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Models of *H are constructed from 'S, and 3S,->D, separable interactions fitted to low-energy
two-nucleon properties. In particular, a set of 35;-3D, interactions is used that produces D-wave
components in the deuteron with P, =0% to 10%. The *H binding energy (B;), *H wave-function
component percentages, *H—n+d(d*) asymptotic normalization constants, *H—n+d distorted
wave parameters, percentage n-d component in the *H wave function, and *H—n-+d momentum
distribution are calculated for each case. From these results, numerous aspects of the *H—n+d(d*)
vertexes are examined. As examples: (1) dependence of the S- and D-wave *H—n-+d asymptotic
norms on Pp and B;; (2) dependence of the *H—n+d* asymptotic norm on the scattering length
and effective range of the S, interaction; (3) role of the D-wave component of the *H—n+d
momentum distribution for n-d relative momentum between 0 and 2 fm~!; and (4) validity of ap-
proximating the *H—n+d distorted-wave parameter, D,, by the ratio of the D- to S-wave asymp-
totic normalization constants. Where possible, comparisons are made with local-potential calcula-

tions and experiment.

NUCLEAR STRUCTURE Faddeev calculations. *H—n+d or *H—n-+d*
vertex structure. Deuteron D-wave effects on H vertex structure.

I. INTRODUCTION

Elastic scattering of electrons or protons from the trinu-
cleons (*H or 3He) yields information on the convolution
of the trinucleon ground-state wave function with itself.
For example, elastic electron scattering permits extraction
of the charge and magnetic form factors.’? On the other
hand, inelastic scattering of electrons or protons from the
trinucleons, especially coincidence experiments like
3Hele,e'p)d, *He(e,e'p)np, *He(p, pd)n, etc., yields informa-
tion on the overlap between the trinucleon ground-state
wave function and the wave function of a nucleon moving
freely relative to a deuteron or the wave function of a nu-
cleon moving freely relative to a pair of nucleons in a
scattering state.® Knowledge of the latter two types of
overlap is important, because these overlaps, evaluated as
a function of the relative momentum of the freely moving
nucleon with respect to the center of mass of the interact-
ing pair, give the structure of the trinucleon vertexes
SH—n+d, *H—n+d*, *He—p+d, and so on. This
structural information comes in the form of momentum
distributions, asymptotic normalization constants,
distorted-wave parameters (D;), and related quantities.
Now that recent experiments permit the extraction of such
properties®* and that the three-body theory is at a state
where calculations* can be made with the best available
two-nucleon interactions, it is worthwhile to examine how
the theoretical results depend on certain underlying two-
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nucleon properties.

The objectives of this work are twofold: (1) determine
the dependence of the structural quantities for the
SH—n+d vertex on the percentage D-state component
(Pp) in the deuteron wave function, and (2) determine the
sensitivity of the *H-—>n-+d* asymptotic norm® to the
underlying two-nucleon, spin-singlet scattering length and
effective range. These investigations are carried through
by means of separable-potential models where it is possi-
ble to vary one aspect of the underlying two-nucleon prop-
erties while keeping other aspects fixed. Nevertheless, we
shall see that such simple models make essentially the
same predictions for the observables under consideration
as do sophisticated two-nucleon models like the Reid
soft-core potential,® when the separable models have the
same low-energy properties. This emphasizes the role that
simple models play in better understanding three-nucleon
properties, as long as the simple models are used within
their domain of applicability. The vertex structural infor-
mation considered in this work primarily involves the
asymptotic and longer-range side of the intermediate-
range regions of the trinucleon wave functions. For this
reason, separable models without two-nucleon, short-range
repulsion are reasonable. The critical input is the low-
energy s-wave two-nucleon scattering parameters and the
tensor force as specified by both the deuteron quadrupole
moment and the choice of Pp,. The latter quantity, Pp, is
our central focus with respect to the *H—n-+d vertex.
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Though P, is not a measurable quantity,’ it is a charac-
teristic parameter of the 3S,-*D; two-nucleon interaction,
and as such, plays a role in the nature of the predictions
concerning the *H—n-+d vertex.

The format of the paper is as follows: In Sec. II, the
formalism for obtaining the properties of the
3H—>n+d(d*) vertexes is presented; first for *H—n+d
and then for *H—n+d*. The models employed are ex-
plained in Sec. III, followed in the same section with the
numerical results. The results for the asymptotic normali-
zation constants, momentum distributions, and distorted-
wave parameters are discussed in Sec. IV. The main body
of the paper closes with Sec. V, where the key conclusions
are summarized. Two appendices complete the text: one
concerns the structure of the three-body wave functions
and the other discusses a singularity that must be handled
carefully in calculating the singlet asymptotic norm.
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II. FORMALISM
A. *H—n+d vertex

The key element in calculating the structure of the
SH—n+d vertex is the amplitude obtained by overlapping
the *H ground-state wave function given in Appendix A
with a wave function for a neutron of relative momentum
q moving freely relative to a deuteron. With the deuteron
wave function written as (y>=MB,)

W) =N s S
120202 +72

X [YU(p) xx (12101 | N

this amplitude has the form (/' = antisymmetrized states)

_
A0 q, smalmg PHgmy) =3 3 3 filg{malmg | IM; ) ImIM; | smy )V 4rYL)G) )
1=0,2J=1/2,3/2
m M,

where the isospin quantum numbers are suppressed. The momentum-distribution amplitudes are defined as follows:
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All quantities appearing in Eqs (3) and (4) are defmcd
in Appendix A, except for the 573, however, the B4
are identical to the ,I, in Appendix A if
Alk,p,x ;K?)— D (k,p,x ;K?), where

D(k,p,x;K?*) = k2+P—+7/ +kpx

X(k*+p?+K?+kpx) . (5

[

The S- and D-wave *H—n+d momentum distribution
amplitudes play a central role in calculations of the
SH—n+d momentum distribution, the S- and D-wave
asymptotic normalization constants, and the percentage
n-d component in the *H wave function.

The *H—n+d momentum distribution can be extracted
from 3He(p,2p)d or ’He(e,e'p)d experiments (assuming
isospin invariance) when the incident projectile has suffi-
cient energy to minimize distortion effects, plus the eject-
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ed particle comes out with sufficient energy to assure it
was the particle that interacted with the projectile, i.e.,
essentially quasifree kinematics. These conditions can be
satisfied with projectiles having > 300 MeV Kkinetic ener-
gy. Such conditions permit analysis of the data (within
10% or so) on the basis of pole dominance as shown in
Fig. 1. For either reaction, the general form of the coin-
cidence cross section is?

o _ 49 45 (1 r@ P20 F) ©)
dﬂide'idﬂp inp 2 0 2 ’

where i = e or p, do/dQ;, is the “half-off-shell” i-p
scattermg cross section, (kf) represents a kinematic factor,
and 5{ -} is the momentum distribution. It is such a
momentum distribution that has recently been extracted
from the *He(e,e'p)d experiment at Saclay® and it can
serve as a test of our model.

The integral d®q over the quantity in the brackets
{ -} of Eq. (6) is usually called the spectroscopic factor.
Closely related to the spectroscopic factor is the fraction
of the neutron-deuteron component in the 3H wave func-
tion. This quantity, denoted by P 4, is given by

nd—27T f

which follows directly from the completeness relation

g’dg {[fo @ P+ 1f2(@)*) ™

S 3 [d’qd’k | NONNYZ G5 msSMs; sm IM; )
me SM,
mf IMf

X(N(NNY, G 3msSMg; gmIM | =1.  (8)

The neutron-deuteron term of the completeness equation,
ie.,

(nd; g, 7malmy |’"H;smp)= 3 3
1=0,2 J=1/2,3/2
my M,

where

1 © .
u,(p)=7ﬂ_ fo q%dq ji(pg)f1(q) . (11)

In terms of the effective neutron-deuteron wave function,
Eq. (7) becomes

d_41'rf

Consistent with the configuration -space version of the *H
wave function given in Appendix A, the S- and D-wave
‘H>n4+d asymptotic normalization constants, CI , can be
defined by means of the u;(p):

prdp{luo(p) P +[us(p)1?} . (12)

iu(p) (s malmg | IM; )Y (ImJIM; | +my )V ”](p) )
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FIG. 1. Pole dominance graphs containing the common ver-
tex *He—p + d. (a) *He(p,2p)d, (b) *Hele,e'p)d.

2 f d’q | n(np)’s§ 3 ms1Ms; 7 —300)
m

Mg

X{n(np)e’sq yms1Ms; 5 —700]| ,

inserted in the normalization equation for the *H state
vector,

22<3H smy |*H;3my) =1, 9)

yields P.4. The factor 27 instead of 47 in front of the in-
tegral arises from the fact that the states in the cor‘r}plete-
ness relation are not antisymmetrized. Thus, the V'3 ap-
pearing in Eq. (2) is absent, but the 1/v/2 remains and the
spin sums lead to 3 {[fo(q)]*+[/2(9)1*}.

Correspondingly, an effective neutron-deuteron wave
function can be defined by means of the Fourier
transform of Eq. (2), when the neutron-deuteron state is
not antisymmetrized (V'3 absent). With the coordinate p’
conjugate to q, we define

(10)
r
lim ug(p)—>CIV i 2n e 1 (13)
P oo o\p sV K p ‘/z
and
. 3 3 1
lim u,(p)—C} = — |—,
P 2p)—Cp up ‘uzpz V2
(14)

where u?=4(K*—2)/3. The 1/V2 at the right of each
expression is associated with the isospin:
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(15)
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Integral relations for the C}' can be derived by means of

lim u,(p)=%# tim [ g%a jipa)fita) (16)
and the singularity structure of the f;(g) as given by Egs.
(3), (4), (A20), and (A21). The singularity in the f;(g) that
leads to the dominant asymptotic behavior of the u;(p)
comes from the a;(¢), and it is a pole at g=iu. Specifi-
cally, we derive

cl=i! [2771'#1/2 lim (g —ip)fi(q) | , (17)
q—ip

so that
C§=E§% .7 K2k =351 Qi kK ) (k)
+ 3 I Nip kK )ab k)
— I Nip,k;KDak (k)] (18)
and
Cz‘>=—% f0°° k2dk[35 (i, k ;K Yad(k)

—MiGu,k;K»al(k)

+3l3Gip,k;KDas (k)] . (19)

Besides the asymptotic normalization constants, there
are the related distorted-wave (DW) parameters D, and
D,. The DW parameters*® are obtained from the f;(g) at
¢=0 (K*=MB,):

Do=21*"%(B3—B,)f,(0) (20)
and

—f2(q)

D,=1lim | 2222 | @1
70| ¢°fo(q)

By inverting Eq. (11), Eq. (21) can be written as
" ptdpuy(p)
D, J, Pldpuap o)

15 [ pdpuglp)

lim (k —iy)<¢‘k:’“’;aa | W)= lim (k —iy){K;Ga | ¥)— lim (k —iy){K;qa | ¢
k—iy k—iy k—iy

Var[[ Y(p) x 11721 1) 321 ol ?)][m]g_'_ .
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To the extent that the main contribution to the integrals
in Eq. (22) comes from the region of large p in the limit
that ¢g—0, we can replace the u;(p) by their asymptotic
forms from Egs. (13) and (14), and then derive an approxi-
mate relationship between D, and the C}:

(23)

We shall check the validity of this approximation with the
models discussed below.

B. *H—n+d* vertex

The quantity on which we concentrate with respect to
the SH—n+d* vertex is the *H—>n+d* asymptotic nor-
malization constant, a quantity that apparently will be dif-
ficult to extract from experiment but that carries useful
information about the 3H vertex structure. In this subsec-
tion, we derive an integral relation for the *H—n+d*
as?'mptotic normalization, CZ, similar to the one given for
Cs in Eq. (18) above. The approach follows that of
Harper, Lehman, and Prats.’

In dealing with the structure of the *H—n-+d vertex,
the deuteron->H overlap is easily calculated, because the
deuteron wave function is normalizable. This is not the
case for the virtual-bound-state (S;), d*. Nevertheless,
an alternative procedure for deriving Cs leads to a
straightforward method for deriving C2. The key is to ob-
serve that (assuming s-wave NN interactions for clarity)

2T
Ci= (27) 3 lim (g —ip)
CS q—ip

X lim (k —iy)(¢5"da | W) 24)

k—iy

. . . 10 .
is an equivalent way of defining Cé. Here ¢(T<T) is the
spin-1, isospin-O two-nucleon scattering state, C¢ is the
deuteron asymptotic normalization constant expressible in
terms of the triplet effective range as (1—yry)~', a

represents suppressed spin-isospin quantum numbers, and
¥ is the *H state vector. This method of defining C4 fol-
lows from

B+ 30 \gEH W), 5
am |° ’
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where G, is the free three-nucleon resolvent, ¢!° is the
two-nucleon ¢ matrix, and E+t=k2/M+3q%/4M +in.
The first term on the right-hand side of Eq. (25) vanishes,
whereas the second term leads to the deuteron wave func-
tion overlap

d

C
lim (k —iy){¢5"g e S (beT
E?y( —iy)(¢" ;da | W) iy (¢ | ¥) .
(26)
Combining Egs. (24) and (26), we get
Cé=2mip'? lim (g —ip){dgda | ¥) , Q7
g—ip

which is equlvalent to Eq. (17).
Analogously, C{ can be defined as follows:

1021
217)2\’ —pty* -
lim (q —ip*)
d"‘ g—ip*
X lim (k+iy* )(¢(_) ;qa|¥), (28)
k—-»—x‘y

where p*’=4M (B;—7y*'/M)/3, Ca=(1+7%ro )",
and y* determines the location of the virtual bound-state
pole possessed by the two-nucleon spin-0, isospin-1 ¢ ma-
trix which appears on the second sheet of the complex en-
ergy plane; i.e., Epge=—7" ’/M on the negative real axis
of the second sheet. Straightforward algebra leads to

Co=2mip* lim (q—zu Hourda|¥), (29)
g—ip*

where, in momentum space,

lim (k+l’}/ WP | OUES) | K)

208 (—y*)V°M k——iy*

¢d*(p):

*2

Cor p+y

and E; =k2?/M +in. Specifically, for the separable po-
tentials of the present work, the last equation yields

—BrB—v*’ | &)
¢d*(P)= > > 2 (31)
m pr+rt
Nd*gg(p)
Thus, the sought-after formula emerges as
47NN
g S KAk ipt K Dad (k)
3

—3318Gip*,k;KNal(k)

+3013Gip*, k;KMal (k)] . (33)

The observation should be made that Cs and C} are real,
but C2 is purely imaginary owing to the fact that N g+ 18
imaginary.

III. MODELS AND RESULTS

As mentioned in the Introduction, our aims are to in-
vestigate the dependence of the SH—n+d vertex on Pp,
the percentage D-state component in the deuteron wave
function, and to investigate the sensitivity of the
SH—>n+d* asymptotic norm to the S, two-nucleon,
low-energy scattering parameters. For the first case, we
use models that allow P, to vary while holding the fol-
lowing quantities fixed: 'S, interaction, deuteron binding
energy, deuteron quadrupole moment, triplet scattering
length, and triplet effective range. Such models for the
two-nucleon 3S;->D, interaction already exist from the

(30)

—
work of Ioannides and Johnson (1J),'° Phillips (P),!!

the present authors (GL).!? Pp ranges in integer steps
from 0% to 10% including a model with P, =5.5%. For
the >3H—n--d* case, we hold the 3S,->D; two-nucleon in-
teraction fixed and vary the S, two-nucleon interaction
by changing the low-energy parameters ro and a;.

Models that vary ro (as fixed) and as (ro flxed) exist

from earlier work of the present authors.!?

The two- nucleon input and the corresponding calculat-
ed properties of *H are given in Table I. The ten IJ
models, the three P models, model GL-OA, and model
GL-4A serve as the fifteen models in which the 'Sj in-
teraction remains fixed. Various combinations of the P
and GL models are used to investigate the situation where
the 1S, interaction is changed. The calculated properties
of 3H given in the right-most five columns are obtained by
solving Egs. (A19)—(A21) in Appendix A and construct-
ing the wave functlon components according to Egs.
(A2)—(A4). PH, P PH and PY represent the percentage
S-state (symmetric), S-state (mlxed symmetric), D-state,
and P-state component in the *H wave function, respec-
tively.

The structure of the *H wave function and the *H bind-
ing energy for the fifteen models where the 'S, NN in-
teraction remains fixed (¢,=—16.85 fm and ro =2.84

fm) possess striking dependences on Pp. Most notable is
the highly correlated (#>=0.998, where r is the correla-
tion coefficient) linear dependence of P5' and P on Pp,
where the slopes have equal magnitudes, but opposite
signs

=(—1.3240.02)Pp +(98.5+0.1) (34)
and
PH=(1.3140.02)P, —(0.210.1) . (35)
Though PF' is linearly correlated (r*=0.957) with Pp,
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TABLE II. Calculated *H—n + d(d*) vertex properties.
u u* D, D, b, fo(0)
Model (fm~") ci ch (fm~") c? (MeV fm3/?) (fm?) (fm?) (fm3?)  7u2f,(0)
J-1 0.4991 1.884 0.263 0.562 —0.935: 177.7 —0.312 —0.560 1.456 1.613
-2 0.4824 1.878 0.139 0.548 —0.952i 173.4 —0.262 —0.318 1.522 1.602
-3 0.4674 1.861 0.109 0.534 —0.963i 170.0 —0.244 —0.268 1.589 1.595
-4 0.4519 1.840 0.0924 0.521 —0.973i 165.8 —0.234 —0.246 1.658 1.582
-5 0.4397 1.823  0.0822 0.510 —0.982i 163.1 —0.228 —0.233 1.722 1.577
-6 0.4280 1.806  0.0745 0.500 —0.991i 160.2 —0.224 —0.225 1.785 1.570
-7 04171 1.788  0.0685 0.491 —0.999: 157.4 —0.220 —0.220 1.847 1.563
-8 0.4060 1.770  0.0631 0.485 —1.007i 154.3 —0.220 —0.216 1.911 1.553
-9 0.3970 1.753  0.0591 0.477 —1.014 152.1 —0.219 —0.214 1.970 1.548
-10 0.3879 1.736  0.0553 0.470 —1.022i 149.6 —0.217 —0.212 2.030 1.541
P-4 0.4516 1.844 0.0934 0.524 —0.982i 166.5 —0.236 —0.248 1.667 1.589
-5.5 0.4321 1.818 0.0786 0.504 —0.994i 161.5 —0.228 —0.232 1.766 1.576
-7 0.4156 1.791 0.0689 0.493 —1.007i 157.3 —0.224 —0.223 1.859 1.565
GL-0A 0.5053 1.921 0 0.567 —0.959 179.5 0 0 1.440 1.625
-0B 0.5241 1944 O 0.586 —0.835i 184.1 0 0 1.373 1.636
GL-4A 0.4513 1.837  0.0909 0.520 —0.973i 166.0 —0.232 —0.243 1.664 1.585
-4B 0.4567 1.864  0.0950 0.526 —0.904i 168.6 —0.233 —0.244 1.650 1.600
-4C 0.4671 1.860 0.0989 0.535 —0.906i 169.8 —0.230 —0.244 1.589 1.594
Experiment
0.4484 1.82 ? ? ? 163+2° —0.279
+0.05 +0.012%¢
3See Table I of Ref. 4.
®Reference 14.
“Reference 15.
P;{=(9.0i0.6)>< 10-3P, —(1.140.3)X 102,  (36) mined primarily by the difference between the S-wave

its contribution to the overall normalization is negligible.
Thus, since Pi is independent of Pp, its value being deter-

singlet and triplet two-nucleon interactions,!

P¥=1.71+0.02,

TABLE III. Calculated *H—n + d vertex properties.

Model — a2 f(0)D, PS, P2, Poy=Pa+P5
J-1 0.125 0.427 0.138 102 0.428
-2 0.0977 0.428 0.307 x 1072 0.431
-3 0.0850 0.429 0.429 102 0.433
-4 0.0756 0.431 0.512x 102 0.436
-5 0.0695 0.431 0.574 % 1072 0.437
-6 0.0644 0.432 0.618 102 0.438
-7 0.0598 0.432 0.650x 102 0.438
-8 0.0563 0.433 0.669 % 102 0.440
-9 0.0534 0.433 0.683x 102 0.440
-10 0.0503 0.433 0.689x 102 0.440
P-4 0.0765 0.431 0.514x 1072 0.436
-5.5 0.0671 0.432 0.599 % 102 0.438
-7 0.0605 0.432 0.650% 102 0.438
GL-0A 0 0.428 0 0.428
-0B 0 0.425 0 0.425
GL-4A 0.0748 0.430 0.525x 102 0.435
-4B 0.0778 0.430 0.511 102 0.435
-4C 0.0780 0.428 0.513 1072 0.433

(37)
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it is clear that PE and P} must be related as in Egs. (34)
and (35). Specifically, we have
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i.e., assuming constant vertex amplitudes.'®® It follows
then, from Eq. (17), that the asymptotic norms are given
in this approximation by

P+ PE + P}'=100.040.2 . (38)
1 3/2
The linear relationship between Py (or PH) and Pp is Cs ~mu""fo(0) (42)
present in a summary of other exact three-body calcula-  gpd
tions by Friar.” Friar estimates the slope of his compila- . "
tion to be 10/7, close to the present systematic analysis. Cp~ —mu'’*fo(0)D, . 43)

Within the context of a nonrelativistic three-body theory,
it would be enlightening to see the origin of this relation-
ship uncovered. Perhaps bearing on a deeper understand-
. . H .

ing of the connection between P; and Pp is comprehen-
sion of the decrease in the *H binding energy (B;) as Pp
increases. For the models under consideration, we get

B3 =(—0.34+0.02)Pp +(10.09+0.08) MeV , (39)

where the correlation is #2=0.986. As the role of the
longer range tensor force grows (Pp increasing) the bind-
ing of the more compact *H (relative to 2H) decreases.

The calculated results for the *H—>n-+d asymptotic
normalization constants, distorted-wave parameters, and
fraction of neutron-deuteron component in the *H wave
function are given in Tables II and III. Also tabulated in
Tables II and III are “constant vertex” approximations to
the asymptotic normalization constants: u3/2f,(0) for
the S wave and —mu’/2fy(0)D, for the D wave. These
approximations are derived by writing the momentum-
distribution amplitudes for low-g values, g> <u? as

As is clear, the f;(q) are the key quantities in determining
the 3H—n-+d structure. Therefore, in Table IV, we tabu-
late the momentum distribution amplitudes for the IJ-4
and IJ-7 models in order that they be available for other
applications.

The results for the *H—n+d* asymptotic normaliza-
tion constant, Cg, are tabulated in the sixth column of
Table II. These values must be calculated with care owing
to the logarithmic singularity (branch cut) in the integrand
of Eq. (33). As explained in Appendix B, this occurs be-
cause K?< ,u*z. It can also occur for the *H-—>n+d
asymptotic norms whenever B;>8.9 MeV (B,=2.225
MeV), since then K% <>

IV. DISCUSSION
A. ‘H-n+d

1. Asymptotic norms

The dependence of the asymptotic norms on Pp is most

wfo(0) striking. In Table II, considering the 15 models with the
folg)=——— (40) I : ; - 1
o\g)= q2 + “2 same 'Sy, NN interaction, we find that Cg decreases
linearly with Pp, and that Cp seems to be best fit employ-
and ing a reciprocal dependence on Pp (see Figs. 2 and 3).
12q%f4(0)D, Specifically, we find that
=E=E— 41
S PR @) Cs=(—1.77+0.04) X 10~2Pp +(1.913+0.003) , (44)
TABLE IV. Momentum-distribution amplitudes (fm3/%).
q Pp=4% Pp=7%
(fm=") Solg) fa(q) Solq) f2(q)
0 1.658 0 1.847 0
0.05 1.635 9.566 10~ 1.818 1.008x 1073
0.1 1.569 3.666% 1073 1.733 3.846
0.2 1.346 1.250x 102 1.454 1.292 1072
0.3 1.077 2.227 1.132 2.267
0.4 8.274x10~! 2.996 8.462x 107! 3.020
0.5 6.225 3.458 6.219 3.476
0.7 3.464 3.594 3.330 3.662
0.9 1.939 3.128 1.807 3.290
1.0 1.459 2.808 1.340 3.013
1.2 8.378 1072 2.151 7.473x 1072 2414
1.4 4.892 1.573 4.225 1.852
1.6 2.901 1.117 2.411 1.379
1.8 1.745 7.778 1073 1.381 1.005
2.0 1.063 5.348 7.898x 1073 7.213 1073
2.2 6.546x 1073 3.651 4.471 5.121
2.4 4.072 2.481 2.476 3.606
2.6 2.554 1.683 1.315 2.524
2.8 1.614 1.141 6.439107* 1.758
3.0 1.026 7.4310~* 2.626 1.222
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FIG. 2. C¢ as a function of Pp. Solid line is least-squares fit
to IJ models (@), P models (x), GL-0A (), and GL-4A (W).

with #2=0.994, and
Ch=(2.2440.04)X 1072 +(3.6£0.2) 1072,
D

(45)
with 72=0.997 (where model GL-0A has been dropped).
Let us compare these results to those of the deuteron,
d—n+p, given in Table V. For the deuteron, C§ is essen-
tially a constant independent of P,. This occurs because

C¢ is determined primarily by two parameters:'’ v and
ro,- Since these parameters are held fixed,
Cl=—1 46)

(1_,)/’0' )1/2

remains unchanged. In contrast, the decrease in the
neutron-deuteron binding as Pp increases, expressed
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FIG. 3. C} as a function of Pp. Solid line is least-squares fit
to IJ models (@), P model (X ), and GL-4A (W).

through p, means the exponential falloff of uy(p) is less
rapid as Pp increases. Since P53, is essentially independent
of Pp (see Table III), i.e., all the uy(p) are normalized the
same, C¢ decreases to compensate for the greater contri-
bution to the normalization of the long-range part of
ug(p). On the other hand, C3 of the deuteron, just like
Ch, appears to best reflect a reciprocal dependence on Pj,.
The same 14 models used for Eq. (45) yield

C3=(6.6i0.3)><10—27,1—+(2.2w:0.1)><10‘2. (47)

D
Such behavior is certainly peculiar, since CS and C} both
vanish when P;,=0. Such behavior is indicative of forc-
ing the 38,->D, interaction with P, <4% to the con-
straints indicated in Table I—especially a fixed value of
the quadrupole moment, Q4. In the case of the triton, as
mentioned in Appendix B, we get the abnormal relation-
ship that B3;>4B, when Pp<4%. Regardless, under
such constraints, it is clear that C) decreases gradually
with Py for Pp>4%.

TABLE V. Calculated d—n + p vertex properties.

Model cd ch n=C§/Ch D} D3
1J-1 1.283 0.0919 0.0716 —1.069 —1.335
-2 1.284 0.0495 0.0386 —0.6731 —0.7194
-3 1.284 0.0410 0.0319 —0.5766 —0.5950
-4 1.284 0.0371 0.0289 —0.5311 —0.5393
-5 1.285 0.0350 0.0272 —0.5049 —0.5078
-6 1.285 0.0336 0.0262 —0.4881 —0.4875
-7 1.286 0.0327 0.0254 —0.4772 —0.4742
-8 1.286 0.0320 0.0249 —0.4692 —0.4643
-9 1.286 0.0315 0.0245 —0.4633 —0.4568
-10 1.287 0.0311 0.0242 —0.4586 —0.4507
P-4 1.290 0.0375 0.0291 —0.5340 —0.5421
-5.5 1.291 0.0347 0.0268 —0.4999 —0.5006
-7 1.291 0.0331 0.0256 —0.4813 —0.4780
GL-0A 1.292 0 0 0 0
GL-4A 1.283 0.0366 0.0286 —0.5252 —0.5323
Experiment 1.299% 0.0272(4)°

2Reference 17.
YReference 18.
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The variation of Cg with P, is slow enough that all the
models with 3% <Pp <8% (the standard range) are
within experimental errors. Unfortunately, a direct exper-
imental determination of Cj has not yet been made.
Nonetheless, values for CS1 and C}) from a five-channel
calculation using the Reid soft core potential
(184,381->D,), hereafter denoted RSCS, are available.*
The RSCS5 values resemble the separable-model results
that have Pp~7—8%. The RSC potential gives
Pp=6.47% and leads to a smaller *H binding energy
(B3 =7.022 MeV) than the separable models with compar-
able Pp. The latter attribute accounts, qlualitatively, for
the somewhat lower values of C4 and C}, for the RSC5
compared to a separable model with the same Pp,.

It is tempting to assume a constant SH—n+d vertex
amplitude in order to simplify calculations containing this
vertex.!® When such an assumption is made, the momen-
tum distribution amplitudes are given by Eqgs. (40) and
(41), while the asymptotic norms are given by Eqgs. (42)
and (43). When the asymptotic norms are evaluated in
this approximation, last column of Table II and first
column of Table III, the asymptotic norms are underes-
timated by 10—20%. This is a clear indication that the
SH—>n+d vertex-amplitude momentum dependence is im-
portant, even at small values of g, qzs ;1,2. Such a
constant-vertex approximation for the deuteron, d—n+p,
leads to only a 3% (2%) underestimate of C§ (C3). The
reason the approximation works so well for the deuteron
is due to the size of the inverse-range parameters in the S-
and D-wave vertex amplitudes. The momentum depen-
dence of the deuteron vertex amplitudes is given by the
g/(g) with the inverse-ran%e parameters, 3. Neglecting
the g dependence of the g/(g) is justified for g2 << (B})?
and is valid at the deuteron pole, g =iy, since y2 << (B} )?
[y2=0.054 fm~2, (B3)*=1.782 fm~2, and (B})? =2.362
fm~—2 for IJ-4)]. Evidently, the “equivalent” inverse-range
parameter and u are more comparable in size for the
SH—n+d vertex.

Finally, we note that C3 is insensitive ( <2% variation)
to changes in the 'S, NN parameters, whereas C L is mild-
ly sensitive ( <5% variation) to changes in the 1S, interac-
tion.

2. Distorted-wave parameters

The present work on the DW parameters D, and D,
complements the results of Ioannides et al. (INS) (Ref. 9)
and Borberly and Doleschall (BD).!* Our effort adds a
systematic investigation of the dependence of these pa-
rameters upon Pp and examines the validity of approxi-
mating D, by D,, Eq. (23).

By least-squares fitting the results for D, given in Table
II (models with the same 'S, interaction), it is clear that
Dy decreases linearly with Pp:

Do=(—3.0940.08)Pp +(179.2+0.5) MeV fm3/? ,
(48)
and #=0.993. INS find that D, decreases when Pp, is in-

creased, but their phenomenological >H ground-state wave
function does not permit them to make an accurate esti-
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mate of the decrease. BD calculate a decrease in D, of 7.9
MeV fm3/? in going from Pp=4% to Pp=7% (see their
models 2'SoR,1T4RA and 2'SyR,1T7RA). This magni-
tude of decrease is roughly consistent with our prediction
(APp=3):

ADy=(—3.09+0.08)APp
=—9.3+0.3 MeV fm3/2 . (49)

The origin of the decrease is the decrease in (B3 —B;)
(equivalently p) as Pp increases, because f(0) actually in-
creases with Pp [see below and Eq. (20)]. Note that to
have values of Dy within the experimental range, P, must
lie between 4% and 6%.

Similar to CJ, if we exclude the values for Pp < 4%, we
find that D, decreases almost linearly with Pp. A least-
squares fit to those 11 models with the same 'S, NN in-
teraction and Pp > 4% yields

D,=(3.0+0.4)x103Pp, —(0.244+0.002) fm? ,
(50)

with #2=0.894. Allowing for the limitations of extracting
D, from experiment,*!* one can conclude that the values
of D, for Pp>4% lie just slightly below the current ex-
perimental value. BD suggest a “best” value based on
their calculations of —0.225+0.005 fm?. This encom-
passes our results for 5% <Pp <8%.

How closely does D, approximate D,? As can be seen
in Fig. 4, for values of P between 4% and 7%, the error
is <5% and <2% between Pp=5% and 7%, respective-
ly. Clearly, for the deuteron (Table V) the approximation
is even better over the same range. D, has been calculat-
ed* for the RSC5 model with the result of 0.243 fm?
larger than the separable results with comparable Pj,.
This occurs because of the smaller x? (due to the smaller
B;) in the RSC5 result, since the ratio C}/ C! is actually
somewhat smaller than for the separable models. Finally,
we note that Dy and D, are not sensitive to the 'S, NN
parameters.

3. Fraction of nucleon-deuteron component

The fraction of S-wave neutron-deuteron component in
the *H wave function is independent of P;, (see Table III).
Not only is it independent of Pp, it is not sensitive to the
1Sy NN low-energy parameters. Neither is the fraction of
D-wave nucleon-deuteron component sensitive to the 1S,
NN interaction, but it is sensitive to the value of Pp. P2
rises fairly rapidly from zero to an asymptote of
~0.7% 1072 for 0< Py, < 10%. The models suggest that

P3,=0.430£0.002 , (51a)
independent of Pp, and that
P2 ~0.6x1072 (51b)

for 4% <Pp <7%.
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FIG. 4. Ratio of D, to D,. The solid line is only to guide the
eye through the calculated values of the ratio for the 1J models
(@), P models (X), and GL-4A (H).

4. Momentum-distribution amplitudes

The momentum-distribution amplitudes, f;(q), are plot-
ted in Fig. 5 for Pp,=0%, 4%, and 7% (see Table IV). As
Py mcreases, fo(0) rises linearly (see Flg 6) and f,(q) for
g>1fm~ ! decreases (remember that P23, is independent of
PD) The loss of higher momentum contributions in f(g)
as Pp increases is made up by the increasing contribution
of f,(q). Moreover, it can clearly be seen in Fig. 7, by
means of a Chew-Low plot,'” that the assumption of a
constant *H—n + d vertex amplitude (S wave) is not justi-
fied even for a limited range of g. The dashed line
represents the constant vertex approximation, whereas the
momentum dependence of the vertex draws 1/fy(g) away
from the dashed line almost immediately beyond g =0.
Similar conclusions can be reached with a D-wave Chew-
Low plot. This makes it even more clear that the approxi-
mations for the asymptotic norms given in Egs. (42) and
(43) are incorrect.

The *H—n + d momentum distributions for 1J-4 and
1J-7 are plotted in Fig. 8 against the data extracted from
the recent *He(e,e'p) experiment at Saclay.’ The absolute
uncertainty involved in such an extraction is on the order
of 10—15% due to the assumption of pole dominance and
the ambiguity associated with the “off-shell” electron-
proton cross section [see Eq. (6)]. Therefore, within this
framework, we can say the models are consistent with ex-
periment for g <100 MeV/c ~pu, the expected range of va-
lidity of pole dominance.!®® At higher momentum
tranfers, the theories exceed experiment. Such behavior is
also found in more sophisticated models like the RSC. 3
This emphasizes that the pole-dominance assumption at
the higher-momentum transfers is invalid.

B. *H—n + d*

1. Asymptotic norm
C? is correlated linearly with Pp. For the 15 models
with the same 'S, NN interaction, we find

Co=—i[(8.240.8) X 10~3Pp +(0.942+0.005)] (52)
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FIG. 5. Momentum-distribution amplitudes for selected IJ
models.

with #2=0.91. Similarly as with C¢, this is a binding ef-
fect though it cannot be reasoned through as we did for
C4, since CY is the coefficient of a non-normalizable func-
tion (¢« is not normalizable). What is even more striking

is the sensitivity of C$ to the low-energy properties of the

T T T T T T T T T v
20| v
19+ / -
1.8~ ,/ -
Least-squares fit
f0(0) = (0.062 + 0.002) P
+(1412£0.007) 7]
T L ] L L L | L 11
o) 1 2 3 4 5 6 7 8 9 10
Pp

FIG. 6. f(0) as a function of Pp. Solid line is least-squares
fit to IJ models (@), P models (X ), GL-0A (), and GL-4A (H).
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FIG. 7. Chew-Low plot for the *H—n + d vertex. The
dashed line represents a constant vertex normalized to the 1J-7
model and the solid line illustrates the momentum dependence
of the *H—n + d vertex for the IJ-7 model.
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1S, interaction. Changing ro, from 2.85 to 2.70 fm leads

to almost no change in C¢ even though B; changes from
8.711 to 9.010 MeV. On the other hand, decreasing a;
from —16.85 to —20.36 or from —16.85 to —23.20 leads
to a change in C9 of ~0.1i. Changing a, in this way de-
creases Yo, while changing ro from 2.85 to 2.70 fm hardly
changes y,. Now, Co~Ny~y4/% and the change in Yo
can account for the change in C¢ since u* does not shift
by a large amount. Clearly, assuming charge indepen-
dence in dealing with this parameter is an ~ 10% approxi-
mation.

One local-potential calculation of C¢ exists where the
NN interaction is a one-boson-exchange (OBE) model
(ag=—23.83 fm and ro =2.703 fm).’ This model has a

3H binding energy of 7.38 MeV and yields C{= —0.831i.
This same model gives Ci=1.61. Compared to our
models with P, =4% to 5%, typical of OBE models,
these values are smaller in magnitude.

V. SUMMARY OF CONCLUSIONS

With a set of *H wave functions derived from separable
NN interactions acting in the S, and 3S,-3D, partial
waves, a systematic analysis of the *"H—n + d(d*) vertices
was made. The dependence of the 3H—n + d asymptotic
normalization constants, the *H—sn + d distorted-wave
parameters, the fractional n-d component in the 3H wave
function, and the *H—>n + d momentum distribution on
the percentage D-wave component (Pp) in the deuteron
was investigated. The sensitivity of the *H—n + d*
asymptotic normalization constant to the low-energy pa-
rameters of the 'S, interaction was examined.

The major conclusions of this work can be summarized
as follows (the reader is referred to Secs. III and IV for
amplification of the models and details of the conclusions,
respectively):

(1) The S-wave *H—n + d asymptotic norm decreases
linearly with Py [Eq. (44)], while the D-wave asymptotic
norm decreases inversely with Pp [Eq. (45)].

(2) The S-wave *H—n + d distorted-wave parameter,
D,, decreases linearly with Pp [Eq. (48)] due to the de-
crease in n-d binding (to form *H) as Pj, increases; the D-
wave parameter, D,, can be said to decrease almost linear-
ly with Pp for Pp >4% [Eq. (50)]. Approximation of D,
using the asymptotic forms of the effective n-d S- and D-
wave functions [Eq. (23)] leads to an overestimate of D,
by ~5% for Pp,=4%, which falls to an underestimate of
~1% for PD=7%'

(3) The S-wave *H—n + d asymptotic norm and the
distorted-wave parameters, D, and D,, are insensitive to
changes in the low-energy parameters of the 'S, NN in-
teraction, whereas the D-wave asymptotic norm is slightly
sensitive to such changes (see Tables I and II).

(4) 3H—n + d asymptotic norms and distorted wave
parameters calculated for the models, where the 3S;-3D,
interaction generates Pp in the canonical band
4% <Pp <7%, are within present experimental limits.
Moreover, models with low-energy parameters close to the
Reid soft core NN potential yield results similar to a RSC
five-channel calculation.
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(5) The fraction of the n-d component in the *H models
is 0.435+0.004, to a good approximation independent of
Py, (see Table III).

(6) Neglecting the momentum dependence of the
SH—>n + d vertex amplitude leads to a > 10% error in the
calculated asymptotic norms [See Eqs. (42) and (43) plus
Tables II and III]. Furthermore, it is clear from a Chew-
Low plot that a constant >H—n + d vertex amplitude is a
poor approximation (see Fig. 7).

(7) The *H—n +d momentum distribution for the
Pp=4% or 7% models is in reasonable agreement with
that extracted from the recent *He(e,e’p)d experiment at
Saclay in the range of momentum transfer at the
H—n + d vertex 0<q <0.5 fm~!, but is larger than the
data for ¢ >0.5 fm~! (see Fig. 8). Local-potential models
show similar behavior relative to the data.’

(8) The *H—n + d* asymptotic norm is sensitive to
changes in the NN singlet scattering length and it exhibits
a slight dependence on Pp. The only existing local poten-

A e AN
w121 = L pa2023) - wf 20123 -0 2123)]

where

\I,gl/Z]:[\I,[O]SX £_g;[l/2]a][1/2]+_ [\1,[0]’ X§[1/2]"][1/2]_ [\P[O]” Xg[l/Z]’][l/Z] ,
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tial (OBE) calculation gives a result ~6% smaller in mag-
nitude than the separable models with comparable P, and
equivalent low-energy 'S, NN interaction parameters.

The work of B.F.G. was performed under the auspices
of the U.S. Department of Energy, while the work of
D.R.L. was supported in part by the U. S. Department of
Energy.

APPENDIX A

The purpose of this appendix is to give the explicit
form of the *H wave function and related equations that
were used to derive and calculate the results given in the
main text. *H has total-angular-momentum, parity, and
isospin quantum numbers J"I=+" +. When the two-
nucleon separable interactions are present in the 'Sy and
38,-3D, waves, the *H wave function has the form

(A1)

(A2)

WE]/Z]=[\I/[I]SX§[1/2]a][1/2]+[.¢[1]’X§[1/2]"][1/2]__[\I/[I]”Xg[l/2]'][l/2]

__[\plll'xx[3/2]s][1/2]n"+ [\y[ll"xx[ylls][l/ﬂn' ,

and

\Pgl/Z] — [\I,[Z]’ XX[3/2]S][1/2]7]“ _ [\P[Z]” XX[S/Z]S][I/Z]TI: .

The spin-5 (X), isospin-5 (1) functions have the form

§a=—‘/l—§(X,1’”_X"7]') , (AS)

§I=T/_13;(Xlnn+xunl) , (A6)
and

gll—___‘/l_z_(xlnl_xunu) , (A7)

’

where (a,’,”) mean antisymmetric under exchange of any
nucleon pair, antisymmetric under exchange of the (23)
pair, and symmetric under exchange of the (23) pair,
respectively. This notation applies elsewhere in the above
equations with the addition that “S” means symmetric
under exchange of any nucleon pair. The spatial functions
have the form

WS(123)=g(1,23)+g(2,31)+g(3,12) , (A8)

w'(12’§)=—‘§[h<3,1‘i>—h(2,ﬁ)] , (A9)
and

v'(123)=—h(1,23)+5[h(2,31)+h(3,12)], (A10)

(A3)

(A4)

where (7,”) over particle numbers means antisymmetric
or symmetric, respectively. In terms of the standard
Yamaguchi®® separable potential form factors and the
three-body spectator functions, the spatial functions are
given explicitly as

gl0l=40—p!, (A11)
(A12)
(A13)

RO=4 04yt

u®=ad(1)gd(23),

vi=al(1)gd(23)
—xa3(1)g2(234a YPA1)x Y121(23)]°), (A14)

g=— L a1(1)g(23)am] ¥121(1) x ¥12(23)]111

12

2 (A15)
Rl gl (A16)
glPl=o0, (A17)

and
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R2— _ Lal(1)gl(23)VarY12423) + Lal(1)gd(230VE Y1)+ ——al(1)gh (23)an[ YI2U 1) x Y121(23)]2),  (A18)
1/\
_2
2

where j ——(2] +1)!/2 and contrastandard sphencal harmonics are related to the ordmary sphencal harmonics by
Y[ Y A)=(—i)¥}, (7). In all the g7 and A!M, the energy denominator, (k3;++p3+K?)~!, has been suppressed
(K 2 =MBj;, where B; is the three-nucleon binding energy). Finally, the N in Eq. (A1) is the normahzatlon constant.

The spectator functions, a;’, are obtained by solving a coupled set of homogeneous integral equations. These equations
are

D%p,KNad(p)=mho [.” k2dK[I3(p,k;K2ad(k)—33I4(p,k;KDad(k)+381(p, k;Kab(K)] , (A19)
Dlaj=mh, [” k2dk(—~33I8al+sI5as—4I5a}), (A20)
and
D az_mlf k2dk(3ad—1Isal +1kal) (A21)
where
DS(p,K)=1—AgAS(p,K?), (A22)
A= [ d’kz—[g§(k2)—]22—, (A23)
k*+5p*+K
S &/ (T
fd3 kl2—(})—23pz+K2 ’ (A24)
0If= f dx A~ \(k,p,x;K*)gd(q)g (g \Pi(k-§") (A25)
$I5= f_,dxA 'g6(9)20(g") , (A26)
Sb= [ dx A7 lgd@eb(a) 26 @lghaP239 )], (a27)

1 N ~
= f—1 dx A1 lgé(q)gi(q’)Pz(k-é")—Zg%(q)g(l)(q')Pz(k-t?)

+—‘/1—§g§(q)g%(q’)[l—P2(l? —Py(k-§)—P,(§- N)]l (A28)
1
M= [ dx A~'g3(9)gd(a""Py(54) , (A29)

1
= [ _dx A {g;(wgé(q'wz(ﬁ-a)—2g(‘,<q)g;<q')P2(ﬁ-a')
+%2g§(q)g§(q')[l—Pz(ﬁ't?)—Pz(ﬁ-t?') Py(§-§ '>]] (A30)

1 Py A oy
= [ dx A l—zg(&(q)gé(q')h(ﬁ-kn;/l—igé(q)g;(q')[1—P2(k-a')—P2(ﬁ-k) P51

1 , AN
+7—-2-g§(q)gé(q )[1—P,(k-§)—Py(p-k)—Py(5-§)]
+123(9)gh (g [2Py(K-§") +2Py(5+§) — Py (k-§) — Py (p+K)—Po(§-§")—Po(5-§")] (A31)
Alk,p,x;K*)=k?+p*+kpx +K?, (A32)
x=kp, (A33)
d=k+1B, (A34)

q'=p++k, (A35)
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and P,(x) is a Legendre polynomial. The strength param-
eters of the interaction are the Ag and the inverse ranges,
B?, define the interaction form factors

gy (k) =[K>+ (B} !
and
gik) =tk [k*+(By*1 2,

where ¢ controls the contribution of the D wave in the
35,-3D, interaction.

(A36)

(A37)

APPENDIX B

In calculating the asymptotic normalization constants,
integrals of the general form

fq” k2dk I(p,k;K)a(k) , (B1)
with p=ip or iu* and
1 h(p,k:x)
I(p,k;K?)= d 22 , (B2)
p ) f—l xK2+p2+k2+pkx

are encountered. When p =iu, Eq. (B2) becomes
J
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a1 U (k)
I(ip,k;K )—-—mk “ldx PERyTaL (B3)
X+ —
iuk

where kj=p?>—K?=(K2—4y?/3. For the models in
Table II with Py <4%, K?>>4y?% or k3>0. Likewise,
when p =iu*,

k3=p*’—K2=(K2—4y*")/3>0

for all the models. Under the condition k3>0,
I(ip,k;K?) [or I(iu*,k;K?)] possesses a cut singularity in
the complex k plane along the curve defined by the equa-
tion

k=7 {—ipx+[p*(1—x*)—4y*1'?} (B4)
that crosses the real k axis in the path of integration at k;
i.e,, x =0 and

) 172

K- | =k (B5)

2y1/2_
: 3

k=7 (u?—4y

In numerically integrating over k in Eq. (B1), this loga-
rithmic singularity must be considered.

In the present work, we used a subtraction to permit an-
alytic expression of the logarithm:

hGip,k;x)k2a(k)—d(k)h(ip,ko,0)k3a(ky)

fo”de(ip,k;Kz)kza(k)= fowdk f_lldx

P 1
+hipko;0)kalko) [~ dk ¢(k) [ dx X

k3 —k*+ipkx

1

2_k3+ikux

where ¢(ko)=1. The intégrand of the first k integral on the right-hand side of Eq. (B6) has no logarithmic singularity.
Therefore, since x50 on a Gaussian grid, the first integral is evaluated by standard numerical quadrature. The second k

integral is handled as follows:

© 1 1 ® 1 . k*—k}+iku
dk (k) [ dx—————= [ dk ¢(k)——1 =7, B7
fo ¢ f—l k2 —kd+ipkx fo ¢ ikp nk2—-k(2,——iky ®7)
where a cut is crossed at k =k,. Explicitly, we have
= [Pdk gL i TR e gy L Kk ik (B8)
=Jo AR G PTG T e | e R G N e T i
2 ko dk 1 = dx k2 —kg+ikp
2T [ax — [ & s —— B9
Lo e+ Jo T4 N s (B9)

One might search for a ¢(k) that would permit analytic evaluation of the integrals in Eq. (B9); nevertheless, we chose

k2a (k)

(k)= ,
¢ kda(ky)

and carried out the integrations numerically.

(B10)
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