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Deformed states in He, in which four nucleons are placed in the 1p shell, are considered. An in-

teraction consisting of a Gaussian attraction and zero range density dependent repulsion is em-

ployed. The parameters are chosen so that the ground state energy of He is —28 MeV, and the os-
cillator length parameter b is 1.4 fm. The method of variation after projection is employed, using
the techniques of Evans and Elliot, to obtain the energies of J=0+, 2+, and 4+ states. The results
are studied as a function of the range of the Gaussian interaction. Connection is made with the
more extensively studied problem of four-particle —four-hole states in ' O.

INTRODUCTION

In this work we wish to consider the possibility of iden-
tifying four-particle —four-hole states in He using
methods which are analogous to those used in ' O. In the
latter nucleus, Brown and Green' described the J=0+
first excited state at 6.03 MeV as mainly a four-
particle —four-hole highly deformed state. The assump-
tion of large deformation was essential to get the state to
come at a sufficiently low energy, and to explain the large
intraband electric quadrupole transition rates. We shall
see that deformation is also extremely important for He.

In medium-heavy mass nuclei density dependent in-
teractions have often been used to perform Hartree-Fock
calculations. We shall here use them for the very light nu-
cleus He. Following the philosophy of Brink and Boek-
er, we choose the parameters so that the ground state
properties come out reasonably well. Then the interaction
is used to explore excited states.

Because there are uncertainties in the precise form of
the interaction, we study the problem of four-
particle —four-hole states with a variable parameter —the
range of an attractive Gaussian force. We shall see that
the results are extremely sensitive to this range.

One reason for studying He in this way is that this nu-
cleus is amenable to exact or nearly exact calculations,
e.g., in the recent work of Ballot, and of Ayoub. Fur-
thermore, He is the lightest nucleus which in some sense
behaves like a usual closed shell nucleus, e.g., it has a
binding energy per particle of about 8 MeV.

This nucleus may then provide a good testing ground
for the phenomenological approaches which are used in
heavier nuclei, e.g., the use of density dependent interac-
tions to simulate the importance of the tensor force in
second order.

Because of the uncertainties in the interactions, we try
to correlate to some extent the results of He with those of
' O. We shall see that a form of interaction which brings
the J=0+ 4p-4h state sufficiently low in ' 0 will also
bring the state in He sufficiently low so as to associate it
either with the first excited 0+ state at 20.1 MeV, or the

state at 25.5 MeV (it is not certain if this is a 0+ state).
In the course of the work, we make several approxima-

tions. Deformed oscillator wave functions are used as are
approximate projection procedures owing to Elliot and
Evans. Experience suggests that the exact calculations
would lower the excitation energy relative to the results
we obtain here. It is also hoped that these calculations
will stimulate the search for rotational bands in He.

THE INTERACTION AND GROUND STATE
PROPERTIES—4He

The interaction used is

—Vo[(1+P )/2+((1 P)/2]e " ~' —+t /63p(R)5(r ),
where

r = r~ —r2, R=(r~+ r2)/2,

and P is the Marjorana exchange operator.
One should say at the outset, that for the particular

problems considered here, four particles in the 1s shell
(ground state) and four particles in the lp shell, there can
be no odd state interactions. Hence the Gaussian term can
be simplified to

Oe
p2/g 2

We use harmonic oscillator wave functions. We impose
the condition that the ground state energy is —28 MeV
and that the oscillator length parameter has a value
b = 1.4 fm. It is convenient to introduce T3 such that

T, =3t, /(144v 3w') .

A Hamiltonian is used in which the center of mass en-

ergy is removed

II=H— 1

2Am

This has the effect of changing the kinetic energy of four
1s nucleons from

29 Q~1984 The American Physical Society



29 FOUR-PARTICLE —FOUR-HOLE STATES IN He 1041

3' /mb to 2.25fi /mb

The expression for the energy of four ls nucleons is then

E(b) =2.25iri /mb —6Voa +64T3/b

where

a =1/(1+2b la ) .

We also demand that

dE(b)
b

=0 at b =1~ 4 fm ~

Solving these equations, we find

Vo ——9.8963/[a (1 ab—/a )],
T3lb = —1.1729+0.9278/(1 ab—/a ) .

——,
' Voa„a»a, (9—6a, +9a, )

+ T, /b'35. 5555 .
We assume axial symmetry and define t via

co~ = tQ)o

~y ——&coo

—2~z =t ~o

We treat t as a variational parameter. In the zero range
limit, the potential energy of the intrinsic state becomes

—12To/b +35.5555Ti/b6

It is of interest to consider the zero range limit of this with
interaction. In that case, the interaction becomes identical
to a (velocity independent) Skyrme interaction To = ( Voa ')u-o

16 2

with

to5(—r )+ti/6p(R)5(r ),

lim Voa =to/ir ~i .
a~o

Vo —+ 00

In this limit,

where

bo b„b»b, .——
Hence the potential energy is independent of deformation.
In that case the deformation is obtained by minimizing
the kinetic energy alone. As noted by Ripka, this leads to
the Mottelson conditions

a~~
Voa ~153.614 MeV fm

Tq/b —+0.6826 MeV .

As the range a is increased, there is a point where T&

vanishes. This occurs at a=2.336 fm.

Rco„=Sicko(X„X»X, )
'~i /X„,

fi, =e o(X„X„X,)'~'/X, ,

%co, =irtcoo(X„X»X, )'~3/X, .

In this limit the parameter t becomes equal to 1.4422.

PROJECTION OF ANGULAR MOMENTUM USING
THE ELLIOT-EVANS METHOD —4He

THE FOUR-PARTICLE —FOUR-HOLE STATE

Four nucleons are now put in the deformed lp shell. It
is convenient to use Cartesian coordinates x, y, and z and
frequencies co, co„, and co, . We classify the states by (N„,
N», N, ), where N„ is the number of nodes in the x direc-
tion, etc. It is also convenient to introduce Xz Xy Xz,
where X„ is sum (N„+ —,) over the occupied state. The
kinetic energy of the deformed intrinsic state is

3 %co» AQ)» %co»
X + Xy+ X,

2 y 2

(The factor of —,
' is particular to He and results from tak-

ing out the center of mass energy. ) The four nucleons are
put in the state

~
0,0, 1). Thus X„=2,X» =2, and X,=6.

The energy of the intrinsic state is

Elliot and Evans have devised an approximate method
of angular momentum projection which is much easier to
use than the exact method. Instead of projecting out a
state of definite angular momentum J, one is content to
construct a state for which the average value of J is
J(J+1).

Let us consider the nucleus He for which the 4p-4h
state is axially symmetric. Let H be the Hamiltonian.
One constructs H'=H —AJ . The variational ground
state solution of H' is designated by 4. One eliminates
the Lagrange multiplier by imposing the constraint

(4 J'4 ) =J(J+1) .

The variational solution for the intrinsic state was of the
form (

~

001) ) ~ In the variational solution of H', we re-
place

~

001) by

fr cosy
~

001)+i siny——
~

010) .

The expectation value of the Hamiltonian becomes

(H ) = 4 [fico„+Pm„+3fico, +2(irtco» fuo, )sin y] ——,
' Vo—a„a»a, (9—6a, +9a, )+ T3/b 35.5555

+sin 2y[ —,Voa„a»a, (2—a» —3a, +3a,—a»a, ) —21.333 33T3/b ] .
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The expectation value of (J ) is

(Jz) =J(J+1)=(3 sin 2y+2)(coy/co, +co, /coy+2) .

We introduce

p =sin 2f .

There are two possible solutions for sin y,

sinzy= —,'(I+&I—p ) .

We choose the solution which gives the lowest energy,
namely

sin y= —,'(1—v'I —p ) .

One can express p in terms of J and thus the expectation
value of H will depend explicitly on J. For each J we can
obtain a different deformation parameter tJ which mini-
mizes the expectation value. The results are presented in
Table I. The first column contains different values of the
range parameter a. The second column gives the energy
of the intrinsic state in parentheses, the deformation pa-
rameter t =co„/mo. The next three columns give the ener-
gies of the J=0, 2, and 4+ states, respectively, which
have been obtained by Uariation after projection using the
Elliot-Evans approximation.

A striking feature of the results is that the energies in-

crease with the range a. For example, the energy of the
J=0+ state changes from 16.27 MeV to 41.43 MeV as
the range is varied from a =0 to a =2.2. This is un-

doubtedly an effective mass effect. For zero range, the ef-
fective mass is 1. As the range increases, m'/m becomes
less than 1.

Thus we see that for small a, the energies are such that
we could associate the 4p-4h state with the 20.1 MeV state
in He or possibly the 2S.S MeV state. But for large
ranges, the state comes out too high. Also, the deforma-
tion decreases as a increases. We note that there is a sharp
rise of E with J especially with small values of a.

The magnitude of the energy difference between the in-
trinsic state and the projected J=0 state is largest when a
is smallest. For example when a =0 this difference is
14.93 MeV. For a =1.8 fm the difference is only 6.99
MeV.

We also note that the deformation parameter r =co„/coo
is larger for the case of variation after projection than it is
for the intrinsic state. This is true for each value of J.

Indeed, the deformation increases with J.
The values of sin 2y and sin y are listed in Table II for

J=0, 2, and 4 and for various values of the range a. Note
that for J=0, the value of sin 2y is ——', independent of a.
This is evident from the equation relating the angular
momentum to y. The fact that sin 2y can be negative has
been discussed by Elliot and Evans.

EFFECTIVE MASS

The contribution from the Gaussian interaction to the
ground state energy of He is —6Voa . We define the fin-
ite range energy E„R as the difference of this and the en-

ergy obtained in the zero range limit, in which case u ap-
proaches a/(V 2b). Thus we obtain

6Vpa
EFR ———6Vpa +

2v'2b

The effective mass is then given by the expression (Ex is
the kinetic energy)

m.=(I+EFR/Esc) .
ftl

Thus

, =I+[6Voa /(2v 2b ) —V()a ]/2. 2Mco .
N1

Clearly for a =0 m'/m = 1. We find that for a =0.5 fm
m'/I =0.81 while for a =1 fm m'/m=0. 54. Current-

ly, values of m'/m of about 0.7 to 0.75 are favored. With
a=0.5 fm, the energy of the 4p-4h 0+ state comes at
21.S5 MeV, while with a = 1 fm it comes at 31.07 MeV.

CONNECTIONS WITH "O

The four-particle —four-hole states in ' 0 have been ex-
tensively studied by many authors, including Engeland,
Brown and Green, ' Bassichis and Ripka, ' Kelson, " Tal-
mi and Unna, ' Brink and Boeker, Boeker, ' Stephenson
and Banerjee, ' Volkoff, ' Zamick, ' Arima, ' Bertch, "
Krieger, ' Irvine et al. , Halika et al. ,

' Harvey and
Khanna, and undoubtedly many others.

Brink and Boeker ' were the first to constrain the in-
teraction used in the four-particle —four-hole calculation
to fit the binding energy and radius of the ground state.
We have adopted this philosophy here. Boeker' and
Stephenson and Banerjee'" noted that the lowest Hartree-

TABLE I. The calculated energies and deformed parameters of the four-particle —four-hole states in
4He.

Range
a (fm)

0
0.1

0.5
1.0
1.5
1.8
2.2

Intrinsic state
energy (t =co„/coo)

(Mev)"

31.12(1.45)
31.29(1.45)
34.87(1.45)
41.53(1.40)
45.99(1.35)
47.14(1.35)
47.29(1.30)

16.27(1.55)
16.46(1.55)
21.55(1.55)
31.07(1.50)
37.90(1.50)
40.15(1.45)
41.43(1.40)

Variation after projection
J=2

23.30(1.70)
23.51(1.70)
28.19(1.60)
36.59(1.55)
42.38(1.50)
44.17(1.45)
44.98(1.40)

37.40(2.10)
37.60(2.05)
42.49(1.95)
49.91(1.75)
54.28(1.65)
55.35(1.55)
55.34(1.40)
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TABLE II. The values of sin 2y and sin y.

J=0Range
a (fm)

J=2 J=4
sin y

—0.1455

sin 2y sin y

—0.0886
—0.0886
—0.0812
—0.0773
—0.0732
—0.0689
—0.0646

sin 2y sin 2y sin y
2
3
2
3
2
3
2
3
2
3
2
3
2
3

—0.3856
—0.3856
—0.3512
—0.3329
—0.3140
—0.2947
—0.2752

—0.0803
—0.0454

—0.0197
—0.0112

0.0079

—0.1455
—0.1455
—0.1455
—0.1455
—0.1455
—0.1455

0.1

0.0314
0.2168

0.3262

0.4459

0.6384

0.5
1.0 0.0575

0.08961.5
0.1278

0.1993

Fock state was triaxial.
This can be most easily seen in the limit of a zero range

interaction. To construct the four-particle —four-hole
state one destroys four 1p shell quanta in the y direction
and one creates 2s-ld shell quanta in the z direction. In
that case

COMMENTS ON THE KINETIC ENERGY

Bertsch' has pointed out that the kinetic energy of the
4p-4h deformed state should be nearly the same as that of
the ground state. If we treated the 4p-4h state as spheri-
cal, then the kinetic energy would be —,

'
(Sirtco) as compared

with 4 (3fuu) for the ground state (remember that the fac-
tor of —,

' comes from removing the center of mass energy).
Taking into account deformation and projection, the ki-

netic energy of the 4p-4h state is

&„=12, Xy =8, Xz ——20 .

{The removal of the center of mass energy can be achieved
by changing these numbers to Xz 11 5 Xy 7.5, and
X,=19.5.) Then, since the deformation of the intrinsic
state is independent of the potential energy, the frequen-
cies are given, as previously mentioned, by the Mottelson
conditions. Hence, co„=1.034coo, coy ——1.586&no and
co, =0.610&no.

With the zero range interaction —t05( r )

+ t3 /6p(R )5{r ) we find that the energies of the ground
state and 4p-4h intrinsic states are

r

, fico 2t+3/t +2—t——sin y

(ground) E =Pi /mb (17.2S)—124TO/b

+824.8889T3/b

(4p-4h) E =iri /mb 017.8384—122.25T /b0

+834.370 37T, /b'
Eexcited

50-
A

[T =3to/(8(2m) )] . 40—

O

~ 2O

Setting the oscillator length parameter to a value b=1.76
fm and the ground state energy to E = —128 MeV, one
finds

To/b =4.51959 MeV,

T3/b =0.247436 MeV . IO—

The intrinsic energy of the 4p-4h state comes out at
—109.957 MeV. That is to say the excitation energy of
the intrinsic state is 18.043 MeV (if we allow bo to vary,
we find b4&4hlbs„„„d 1.017 and the ——excitation energy
now becomes 17.60 MeV).

Lamme and Boeker found for the 81 interaction that
the J=O+ state came down 8.8 MeV below the intrinsic
state. However, as noted for He, one gets a much larger
difference when the range of the Gaussian ct is smaller.

I

IO

l

20
J(J +1)

VARIATION AFTER PROJECTION

PROJFCTION AFTER VARIATION

FIG. 1. The energies of the J=0+, 2+, and 4+ 4p-4h states,
variation after projection versus projection from a fixed intrinsic
state. The results are for a zero range interaction.

For a —+0 we have t = 1.45 and for J=0 sin y =0.1455.
The kinetic energy is then —„(3.092)fm, which is close to
the ground state value, thus confirming Bertsch's conjec-
ture.

Actually, if we allow bo to vary in the 4p-4h intrinsic
state, we find b4& ghlbp =1.055. This decreases the kinet-
ic energy of the 4p-4h state by a factor (1.055) . Thus, we
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obtain a value of 4 (2.78ficoo) which is even less than that
for the ground state.

VARIATION AFTER PROJECTION COMPARED
WITH PROJECTION AFTER VARIATION

In Fig. 1, we show the energies plotted against J(J+1)
for two methods. First, the presumably superior method
of variation after projection (VAP), and second, the easier
and hence more often employed method of projection
from an intrinsic state, i.e., projection after variation
(PAV).

We note that the energies of the J=0+, 2+, and 4+
states are lower with the VAP method than with the PAV
method. This is particularly true for the 4+ state, which
is 7.5 MeV lower in the VAP method. The energy levels
in the VAP method follow the J(J+1) law more closely
than in the PAV approach. It would appear then that
variation after projection is important especially for the
high spin states in the band.

25—

20—

T
(2+) (0)

(&-) (0)
( i -) (& )
(0-) (i)~
(1 -) (&)
2—

(0, & +}

2—
0—
Q+

Q+

33.0

3I .0
~ 30.5
~ 29.5

2?.5
26.4

X 25.5

ADDITIONAL REMARKS

We may consider other forms of the interaction. For
example, the density dependent term can be generalized to

t3I6p (R—)6(r) where a is the power of the density.
Indeed, it was shown by one of us ' that the nuclear
compressibility is very sensitive to 0.. For example, with a
zero range attraction (a =0) the formula is

E =—[(T) + 9' +a(3( T) +9'�)],1

where Ez&z is the binding energy per particle and ( T ) /2
the kinetic energy per particle. Thus if we take 8 MeV
and 20 MeV, respectively, for these quantities, we obtain
E=(92+ 132a.') MeV.

Up to now the calculations have been performed for
0=1. We have obtained the energies of the intrinsic
states of He and ' 0 for a =2. We find that the energies
in both cases are about 1.5 MeV higher than for a =1.
The accepted nuclear compressibilities are consistent with
small values of a, i.e., a = —,'. By extrapolation we expect
the results to be about 1 or 2 MeV lower than for a =1,
although the explicit calculations have not been done.

We should mention that the removal of center of mass
energy is important for He. The calculated 4p-4h intrin-
sic state energy is 6.6 MeV lower than it would have been
had we ignored the center of mass energy.

Note that for the state considered here, four particles in
the

~
0,0, 1) states, the density vanishes at the center. Of

course admixtures of other configurations, e.g., 2p-2h, will
modify this. Still, it will be of interest to explore the im-
plications of a vanishing central density.

The experimental situation concerning a deformed rota-
tional band is at present not clear. The most comprehen-
sive survey on He was done in 1973 by Fiarman and Mey-
erhof. We show in Fig. 2 the energy levels from the
compilation of Lederer and Shirley. Recently, Gruebler

FIG. 2. The energy levels of He (experiment).

et al. reported overwhelming evidence for a 1 level at
24. 1 MeV and strong indication of a 4+ level at 24.6
MeV. It is difficult to understand theoretically how a
4+ level could occur below the first 2+ level. Note that
neither of these levels are in the above compilation.

The positive parity states which are of concern here are
(0+) at 20. 1 MeV, (4+) at 24.6 MeV, (0,1+) at 25.5 MeV,
and (2+) at 33.0 MeV. It would clearly be of help to have
more definite spin assignments and to make sure that all
the levels have been found. Also in our calculations the
energy of the 4+ state ranges from 37.4 MeV for a=0 to
55.34 MeV for a=2.2. Therefore a search for 4+ reso-
nances in this energy range would be in order.

To summarize then, we have made not an ironclad but
a plausible case that four-particle —four-hole deformed
states could exist in He at a sufficiently low energy so as
to be detectable by experiment. The uncertainty in the
calculated energy is here parametrized by the range of the
Gaussian attractive interaction. It is noted that the same
interaction which brings the J=0+ state in He to a suffi-
ciently low energy (20—25 MeV), also brings the 4p-4h
state in ' 0 to a reasonable energy so that it could be iden-
tified with the 6.05 MeV state. On the other hand in ' 0
one has one additional parameter, the strength of the p
state repulsion, which does not enter for He.

Clearly, further work has to be done both in theory and
experiment. The fact that He is amenable to nearly exact
calculations, suggests that this nucleus is a good testing
ground for the approximate many body techniques that
are employed in heavier nuclei.

We gratefully acknowledge support from the National
Science Foundation.
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