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Models of 'H are constructed fxom 'So and S~- Bj separable interactions fitted to low-energy
two-nucleon properties. In particulaI', a set of Sj- D~ interactions is used that produces D-wave
COIQponeIlts in thc dcutcI'on with Pgp =0% to 10%. Thc H binding cncI'gy (83), H wave-function
component percentages, H~n+d(d ) asymptotic normalization constants, H~n+d distorted
wave parameters, percentage n-d component in the H wave function, and H~n+d momentum
distribution are calculated for each case. From these results„numerous aspects of the H~n+d(d )

vertexes are examined. As examples: (1) dependence of the S- and D-wave 1H~n+d asymptotic
norms on I'~ and 83,' (2) dependence of the H —+n+d asyInptotic norm on the scattering length
and effective range of thc So 1nteractlon; (3) I'olc of thc D-wave coIQponcnt of thc H ~n+ d
momentum distribution for n-d relative momentum between 0 and 2 fm; and (4) validity of ap-
proximating the H —+n+d distorted-wave parameter, D2, by the ratio of the D- to S-wave asymp-
totic normalization constants. %here possible, comparisons are made with local-potential calcula-
tions and cxpcnmcnt.

NUCLEAR STRUCTURE Faddeev calculations. H~n+d or H —+n+d
vertex structure. Deuteron D-wave effects on H vertex structure.

I. INTRODUCTION

Elastic scattering of electrons or protons from the trinu-
cleons ( H or He) yields information on the convolution
of the trinucleon ground-state wave function with itself.
For example, elastic electron scattering permits extraction
of the charge and magnetic form factors. ' On the other
hand, inelastic scattering of electrons or protons from the
trinucleons, especially coincidence experiments like
He(e, e'p)d, He(e, e'p)np, He(p, pd)n, etc., yields informa-

tion on the overlap between the trinucleon gxound-state
wave function and the wave function of a nucleon moving
freely relative to a deuteron or the wave function of a nu-
cleon moving freely relative to a pair of nucleons in a
scattering state. Knowledge of the latter two types of
ovcrlRp 1S 1mportant, because thcsc ovcllaps, cvaluatcd Rs

a function of the relative momentum of the freely moving
nucleon with respect to the center of mass of the interact-
ing pair, give the structure of the trinucleon vertexes
H~n+d, H —+n+d*, He~p+d, and so on. This

structural information comes in the form of momentum
distributions, asymptotic norm allzat1on constants,
distorted-wave parameters (Dt), and related quantities.
Now that recent experiments permit the extraction of such
properties ' and that the thx'ee-body theory is at a state
where calculations can be made with the best available
two-nucleon interactions, it is worthwhile to examine how
the theoretical results depend on certain undex'lying two-

nucleon properties.
The objectives of this work are twofold: (1) determine

the dependence of the structural quantities for the
H~n+d vertex on the percentage D-state component

(PD ) in the deuteron wave function, and (2) determine the
sensitivity of the H~n+d* asymptotic norm to the
underlying two-nucleon, spin-singlet scattering length and
effective range. These investigations are carried through
by means of separable-potential models where it is possi-
ble to vary one aspect of the underlying two-nucleon prop-
erties while keeping other aspects fixed. Nevertheless, we
shall see that such simple models make essentially the
same predictions for the observables under consideration
as do sophisticated two-nucleon models like the Reid
soft-core potential, when the separable models have the
same low-energy properties. This emphasizes the role that
simple models play in better undexstanding three-nucleon
properties, as long as the simple models are used within
their domain of applicability. The vertex structural infor-
mation considered in this work primarily involves the
asymptotic and longer-range side of the intermediate-
range 1egloIls of tile trtnucleon wave fllllct1ons. Fol' th1s
reason, separable models without two-nucleon, short-range
repulsion are reasonable. The critical input is the low-
energy s-wave two-nucleon scattering parameters and the
tensor force as specified by both the deuteron quadrupole
moment and the t.'choice of I'D. The latter quantity, I'D, is
our central focus with respect to the H~n+d vertex.
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Though PD is not a measurable quantity, it is a charac-
teristic parameter of the S&- D& two-nucleon interaction,
and as such, plays a role in the nature of the predictions
concerning the H~n+d vertex.

The format of the paper is as follows: In Sec. II, the
formalism for obtaining the properties of the
H —+n+d(d*) vertexes is presented; first for H~n+d

and then for H~n+d*. The models employed are ex-

plained in Sec. III, followed in the same section with the
numerical results. The results for the asymptotic normali-

zation constants, momentum distributions, and distorted-
wave parameters are discussed in Sec. IV. The main body
of the paper closes with Sec. V, where the key conclusions
are summarized. Two appendices complete the text: one
concerns the structure of the three-body wave functions
and the other discusses a singularity that must be handled

carefully in calculating the singlet asymptotic norm.

II. FORMALISM
A. H~n+ d vertex

The key element in calculating the structure of the
H~n+ d vertex is the amplitude obtained by overlapping

the H ground-state wave function given in Appendix A
with a wave function for a neutron of relative momentum

q moving freely relative to a deuteron. With the deuteron
wave function written as (y =MB& )

I

p[1](~) ~ ~4 y gl p
2 21=027 +P

X [I'"(P)XX(')(12)]'",

this amplitude has the form (M =—antisymmetrized states)

~(nd;q, —,'m„lmd
l

'H; —,'m„) = —,
' g g ft(q)( em„lmd I

~M~)(lm&JMs
l

2mH)v 4wY' (q),
1=0,2 J=1/2, 3/2

m( MJ

where the isospin quantum numbers are suppressed. The momentum-distribution amplitudes are defined as follows:

(2)

fo(q)=NNd ao(q)4m. f k dk
g [a'«) l'

1=0,2

3(k'+y') k'+- +E'
4

+ ~ f k'dk[ —3o~o(q k'E')ao(k)+ o~o(q k'E )ao(k) —o~2(q k'E )a2(k)] (3)

and

f2(q)=NNd a2(q)477 f
g [a'«)]'

1=0,2

3 2

(k'+y') k'+ q +E'
4

+~ f k'dk[3z~o(q k'E )ao(k) —zoo(q k'E )ao(k)+zWz(q'k'E )a2(k)] '. (4)

All quantities appearing in Eqs. (3) and (4) are defined
in Appendix A, except for the ~W~, however, the ~Jr~

are identical to the 1I1 in Appendix A if
b(k,p,x;E )~&(k,p, Ex), where

r

2

N(k, p, Ex)= k + p +y2+kpx
4

X(k +p +E +kpx) .

The S- and D-wave H —+n+d momentum distribution
amplitudes play a central role in calculations of the
H~n+d momentum distribution, the S- and D-wave

asymptotic normalization constants, and the percentage
n-d component in the H wave function.

The H~n+ d momentum distribution can be extracted
from He(p, 2p)d or He(e, e'p)d experiments (assuming
isospin invariance) when the incident projectile has suffi-
cient energy to minimize distortion effects, plus the eject-
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ed particle comes out with sufficient energy to assure it
was the particle that interacted with the projectile, i.e.,
essentially quasifree kinematics. These conditions can be
satisfied with projectiles having & 300 MeV kinetic ener-

gy. Such conditions permit analysis of the data (within
10% or so) on the basis of pole dominance as shown in
Fig. 1. For either reaction, the general form of the coin-
cidence cross section is

~He

(a) (b)

d 0
dQ;de;dQ„

(kf)-', IIfo(q)l'+2[f2(q)]'}
lP

FIG. 1. Pole dominance graphs containing the common ver-
(6) tex 3He~p + d. (a) 3He(p, 2p)d, (b) He(e, e'p)d.

where i = e or p, do. /dQ;~ is the "half-off-shell" i p-
scattering cross section, (kf) represents a kinematic factor,
and —, I } is the momentum distribution. It is such a
momentum distribution that has recently been extracted
from the He(e, e'p)d experiment at Saclay and it can
serve as a test of our model.

The integral d q over the quantity in the brackets

} of Eq. (6) is usually called the spectroscopic factor.
Closely related to the spectroscopic factor is the fraction
of the neutron-deuteron component in the H wave func-
tion. This quantity, denoted by P„d, is given by

g f d q I
n(np)z, q ,'ms—lMs, —,

' ——,'00)
ms

s

&& (n (np)d, q ,'m—slMs,' —,
' ——,

' 00
I

inserted in the normalization equation for the H state
vector,

P. =2~ f, q'dq I [fo(q) ]'+ I f2(q) 1'}

which follows directly from the completeness relation

g g f"'q" k IN(NN)'-';q ~msSMs ~mrIMr&
ms SMs
mI IMI

&((rV(NN);q —,msSMs, ' , mrIMr
I

=1—.

The neutron-deuteron term of the completeness equation,
i.e.,

—,
' g( H; —,'mH

I
H; —,'mH) =1,

mH

yields P„d. The factor 2' instead of 4m. in front of the in-
tegral arises from the fact that the states in the complete-
ness relation are not antisymmetrized. Thus, the v 3 ap-
pearing in Eq. (2) is absent, but the 1/V 2 remains and the
spin sums lead to —,

'
I[fo(q)] +[f2(q)] }.

Correspondingly, an effective neutron-deuteron wave
function can be defined by means of the Fourier
transform of Eq. (2), when the neutron-deuteron state is
not antisymmetrized (W3 absent). With the coordinate p
conjugate to q, we define

(nd;p, zm„lmd
I

H; —,'mH)= g g i ui(p)( —,m„lmd
I
JMr)(lmiJMJ

I
—,'mH)v4mY, (p), '

1=0,2 J=1/2, 3/2
mr MJ

(10)

where

ui(p)= f, q'dq Ji(pq)fi(q) .

In terms of the effective neutron-deuteron wave function,
Eq. (7) becomes

P„d ——4m. f p dp[[uo(p)] +[u2(p)1'} .

and

1 e "~ 1
lim uo(p) Csv'p/2~

P—+ oo p 2

1 e
lim uz(p) —+CDv'p, /2m. 1+ 3 3 1

pp pp

(13)

(14)
Consistent with the configuration-space version of the H
wave function given in Appendix A, the S- and D-wave
H —+n+d asymptotic normalization constants, CI, can be

defined by means of the ui(p):
where p =4(K —y )/3. The I/v 2 at the right of each
expression is associated with the isospin:
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e I

lim 4 ' (r p) +—Cs&p/2n. ~4m.[[Y (p)XX ' (1)] ' )X4 ')(r)] '
P~ oo p

d

1
PP

CD—V'p/2' + + ~gn[[y(21(p) Xy(&&2)(i)](3&2)Xg& &)(r)](&&2)
3 3

pp pp vZ
' (15)

Integral relations for the Ct' can be derived by means of

1
lim ut(p)= Iim q dqji(pq)ft(q)

p ~P
(16)

and the singularity structure of the fI(q) as given by Eqs.
(3), (4), (A20), and (A21). The singularity in the fI(q) that
leads to the dominant asymptotic behavior of the ut(p)
comes from the at (q), and it is a pole at q =i@ Sp. ecifi-
cally, we derive

Ct =i 2nip' lim (q i p)f&—(q) (17)
quip

so that

4 NNCs=, J k dk[ 3oI o(ip—, kiK )ao(k)
3p

CD

p Cs1
= 2 (23)

We shall check the validity of this approximation with the
models discussed below.

B. 38—+n+d vertex

To the extent that the main contribution to the integrals
in Eq. (22) comes from the region of large p in the limit
that q —&0, we can replace the ut(p) by their asymptotic
forms from Eqs. (13) and (14), and then derive an approxi
mate relationship between B2 and the CI'..

+pI p(ip, k;K )ap(k)

—pI2(ip, k;K )a~(k)] (18)

and

CD ———,J k dk[32Ip(ip, k;K )ap(k)
3p1/2 0

zIp(i—p, k;K )ao(k)

+2Iz(ip, k;K )az(k)] . (19)

and

Dp ——2m (B3—Bz )fp(0) (20)

Besides the asymptotic normalization constants, there
are the related distorted-wave (DW) parameters Dp and
D2. The DW parameters ' are obtained from the fr(q) at
q=0 (K =MB3):

The quantity on which we concentrate with respect to
the H~n+d* vertex is the H —+n+d* asymptotic nor-
malization constant, a quantity that apparently will be dif-
ficult to extract from experiment but that carries useful
information about the H vertex structure. In this subsec-
tion, we derive an integral relation for the H~n+d"
asymptotic normalization, Cs, similar to the one given for
Cs in Eq. (18) above. The approach follows that of
Harper, Lehman, and Prats.

In dealing with the structure of the H~n+d vertex,
the deuteron- H overlap is easily calculated, because the
deuteron wave function is normalizable. This is not the
case for the virtual-bound-state ('Sp), d*. Nevertheless,
an alternative procedure for deriving Cs leads to a
straightforward method for deriving Cs. The key is to ob-
serve that (assuming s-wave NN interactions for clarity)

(2m) v'py 1.

X lim (k iy)(p'— ;qa ~%')
k —+iy k

—f2(q)
D2 ——lim

By inverting Eq. (11),Eq. (21) can be written as

P CgPQ2 P0

15 p puo p

(21)

(22)

is an equivalent way of defining Cs. Here P' is the
k

dspin-l, isospin-0 two-nucleon scattering state, Cz is the
deuteron asymptotic normalization constant expressible in
terms of the triplet effective range as (1 yro ) ', a-
represents suppressed spin-isospin quantum numbers, and
4 is the H state vector. This method of defining Cz fol-
lows from

lim (k iy)(p'—;qa ) 4) = lim (k iy)(k;qa —
~

ql) —lim (k —iy)(k;qa
~

t' E+ — Go(E+)
)
q'),

k —+iy k k —+iy k~iy 4M (25)
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where Go is the free three-nucleon resolvent, t' is the
two-nucleon t matrix, and E+ =k /M+3q /4M+irI.
The first term on the right-hand side of Eq. (25) vanishes,
whereas the second term leads to the deuteron wave func-
tion overlap

p (2m )i+—p'y'
ig ~lP

lim (k+i y" )(P'; qa
~
4),

k~ —iy*
(28)

Cs 2m——ip ~ lim (q i—p)(pd, qa
~

qi),
Q~EP

(27)

which is equivalent to Eq. (17).
Analogously, Cs can be defined as follows:

( )10
d

lim (k iy—)(P';qa
~

4) =—,(Pd;qa
~

4) .
k-r y " '

2m y'~'

(26)

Combining Eqs. (24) and (26), we get

Cs 2m——ip' . lim (q ip'—) (P „qa
~
4),

g ~lP

where, in momentum space,

(29)

2
where p' =4M(83 —y* /M)/3, Cz~ -=(1+y*&p )

and y* determines the location of the virtual bound-state
pole possessed by the two-nucleon spin-O, isospin-1 t ma-
trix which appears on the second sheet of the complex en-

ergy plane; i.e., E~&,= —y* /M on the negative real axis

of the second sheet. Straightforward algebra leads to

lim (k+iy")(p
~

t '(Ek+)
~

k)
pd~(p) = 2m.i( —y')'~ M k -iy* (30)

and Ek+=k /M+iri. Specifically, for the separable po-
tentials of the present work, the last equation yields

Poy*(P—o y*)' — g o(p)
P,~(p) =

7T p +f
(31)

&,*go(p)

P +T
Thus, the sought-after formula emerges as

4&NNd,
Cso —— „, I kidk[oIo(iP k E)ao(k')

3p

(32)

—3pIo(i@*,k~E )ao(k)

+3pIz(i@*,k;E )az(k)] . (33)

III. MODELS AND RESULTS

As mentioned in the Introduction, our aims are to in-

vestigate the dependence of the H —+n+d vertex on PD,
the percentage D-state component in the deuteron wave
function, and to investigate the sensitivity of the
H —+n+d' asymptotic norm to the 'So two-nucleon,

low-energy scattering parameters. For the first case, we
use models that allow I'~ to vary while holding the fol-
lowing quantities fixed: Sp interaction, deuteron binding

energy, deuteron quadrupole moment, triplet scattering
length, and triplet effective range. Such models for the
two-nucleon 'S, - Di interaction already exist from the

The observation should be made that Cs and CD are real,
but Cs is purely imaginary owing to the fact that N, is

imaginary.

Ps ——( —1.32+0.02)PD + (98.5+0.1) (34)

PD ——(1.31+0.02)PD —(0.2+0.1) .

Though Pt is linearly correlated (r =0.957) with PD,

(35)

work of Ioannides and Johnson (IJ),' Phillips (P)," and
the present authors (GL).' PD ranges in integer steps

from 0% to 10% including a model with PD ——5.5%. For
the H~n+d* case, we hold the S&- D& two-nucleon in-

teraction fixed and vary the 'Sp two-nucleon interaction

by changing the low-energy parameters ro and a, .
Models that vary rp (a, fixed) and a, (rp fixed) exist

from earlier work of the present authors. '

The two-nucleon input and the corresponding calculat-
ed properties of H are given in Table I. The ten IJ
models, the three P models, model GL-OA, and model
GL-4A serve as the fifteen models in which the 'Sp in-

teraction remains fixed. Various combinations of the P
and GL models are used to investigate the situation where

the 'So interaction is changed. The calculated properties
of H given in the right-most five columns are obtained by
solving Eqs. (A19)—(A21) in Appendix A and construct-

ing the wave function components according to Eqs.
(A2)—(A4). Ps Ps PP) aild Pp represent the percentage
S-state (symmetric), S-state (mixed symmetric), D-state,
and P-state component in the H wave function, respec-

tively.
The structure of the H wave function and the H bind-

ing energy for the fifteen models where the 'Sp NN in-

teraction remains fixed (a, = —16.85 fm and rp =2.84
S

fm) possess striking dependences on PD. Most notable is
the highly correlated (r =0.998, where r is the correla-
tion coefficient) lt near dependence o'f Ps and P~ on Pz,
where the slopes have equal magnitudes, but opposite
signs
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TAHI. E II. Calculated H —+n + d(d*) vertex properties.

IJ-1
-2
-3
-4
-5
-6

-8
-9
-10

0.4991
0.4824
0.4674
0.4519
0.4397
0.4280
0.4171
0.4060
0.3970
0.3879

1.884 0.263
1.878 0.139
1.861 Q. 109
1.840 0.0924
1.823 0.0822
1.806 0.0745
1.788 0.0685
1.770 0.0631
J..753 0.0591
1.736 0.0553

0.562
0.548
0.534
0.521
0.510
0.500
0.491
0.485
0.477
0.470

—0.935i
—0.952i
—0.963i
—0.973i
—0.982i
—0.991i
—0.999i
—1.007i
—1.014i
—1.022i

177.7
173.4
170.0
165.8
163.1
160.2
157.4
154.3
152.1
149.6

—0.312
—0.262
—0.244
—0.234
—0.228
—0.224
—0.220
—0.220
—0.219
—0.217

—0.560
—0.318
—0.268
—0.246
—0.233
—0.225
—0.220
—0.216
—0.214
—0.212

1.456
1.522
1.589
1.658
1.722
1.785
1.847
1.911
1.970
2.030

m.p3~~f0(0)

1.613
1.602
1.595
1.582
1.577
1.570
1.563
1.553
1.548
1.541

P-4
-5.5

0.4516
0.4321
0.4156

0.5053
0.5241

1.844 0.0934
1.818 0.0786
1.791 0.0689

1.921 0
1.944 0

0.524
0.504
0.493

0.567
0.586

—0.982i
—0.994i
—1.007i

—0.959i
—0.835i

166.5
161.5
157.3

179.5
184.1

—0.236
—0.228
—0.224

—0.248
—0.232
—0.223

1.667
1.766
1.859

1.440
1.373

1.589
1.576
1.565

0.4513
0.4567
0.4671

1.837 0.0909
1.864 0.0950
1.860 0.0989

0.520
0.526
0.535

—0.973i
—0.904i
—0.906i

166.0
168.6
169.8

—0.232
—0.233
—0.230

—0.243
—0.244
—0.244

1.664
1.650
1.589

1.585
1.600
1.594

'See Table I of Rcf. 4.
Refer cQcc 14.
RcfcrcQcc 15.

—0.279
+0 012"

P,"=(9.0+o.6) y lo-'PD —(l. l+0.3)x lo-',
its contribution to the overall normalization is negligible.
Thus, since Pq is independent of PD, its value being deter-

mined primarily by the difference between the S-wave
singlet and triplet t~o-nocleon interactions, "

I'g ——l.71+0.02,

TABI.E III. Calculated H —+n + d vertex properties.

'"f0(o)D2 P„d I'„d I'„d——P„d+I'„dS D

0.125
0.0977
0.0850
0.0756
0.0695
0.0644
0.0598
0.0563
0.0534
0.0503

0.427
0.428
0.429
0.431
0.431
0.432
0.432
0.433
0.433
0.433

0, 138g 10
0.307~ 10-'
0.429 g 10-'
0.512g 10
0.574@10-'
0.618g 10
0.650~ 10-'
0.669&10 2

0.683 X 10
0.689g 10-'

0.428
0.431
0.433
0.436
0.437
0.438
0.438
0.440
0.440
0.440

P-4
-5.5
IW7

GI.-OA
-QB

0.0765
0.0671
0.0605

0.431
0.432
0.432

0.514' 10
0.599~ 10-'
0.650~ 10-'

0.436
0.438
0.438

0.0748
0.0778
Q.0780

0.430
0.430
0.428

0.525 y 10-'
0.511g 10
0.513~ 10-'

0.435
0.435
0.433
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it is clear that Ps and P~ must be related as in Eqs. (34)
and (35). Specifically, we have

Pg +Pg +PD ——100.0+0.2 . (38)

The linear relationship between PD (or P~ ) and PD is
present in a summary of other exact three-body calcula-
tions by Friar. Friar estimates the slope of his compila-
tion to be 10/7, close to the present systematic analysis.
Within the context of a nonrelativistic three-body theory,
it would be enlightening to see the origin of this relation-
ship uncovered. Perhaps bearing on a deeper understand-
ing of the connection between PD and Pz is comprehen-
sion of the decrease in the H binding energy (83) as PD
increases. For the models under consideration, we get

&3 =( —0.34+0.02)P&+(10.09+0.08) MeV,

where the correlation is r =0.986. As the role of the
longer range tensor force grows (PD increasing) the bind-
ing of the more compact H (relative to H) decreases.

The calculated results for the H —+n+d asymptotic
normalization constants, distorted-wave parameters, and
fraction of neutron-deuteron component in the H wave
function are given in Tables II and III. Also tabulated in
Tables II and III are "constant vertex" approximations to
the asymptotic normalization constants: vrp

~ fo(0) for
the S wave and —vrp

~ fo(0)D2 for the D wave. These
approximations are derived by writing the momenturn-
distribution amplitudes for low-q values, q &p, as

V'fo(0)
fo(q) —= (40)

q +IM

p, q fo(0)D2f2(q) -=-
q +p

i.e., assuming constant vertex amplitudes. ' ' It follows
then, from Eq. (17), that the asymptotic norms are given
in this approximation by

Cs-~p fo(0) (42)

CD ——~v'"fo(0»2 . (43)

A. H~n+d

1. Asymptotic norms

The dependence of the asymptotic norms on PD is most
striking. In Table II, considering the 15 models with the
same 'So NN interaction, we find that Cs decreases
linearly with Pz and that CD seems to be best fit employ-
ing a reciprocal dependence on PD (see Figs. 2 and 3).
Specifically, we find that

Cs ——( —1.77+0.04) &&10 PD+(1.913+0.003), (44)

As is clear, the fI(q) are the key quantities in determining
the H~n+d structure. Therefore, in Table IV, we tabu-
late the momentum distribution amplitudes for the IJ-4
and IJ-7 models in order that they be available for other
applications.

The results for the H~n+d* asymptotic normaliza-
tion constant, Cq, are tabulated in the sixth column of
Table II. These values must be calculated with care owing
to the logarithmic singularity (branch cut) in the integrand
of Eq. (33). As explained in Appendix 8, this occurs be-

cause K &p*. It can also occur for the H —+n+d
asymptotic norms whenever 83&8.9 MeV (82 ——2.225
MeV), since then IC &p .

IV. DISCUSSION

TABLE IV. Momentum-distribution amplitudes (fm ~ ).

q
(fm ')

0
0.05
0.1

0.2
0.3
0.4
0.5
0.7
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

fo(q)

1.658
1.635
1.569
1.346
1.077
8 274X jk0

6.225
3.464
1.939
1.459
8.378 X10—'
4.892
2.901
1.745
1.063
6.546 X 10-'
4.072
2.554
1.614
1.026

0
9.566 X 10-4
3.666 X 10-'
1.250 X 10-'
2.227
2.996
3.458
3.594
3.128
2.808
2.151
1.573
1.117
7.778 X 10
5.348
3.651
2.481
1.683
1.141
7.43 X 10-'

fo(q)

1.847
1.818
1.733
1.454
1.132
8.462X 10-'
6.219
3.330
1.807
1.340
7.473 X 10
4.225
2.411
1.381
7.898 X 10—'
4.471
2.476
1.315
6.439 X 10-'
2.626

I'D ——7%

0
1.008 X 10-'
3.846
1.292 X 10-'
2.267
3.020
3.476
3.662
3.290
3.013
2.414
1.852
1.379
1.005
7.213X 10-'
5.121
3.606
2.524
1.758
1.222
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0.30—

I.89 Leos&-squares fit
Cs = (-Q.OI77 + QQ004) PD

+ (I.9I3 & 0.003)

0.25—

0.20—
Least —squares fit

C~= (0 224+ 0.004) p
+ (0.036+0.002)

I.83— o O.I5—

I.80—

177—

O.IO—

005—
~~x

~~y ~—

I74—

I.7I—

0
I I I I I I I I I

2 3 4 5 6 7 8 9 IO

I

I

PD (o/g )

FIG. 2. Cq as a function of P~. Solid line is least-squares fit
to IJ models (), P models ( &(), GL-OA (), and GL-4A (II).

with r =0.994, and

C = (46)
(1 y )in

remains unchanged. In contrast, the decrease in the
neutron-deuteron binding as PD increases, expressed

CD =(2.24+0.04) X 10 +(3.6+0.2) X 10
Pg)

(45)

with r =0.997 (where model GL-OA has been dropped).
Let us compare these results to those of the deuteron,
d—+n+p, given in Table V. For the deuteron, C~ is essen-
tially a constant independent of PD. This occurs because
C~ is determined primarily by two parameters y and
ro . Since these parameters are held fixed,

f

I I I I I I

0 I 2 3 4 5 6

o('.)

I I I I

7 8 9 IO

FIG. 3. CD as a function of P~. Solid line is least-squares fit
to IJ models (), P model ( & ), and GL-4A (~).

through p, means the exponential falloff of uo(p) is less
rapid as P~ increases. Since P„d is essentially independent
of PD (see Table III), i.e., all the uo(p) are normalized the
same, Cs decreases to compensate for the greater contri-
bution to the normalization of the long-range part of
uo(p). On the other hand, CD of the deuteron, just like
CD, appears to best reflect a reciprocal dependence on PD.
The same 14 models used for Eq. (45) yield

CDd=(6. 6+0.3)X 10-' +(2.2+0.1)x 10-'. (47)-2 1

Such behavior is certainly peculiar, since CD and CD both
vanish when PD ——0. Such behavior is indicative of forc-
ing the Si- Di interaction with PD &4% to the con-
straints indicated in Table I especially a fixed value of
the quadrupole moment, Qd. In the case of the triton, as
mentioned in Appendix B, we get the abnormal relation-
ship that B3&4B2 when PD ~4%. Regardless, under
such constraints, it is clear that CD decreases gradually
with PD for PD &4%.

TABLE V. Calculated d —+n + p vertex properties.

Model

IJ-1
-2
-3
4

-5
-6
w 7
-8
-9
-10

Cs

1.283
1.284
1.284
1.284
1.285
1.285
1.286
1.286
1.286
1.287

CD

0.0919
0.0495
0.0410
0.0371
0.03SO

0.0336
0.0327
0.0320
0.0315
0.0311

g =Cg/CDd d

0.0716
0.0386
0.0319
0.0289
0.0272
0.0262
0.0254
0.0249
0.0245
0.0242

Dd

—1.069
—0.6731
—0.5766
—0.5311
—0.5049
—0.4881
—0.4772
—0.4692
—0.4633
—0.4S86

—1.335
—0.7194
—0.5950
—0.5393
—0.5078
—0.4875
—0.4742
—0.4643
—0.4568
—0.4507

p 4
-5.5
-7

1.290
1.291
1.291

0.0375
0.0347
0.0331

0.0291
0.0268
0.0256

—0.5340
—0.4999
—0.4813

—O.S421
—0.5006
—0.4780

GL-OA
GL-4A

1.292
1.283

0
0.0366

0
0.0286

0
—0.5252

0
—0.5323

Experiment

'Reference 17.
bReference 18.

1.299' 0.0272(4)"
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The variation of Cs with Pz is slow enough that all the
models with 3% & P~ & 8% (the standard range) are
within experimental errors. Unfortunately, a direct exper-
imental determination of Cz has not yet been made.
Nonetheless, values for Cs and C~ from a five-channel
calculation using the Reid soft core potential
('So, S~- D&), hereafter denoted RSC5, are available.
The RSC5 values resemble the separable-model results
that have Pn -7—8%. The RSC potential gives

P~ ——6.47% and leads to a smaller H binding energy
(B3

—7.022 MeV) than the separable models with compar-
able Pz. The latter attribute accounts, qualitatively, for
the somewhat lower values of Cs and C~ for the RSC5
compared to a separable model with the same P&.

It is tempting to assume a constant H~n+d vertex
amplitude in order to simplify calculations containing this
vertex. ' When such an assumption is made, the momen-
tum distribution amplitudes are given by Eqs. (40) and
(41), while the asymptotic norms are given by Eqs. (42)
and (43). When the asymptotic norms are evaluated in
this approximation, last column of Table II and first
column of Table III, the asymptotic norms are underes-
timated by 10—20%. This is a clear indication that the
H~n+ d vertex-amplitude momentum dependence is im-

portant, even at small values of q, q (p . Such a
constant-vertex approximation for the deuteron, d~n+p,
leads to only a 3% (2%%uo) underestimate of Cs (C~). The
reason the approximation works so well for the deuteron
is due to the size of the inverse-range parameters in the S-
and D-wave vertex amplitudes. The momentum depen-
dence of the deuteron vertex amplitudes is given by the
gt(q) with the inverse-range parameters, Pt. Neglecting
the q dependence of the gt'(q) is justified for q «(Pi)
and is valid at the deuteron pole, q =iy, since y «(1'�)
[y =0.054 fm, (Po) =1.782 fm, and (P2) =2.362
fm for IJ-4)j. Evidently, the "equivalent" inverse-range
parameter and p are more comparable in size for the
H~n+ d vertex.

Finally, we note that Cs is insensitive ( &2% variation)
to changes in the 'So NN parameters, whereas Cz is mild-

ly sensitive ( & 5% variation) to changes in the So interac-
tion.

2. Distorted-wave parameters

The present work on the DW parameters Do and D2
complements the results of Ioannides et al. (INS) (Ref. 9)
and Borberly and Doleschall (BD).' Our effort adds a
systematic investigation of the dependence of these pa-
rameters upon Pz and examines the validity of approxi-
mating D2 by D2, Eq. (23).

By least-squares fitting the results for Do given in Table
II (models with the same So interaction), it is clear that
Do decreases linearly with P~:

Do=( —3.09+0.08)P~+(179.2+0.5) MeVfm

= —9.3+0.3 MeVfm ~ (49)

The origin of the decrease is the decrease in (B3—Bq)
(equivalently p) as P~ increases, because f(0) actually in-
creases with Pz [see below and Eq. (20)]. Note that to
have values of Do within the experimental range, P~ must
lie between 4% and 6%.

Similar to Cz, if we exclude the values for Pz &4%%uo, we
find that D2 decreases almost linearly with P~. A least-
squares fit to those 11 models with the same 'So NN in-
teraction and Pz )4% yields

D2 ——(3.0+0.4) X 10 Pn —(0.244+0.002) fm

(50)

with r =0.894. Allowing for the limitations of extracting
D2 from experiment, ' one can conclude that the values
of D2 for Pz )4% lie just slightly below the current ex-
perimental value. BD suggest a "best" value based on
their calculations of —0.225+0.005 fm . This encom-
passes our results for 5% & P~ & 8%.

How closely does D2 approximate D2? As can be seen
in Fig. 4, for values of Prp between 4% and 7%, the error
is & 5% and & 2% between Po ——5% and 7%, respective-
ly. Clearly, for the deuteron (Table V) the approximation
is even better over the same range. Dq has been calculat-
ed for the RSCS model with the result of 0.243 fm,
larger than the separable results with comparable Pz.
This occurs because of the smaller p (due to the smaller
B3) in the RSC5 result, since the ratio Cz/Cs is actually
somewhat smaller than for the separable models. Finally,
we note that Do and D2 are not sensitive to the 'So NN
parameters.

3. Fraction of nucleon deuteron compon-ent

The fraction of S-wave neutron-deuteron component in
the H wave function is independent of P~ (see Table III).
Not only is it independent of Pz, it is not sensitive to the
'So NN low-energy parameters. Neither is the fraction of
D-wave nucleon-deuteron component sensitive to the 'So
NN interaction, but it is sensitive to the value of Pn. P„q
rises fairly rapidly from zero to an asymptote of
-0.7X 10 for 0 &Pz & 10%. The models suggest that

P„d ——0.430+0.002, (5 la)

independent of Pz, and that

mate of the decrease. BD calculate a decrease in Do of 7.9
MeV fm in going from P~ =4% to Pz ——7% (see their
models 2'SOR, 1T4RA and 2'SoR, I T7RA). This magni-
tude of decrease is roughly consistent with our prediction
(b,P~ =3):

ADO ——( —3.09+0.08)APE)

and r =0.993. INS find that Do decreases when Pz is in-
creased, but their phenomenological H ground-state wave
function does not permit them to make an accurate esti-

P„d -0.6X 10

f«4% &P& &7%.

(51b)
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FIG. 4. Ratio of D2 to D2. The solid line is only to guide the
eye through the calculated values of the ratio for the IJ models

(), P models (X), and GL-4A (8).

4. Momentum-distribution amplitudes

The momentum-distribution amplitudes, fI(q), are plot-
ted in Fig. 5 for PD ——0%, 4%, and 7% (see Table IV). As
P increases, fo(0) rises linearly (see Fig. 6) and fo{q) forD ~ 0 S
q & 1 fm ' decreases (remember that P„d is independent of
PD). The loss of higher momentum contributions in fo(q)
as I'D increases is made up by the increasing contribution
of fz(q). Moreover, it can clearly be seen in Fig. 7, by
means of a Chew-Low plot, ' that the assumption of a
coIlstaIlt H~n + d vertex amplitude (S WRve) 1s Ilot JustI-
fied even for a limited range of q. The dashed line

represents the constant vertex approximation, whereas the
momentum dependence of the vertex draws 1/fo(q) away
from the dashed line almost immediately beyond q=0.
Similar conclusions can be reached with a D-wave Chew-

Low plot. This makes 1t cvcn morc clear that thc approxi-
mations for the asymptotic norms given in Eqs. (42) and

(43) are incorrect.
The H~n+ d momentum distributions for IJ-4 and

IJ-7 are plotted in Fig. 8 against the data extracted from
the recent He(e, e'p) experiment at Saclay. The absolute

UIlccrta1r1ty 1Ilvolvcd 1Il sucIl Rn cxtractloIl ls on thc order
of 10—15% due to the assumption of pole dominance and

the ambiguity associated with the "off-shell" electron-

proton cross section [see Eq. (6)]. Therefore, within this
framework, we can say the models are consistent with ex-

periment for q & 100 MeV/c -p, the expected range of va-

lidity of pole dominance. ' At higher momentum

tranfers, the theories exceed experiment. Such behavior is

also found in more sophisticated models like the RSC.
Th1s cIDphasizcs that thc pole-doII11nancc assumption Rt

the higher-momentum transfers is invalid.

B. H~n+ d

Asgmptotlc Norm

C~ 1s corrclRtcd 11ncRI'ly with ID. For thc 15 IIlodels
with the same 'So NN interaction, we find

Cs = —I'[(8.2+0.8) X 10 PI)+(0.942+0.005)j (52)

I

l.o

q(fm )

I

2.0

with r =0.91. Similarly as with Cz, this is a binding ef-
fect though it cannot be reasoned through as we did for
Cg, since Cs ls tile coefflcleIlt of R non-normallzable fuIlc-
tion {P,is not normalizable). What is even more strikingd

is the sensitivity of Cz to the low-energy pmperties of the

Al

E

L6

X

Least —sqoares fit
f0&0) & (0.06P.+ 0.002) PD

+ [l.4t2+ 0.007)

V I l 1 I I ) l ) I

0 I 2 5 4 5 6 7 8 9
PD

FIG. 6. fo(0) as a function of Pz. Sohd line is least-squares
fit to IJ models (0), P models ( &&), GL-OA (g), and GL-4A (E).

I T
IO

FIG. 5. Momentum-distribution amplitudes for selected IJ
models.
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Chew-Low Plot

PD= 7%

I02

fO
I
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Io~
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l00
I
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q {Mev/c)

I
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FIG. 8. H —+n+ d momentum distribution for the IJ-4
{———) and IJ-7 { ) models. The data points are from
Ref. 3.

I I

2

x ~q /p.

FIG. 7. Chew-Low plot for the 'H —+n+ d vertex. The
dashed line represents a constant vertex normalized to the IJ-7
model and the solid line illustrates the momentum dependence
of the H —+n + d vertex for the IJ-7 model.

'So interaction. Changing ro from 2.85 to 2.70 fm leads
S

to almost no change in Cs even though 83 changes from
8.711 to 9.010 MeV. Qn the other hand, decreasing a,
from —16.85 to —20.36 or from —16.85 to —23.20 leads
to a change in Cs of -O. li. Changing a, in this way de-
creases yo, while changing ro from 2.85 to 2.70 fm hardly

changes yo. Now, C&-1Vo-yo, and the change in yo
can account for the change in Cs since p' does not shift
by a large amount. Clearly, assuming charge indepen-
dence in dealing with this parameter is an —10% approxi-
mation.

One local-potential calculation of C~ exists where the
NN interaction is a one-boson-exchange (OBE) model
(a, = —23.83 fm and ro =2.703 fm). This model has a
H binding energy of 7.38 MeV and yields Cs ———0.831i.

This same model gives C& ——1.61. Compared to our
models with PD=4% to 5%, typical of OBE models,
these values are smaller in magnitude.

V. SUMMARY OF CONCLUSIONS

With a set of H wave functions derived from separable
NN interactions acting in the 'So and S&- D& partial
waves, a systematic analysis of the H~n+ d(d') vertices
was made. The dependence of the H —+n+ d asymptotic
normalization constants, the H —+n+d distorted-wave
parameters, the fractional n-d component in the H wave
function, and the H —+n+ d momentum distribution on
the percentage D-wave component (PD) in the deuteron
was investigated. The sensitivity of the H~n + d'
asymptotic normalization constant to the low-energy pa-
rameters of the 'So interaction was examined.

The major conclusions of this work can be summarized
as follows (the reader is referred to Secs. III and IV for
amplification of the models and details of the conclusions,
respectively):

(1) The S-wave H —+n+ d asymptotic norm decreases
linearly with Pz [Eq. (44)], while the D wave asympto-tic
norm decreases inversely with PD [Eq. (45)].

(2) The S-wave H~n+ d distorted-wave parameter,
Do, decreases linearly with PD [Eq. (48)] due to the de-
crease in n-d binding (to form H) as PD increases; the D-
wave parameter, D2, can be said to decrease almost linear-
ly with PD for PD )4% [Eq. (50)]. Approximation of D2
using the asymptotic forms of the effective n-d S- and D
wave functions [Eq. (23)] leads to an overestimate of D2
by -5% for Pz ——4%, which falls to an underestimate of
—1% for PD ——7%.

(3) The S-wave H~n+ d asymptotic norm and the
distorted-wave parameters, Do and D2, are insensitive to
changes in the low-energy parameters of the 'So NN in-
teraction, whereas the D-wave asymptotic norm is slightly
sensitive to such changes (see Tables I and II).

(4) H~n+ d asymptotic norms and distorted wave
parameters calculated for the models, where the Si Di-
interaction generates I'D in the canonical band
4% &PD (7%, are within present experimental limits.
Moreover, models with low-energy parameters close to the
Reid soft core NN potential yield results similar to a RSC
five-channel calculation.
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(5) The fraction of the n-d component in the H models
is 0.435+0.004, to a good approximation independent of
PD (see Table III).

(6) Neglecting the momentum dependence of the
H~n + d vertex amplitude leads to a ~ 10% error in the

calculated asymptotic norms [See Eqs. (42) and (43) plus
Tables II and III]. Furthermore, it is clear from a Chew-
I.ow plot that a constant H~n+ d vertex amplitude is a
poor approximation (see Fig. 7).

(7} The H~n+ d momentum distribution for the
PD ——4% or 7% models is in reasonable agreement with
that extracted from the recent He(e, e'p)d experiment at
Saclay in the range of momentum transfer at the
H~n+ d vertex 0&q &0.5 fm, but is larger than the

data for q ~0.5 fm ' (see Fig. 8}. Local-potential models
show similar behavior relative to the data.

(8} The H~n+ d' asymptotic norm is sensitive to
changes in the NN singlet scattering length and it exhibits
a slight dependence on PD. The only existing local poten-

tial (OBE) calculation gives a result -6% smaller in mag-
nitude than the separable models with comparable P~ and
equivalent low-energy 'So NN interaction parameters.

The work of B.F.G. was performed under the auspices
of the U.S. Department of Energy, while the work of
D.R.L. was supported in part by the U. S. Department of
Energy.

APPENDIX A

The purpose of this appendix is to give the explicit
form of the H wave function and related equations that
were used to derive and calculate the results given in the
main text. H has total-angular-momentum, parity, and
isospin quantum numbers J I= —,

'
—,'. When the two-

nucleon separable interactions are present in the 'Sp and
Sl- Dl waves, the H wave function has the form

where

]=—[4I1 (123)+qiI' (123)+'P2 ](123)],
2 (A 1)

and

lpjl/2] [qi[P]SXg[1/ ]&][ 2]+[lp 1 Xg[ ] ][ ]—[lp[ X([1/2]'][1/21

qi[1/2] [q/[1]SX ([1/2]a][1/2]+ [y[ll' Xg[1/2]"][1/2] [qi[11"X([1/2]'][1/2]

[qI[1]'Xy[3/2]S][1/2] ti+[lp[1] X+[3/2]S] 1/2

lp[l/2] [pe[2]' Xg[3/2]S] [1/2]» [qi[2] Xy [3/2]S][1/21

(A2)

(A3)

(A4)

p = (x'g" —x"g'),
~2

and

(7'ri" +7"ri'),
2

The spin- —,
' C), isospin- —,

'
(g) functions have the form

(A5)

(A6)

g =u —U
[0] 0 1

pro]=uo+U'

(A 1 1)

(A12)

where (, ) over particle numbers means antisymmetric
or symmetric, respectively. In terms of the standard
Yamaguchi separable potential form factors and the
three-body spectator functions, the spatial functions are
given explicitly as

(X'2]' —7"21"),'V2 (A7)

where (a, ', ") mean antisymmetric under exchange of any
nucleon pair, antisymmetric under exchange of the (23)
pair, and symmetric under exchange of the (23) pair,
respectively. This notation applies elsewhere in the above
equations with the addition that "S" means symmetric
under exchange of any nucleon pair. The spatial functions
have the form

(A13)

g ']= — a 2(1)g2(23)4n [Y[' (1)X I'['](23)] '

—22
(A15)

u =all(1)gll(23),

U
' =a p(1)gp(23)

„' a2(1)g2(23)4m[I'[ ](I)X y'[ ](23)][o1 (A14)

1P (123)=g(1,23)+g(2, 31)+g(3,12),

4"(123)= [h(3, 12)—h(2, 31)],
2

and

(A8)

(A9)
$l&] gl&]

g t:2]—0

(A16)

(A17)
qi"(123)= —h (1,23)+ —,[h (2,31)+h (3,12)], (A10)
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h = —
z ao(1)gz(23)v 4m Y (23)+ —,az(1)go(23)~4m Y (1)+ az(1)gz(23)4m[Y (1))&Y (23)], (A18)

—22

where j=(2j+1)'~ and contrastandard spherical harmonics are related to the ordinary spherical harmonics by
Y (r)=( i)'—YI (r). In all the g(') and h ', the energy denominator, (kz3+ —4p&+K ) ', has been suppressed
(K =M83, where 83 is the three-nucleon binding energy). Finally, the N in Eq. (Al) is the normalization constant.

The spectator functions, al, are obtained by solving a coupled set of homogeneous integral equations. These equations
are

D (p,K )ao(p)=mko f k dk[oIo(p, k'K )Qo(k) —3oIo(p k'K )ao(k)+3oIz(p, k;K )az(k)],

D ao=~~i k dk( 3oIo—ao+oIoao oIza—z),1 2 1 0 0 1 1 1 1 1 1

0

(A19)

(A20)

D az ——mA~ k dk(3zIoao zI~o—+zIzaz),1 2 1 0 0 1 1 1 1 1 1

where

D (P,K )=1—AsA (P,Kz),

2+ 2++2

g [g'«)]'
A'= d'k

k'+ —' '+K'
1

ooIp= f dx6 '(k,p, x;K )go(q)g((q')PI(k q'),
1

,'Io ——f dx b 'go(q)go(q'),
1

pIp= X & gp q gp q' —2g2 q g2 q' P2 q.q
'

1

pI2 — d+ Q gp q g2 q' P2 k.q
' —2g2 q gp q' P2 k q

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

gz(q)gz(q')[1 Pz(k q ') —P—z(k'q) —Pz(q q ')] ',
v2

1

zIO f d» 'gz(q)go(q')Pz(P q)

1

,'I.'= f dx&-' g(qz)go( q) P(fzq) 2go(q—)gz(q)Pz(P q

(A28)

(A29)

+ gz(q)gz(q')[1 —Pz(P q) —Pz(P q ') —Pz(q'q ')]
v2

1

zIz= f d» '. —2go(q)go(q')Pz(P k)+ go(q)gz(q')[1 —Pz(k q') —Pz(p k) —Pz(p q')]v2

(A30)

gz(q)go(q')[1 —Pz(k'q) —Pz(p'k) —Pz(p'q)]v2

+ 4 gz(q)gz(q )[2Pz(k.q ')+2Pz(P q) —Pz(k. q ) —Pz(p k ) —Pz(q q ') —Pz(p'q ')] (A31)

b(k,p, x;K )=k +p +kpx+K

x =k.p,
q=k+ —,

' p,
q '=p+ —,

' k,

(A32)

(A33)

(A34)

(A35)



g2(k)=tk [k2+(P2)2] (A37)

where r controls the contribution of the D wave in the
S)- D) 1nteractlon.

APPENDIX 8

In calculating the asymptotic normalization constants,
integrals of the general form

and P2(x) is a Legendrc polynomial. The strength param-
eters of the interaction are the As and the inverse ranges,

P~, define the interaction form factors

go(k)=[k'+(lC)'] '

k= —,
'

[ —ipx+[p (1—x ) —4y ]'~ j, (84)

x+
IP

ko=p K—=(K 4y—)/3. For the models in
Table II with I'D (4%, K )4y, or ko)(). I,jlrcwisc,
when p =ip,

kp p*~——K—=(K 4y'—)/3) 0

for all the models. Under the condition kp )0,
I(ip,k;K ) [or I(ip', k;K )] possesses a cut singularity in
the complex k plane along the curve defined by the equa-
tion

I p, ;E a

withal=ip orip * and,

(81) . 1/2
2 4y2)1/2 K 2 y

3
(85)

that crosses the real k axis in the path of integration at kp;
i.e., x =0 and

h(II, k;x)
Q2+p 2+ k 2+pk~

are encountered. When p =ip, Eq. (82) becomes

In numerically integrating over k in Eq. (81), this loga-
rithmic singularity must be considered.

In the present work, we used a subtraction to permit an-
alytic expression of the logarithm:

m 1 h(ip, k;x)k a(k) —p(k)h(ip, kp, 0)kpa(kp)f dkI(ip, k;K )k a(k)= dk dx

00 1 1
+h(ip, kp, 0)kpa(kp) f dk P(k) f dx

0 k —k0+ ikPx

wlMI'c p(kp )—1 Thc jnt&grand of thc flist k llltcgl'al on thc right hand side of Eq (86) has no Iogarjthmjc sjngularjty
Th«cforc, »ncc x@0on a Gaussian grid, thc first integral is evaluated by standard numerical quadrature. Thc second k
integral is handled as follows:

f QC k' —k p+ ikp
dk P(k) dx

2
= dk P(k) ln0 k' —k', +Ej kx ikp k kp ikp,

where a cut is crossed at k =k0. Explicitly, we have

ko k —k0+ikP k —k0+ikPW= f dk p(k) . 2ni+ln 2 +f dk p(k) ln
20 lkp k —k0 —ikP &kP k —k0 —)kP

(88)

f ko dk 1 ao dx k —kp+lkP
P(k)+ . P(k)ln

p 0 k ~P 0 k k —k0 —ikP

Onc mjght, search for a p(k) tllat would pcIllllf, alialytlc cvalllatloll of 'thc llltcgl'als 111 Eq. (89); Ilcvcrtllclcss, wc cllosc

k a(k)
kpa(kp)

Rnd carried out the lntegratlons numerically.
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