger than calculated, ., =195 keV.

A possible K"=2" band can be constructed from the
states 2~ (12.53 MeV), 3~ (14.1 MeV), and 5~ (18.40
MeV). A 4~ state in this energy range is not known. The
known 4~ states*® between 18 and 20 MeV are 1p-1h exci-
tations of a stretched type (1ds,,,1p 3—/12), and do not be-
long to rotational bands. In comparison to the calcula-
tion, the above candidate for a K =2 band has a larger
slope than for K =0, and a larger spacing between the
K =2 and K =0 bands. For 37, the calculation yields
1.34 rather than 2.50 MeV, similar to the finding for posi-
tive parity.

Most of the low-lying negative parity states are con-
sidered as 1p-1h excitations from the p to the (sd) shell.
States of this type are outside the cluster model space.
Some of the low-lying states are, however, not explained
in a 1% shell-model calculation.”? These are just the
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above-mentioned candidates that can be described by the
cluster model.

IV. CONCLUSION

In this paper we have considered in detail the ACM for
160. The treatment differs from previous studies in that it
is based on an unconstrained variation of all seven param-
eters. Apart from this, several of the usual approxima-
tions have been used. An angular momentum projection
before variation was beyond our computing facilities.
Mixing between different K values and different intrinsic
states (which are not necessarily orthogonal) has not been
considered. The existence of deformed a clusters is sug-
gested by some of the resulting intrinsic states, but has not
been explored in detail.

A number of configurations obtained previously in re-
stricted ACM variations turn out to be spurious. They are
found unstable against certain variations and thus do not
represent local minima of the energy surface. We have
determined four local minima for positive parity and two
for negative parity. The angular momentum eigenstates
projected from these can explain most of the low-lying
levels of '%0. States not obtained within our model can be
attributed to excitation mechanisms that lead out of our
model space. Especially, we find in a parameter-free way
a rotational band close to the well-known experimental
6.05 MeV band which shell-model calculations failed to
describe. The analysis of our intrinsic state in terms of
shell-model states shows the necessity of including a
prohibitively large number of shells in such calculations.

The recent suggestion that the !®0 spectrum may be
described in terms of a common intrinsic molecular state
with tetrahedral symmetry is not supported by our results.
While the tetrahedral symmetry of the ground state is
confirmed, the sizes of excited tetrahedral intrinsic states
turn out to be different for positive and negative parity.
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