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Calculation of collective energies from periodic time-dependent Hartree-Fock solutions
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A periodic time-dependent Hartree-Pock solution is used as the reference state for a diagrammat-

ic expansion of the propagator. A discrete Fourier transform leads to a function of energy whose

poles are the corresponding energy levels. Limiting the expansion to first-order diagrams leads to a
new derivation of the Bohr-Sommerfeld —type quantization rule for collective states.

NUCLEAR STRUCTURE Collective energies. Periodic time-dependent
Hartree-Fock. Diagrammatic derivation of the Bohr-Sommerfeld quantization

rule.

I. MOTIVATION

Microscopic calculations of collective energy levels have
often had as their starting point a static mean-field calcu-
lation of the ground state, using something like the
Hartree-Fock or Brueckner-Hartree-Fock approximation.
But one knows very well how to describe collective motion
with a time-dependent mean field, as in the time-
dependent Hartree-Fock (TDHF) approximation. The
many successes of this approach are well known. ' lt
does have some problems, however, one of which is that,
from the collective point of view, it is a classical descrip-
tion with the consequences that, for bound states, need to
be requantized, often in a rather arbitrary manner, and for
scattering it is not rich enough to describe all the experi-
mentally measured quantities.

This situation can be remedied if TDHF can be con-
sidered as the first step in a fully quantal theory, and this
is just one of the results of the preceding paper. We have
shown in the preceding paper that it is possible, without
changing things very much, to extend Feynman-Goldstone
perturbation theory to the case where the basis is made up
of time-dependent single-particle wave functions, all being
solutions of the same time-dependent Schrodinger equa-
tion, which in the present case will be the TDHF equa-
tion. The result is a potentially exact formulation, provid-
ed the perturbation series converges, which of course is
not a trivial matter. It is likely to be a much more accu-
rate description of collective motion than the formulation
starting from static Hartree-Fock, and to include it as a
special case. In particular, approximations such as the
random-phase approximation (RPA), which are based on
static Hartree-Fock, cannot describe large amplitude col-
lective motion, while the present approach can. Also,
there is no adiabatic approximation in the present ap-
proach.

This paper is devoted to the derivation of the quantiza-
tion rule for periodic TDHF solutions. The existence (or
possible existence?) of these solutions has excited intense
interest recently because of their effective one-
dimensional character and because of the analogy with
classical mechanics. We use the Feynman-Goldstone ex-
pansion, in lowest order, to derive an unequivocal quanti-
zation rule for these solutions if they exist (and they do
exist for simple models). This rule turns out to be identi-
cal to that previously derived by functional integrals, '

and it is instructive and satisfying to see it derived in this
completely new way. Later papers will develop correc-
tions to this lowest order result.

II. PERIODIC TDHF SOLUTIONS

In a periodic Tl3HF solution, ' the one-body density
p(t) is a periodic function of time with period r

p(t+r)=p(t)
and frequency

co=277jr
Therefore, the single-particle potential U(t) has period r
also. The single-particle states are solutions of the time-
dependent Schrodinger equation in this potential. They
are not periodic, but quasiperiodic, as in Blochs or
Floquet's theorem. This means

~
a(t+r)) =e

~
a(t)), (3)

where 8 is a phase angle characteristic of the particular
single-particle state. Obviously, these phases disappear in
the construction of the one-body density as a sum over oc-
cupied states
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p(t)=g iA(t))(A(t) i,
and p(t) is truly periodic.

It is possible to define a variable A, having dimensions
of energy by

8 =A, r (note: fi = 1),
and to define

~

a (t) ), the periodic part of
~

a(t) ), by

~
a(t)) =e

~

a (t)) .

One checks immediately that ~a (t)) is truly periodic.
We shall call A, the quasienergy of single-particle state a.
It is similar to the "crystal momentum" of Bloch's
theorem and it is defined up to a multiple of tiI only. The
time-dependent Schrodinger equation, written for

~

a (t) ),
becomes

One way of looking for periodic TDHF solutions '

consists in solving the set of Eqs. (7) as one would the
static HF equations, but with the added dimension of time
and the added boundary condition that

~

a (t) ) has period
In th. is process, the value of r is arbitrary and, although

one may not find solutions for all possible r, it becomes
natural to expect that solutions will exist over a continu-
ous range of w, which is one of their characteristic
features, and which reinforces the analogy with one-
dimensional classical solutions.

Considering now the reference state
~
Po(t)), which is

the Slater determinant built out of the occupied single-
particle states

~

A (t) ), we find that it is quasiperiodic also,

with

co=+~~ .

grees of freedom, hence several types of collective motion,
we should be able to pick the TDHF periodic solution
which describes the kind of collective motion we want to
consider. In complicated cases, this could be very diffi-
cult. If we solve the problem as a four-dimensional HF
problem, by iterating Eq. (7), how are we going to make
the result converge toward the kind of collective motion
we wish? In simple cases, on the other hand (for instance,
the Lipkin model), it is very easy to see what to do.

Another question is associated with the continuous
range of values of the period r, as mentioned in Sec. II.
Which of these should we use? This question has an ap-
proximate answer, which is interesting and important.
From now on we shall assume that we are dealing with a
one-parameter continuous family of periodic TDHF solu-
tions. The parameter can be ~, or co =2m/v. , or 8', the en-

ergy, i.e., the expectation value of the exact Hamiltonian
H for the TDHF wave function, which is well known to
be time independent. All three of these parameters are re-
lated and equivalent. A possible relation between co and
8' is shown in Fig. 1. When W is the energy of the HF
ground state, co is the RPA frequency. As W increases, co

changes. Viewed as a function of the collective coordi-
nate, the TDHF wave function is a wave packet, i.e., a
classical object, which is an approximate superposition of
exact stationary states whose energies lie in the vicinity of
8'. Its frequency oI is an approximation to the level spac-
ing, again for levels in the vicinity of W. Thus the curve
co( W') is an approximate description of the variation of the
spacing of the collective levels with their excitation ener-

gy. It is clear, then, that 8' should be chosen to agree
roughly with the energy of the level one is interested in.
One will use a different W, i.e., a different basis with a
different period, for calculations concerning each collec-
tive level. And since one does not know, at the start, the
exact energy levels, one will need a quantization rule to
fix, at least provisionally, the best value of W to be used
for each level. This is the quantization rule which we
shall derive in Sec. VI.

Note that, in principle, the Feynrnan-Goldstone expan-
sion of Ref. 3 is exact irrespective of what we pick for W;

The periodic part and the quasienergy of
~
Po(t) ) are de-

fined by

with

[ Po(t) ) =e '
I @o(t))

We derive in the Appendix some variational properties of
periodic TDHF solutions which will be useful in Secs. V
and VI.

III. THE CHOICE OF BASIS
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One of these periodic TDHF solutions wi11 be our basis.
Which one? One problem is that, if there are many de-

FIG. 1. The relation between co and 8' for a Lipkin model
(Ref. 10) (%=8, @=1, and +=0.8). In real nuclei, it is more
usual for co to decrease as 8' increases.
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Its convergence, however, is obviously very much affected
by O'. Thus, the game is to pick as good a 8'as is possi-
ble at the outset, and this we shall do separately for each
level, using the quantization rule. It can then be hoped
that higher-order corrections will converge rapidly after
this.

eiNx ( 1 e ix) —1

N=0

and we write, instead of (16),

i~ g— e ' (Po(X~) e ' 'I Po(0))

IV. THE CALCULATION OF
BOUND STATE ENERGIES

(y,(o)14„)
1 ex—pi (E E„)—r (20)

Though the states of the basis are not stationary, the
fact that they are quasiperiodic allows us to make a
Fourier transformation to an energy variable. This
transformation, however, is different from what is done in
the usual case of a stationary basis.

In the usual case, the reference state Po is stationary
with unperturbed energy 8'o, i.e.,

(y,(T)
I
=(y, (0) I.' ' . (12)

One way to look for bound state energies is to calculate
somehow the "reference-to-reference" matrix element of
the propagator

&y.(T) I.-'"'I y.(T) &

which by (12) can also be written

(y,(0)
I

e
' '

I y,(0)) .

(13)

(14)

Introducing as intermediate states the complete set of
exact stationary states P„with exact energies E„, we can
write (14) as

X I &Wo(0) I 0. & I

' (15)

Then we Fourier integrate over positive times with an en-

ergy variable E, and we get the formula

The right-hand side has poles at

E =E„+men, (21)

where I is any integer, positive, negative, or zero. These
additional ghost poles are the price one has to pay for us-

ing the discrete instead of the continuous Fourier
transform. The residue for each pole is just

( Po(0) I P„) I, the same as earlier.
Our strategy is then as follows. We do an approximate

diagrammatic calculation of (Po(Nr)
I
e ' '

I
Po(0) ) for

all positive integer X, we perform the Fourier sum in the
left-hand side of (20), we look for its poles and residues in

E, and we compare it with the right-hand side of (20)
which contains the exact poles and residues. We shall
now apply this strategy to a first-order calculation of the
propagator matrix element.

V. FIRST-ORDER CALCULATION

The propagator matrix element is a sum of products of
disconnected clusters, as shown in Fig. 2. The exponentia-
tion theorem states that this equals the exponential of the
sum of all distinct single clusters, as shown also in Fig. 2.
There are two first-order clusters only, which are shown
in Fig. 3. Their numerical value, including the symmetry
factor of —,

' for the "double bubble, " is

—I dT. ' ' (y,(T)
I

-' 'Iy, (o))

(po(0)
I p„) I

'
E —E„

(16)

i J —dt —,
' g (A (t)8(t)

I
v

I

A (t)B(t) )
AB

—g (A(t)
I

U(t)
I
A(t) ) (22)

The idea is to find some diagrammatic approximation for
the matrix element on the left-hand side as a function of
T, Fourier transform it, look for the poles in E, which
should be approximations to the true energy levels E„,
while the residues should be approximations to

,(o)
I q„)

In the present case, (Po(T)
I

is not an harmonic func-
tion of T such as (12). But if T is a multiple of the period
~, then things are simple again and we have

&y,(~.)
I

= &y.(0) I. (17)

and therefore

&No(&r)
I

e '""'I ko(0) &

= X 1&4'o(0)
I P. & I'

(y ( r) )

-KAHN'r(o

( ))

Ex
[ gy 9

Nl')

= exp/
0

Because of the diagonal nature of the matrix elements, the
integrand is periodic of period ~. Also, according to the
usual Hartree-Fock definition of U(t), the first term can-

This time we do a discrete Fourier transform, using the
formula

FIG. 2. Diagrammatic expansion of the reference-to-
reference propagator matrix element and exponentiation
theorem.
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FIG. 3. The two first-order diagrams. The one-body vertex
stands for —U(t).

iNS =iN(J —Wr), (24)

where S and J are the two actions defined in Eqs. (A15)
and (A27) of the Appendix, respectively. Thus, this ap-
proximation to the propagator matrix element is

eels half of the second term. Hence these diagrams are
equal to

iN t-, At Ut At (23)
A

One finds easily, using the TDHF equations, that this is
the same as

"-.! =0

(b)
RPA

0.2 0.4 0,.6 0.8 1.0 1.2
I I I I I

e w(J —m&j (25)

E = W J /r+mco—, (27)

and all the residues are unity. When we try to compare
these poles with the exact ones, Eq. (21), we are faced with
a problem.

The Fourier sum on the left-hand side of Eq. (20) is
then easily performed and yields

i~[1—exp i (E~——Ap~+ J—W~) j

i x[1——exp i (Er+J Ww) j '—, (26)

where J is the quantity defined in Eq. (A28). This has
poles for values of E given by

E)

Eo

FIG. 4. The bound state poles E vs co, for the same Lipkin
model as Fig. 1, (a) shows E(m, co) according to Eq. (28). (b)
shows as dashed straight lines the double family E(n, m, co) ac-
cording to Eq. (21). The dashed lines have been replaced by
solid segments in those regions of co where the residue is expect-
ed to be large. Eo, E&, and E2 are the exact energy levels.

Vl. THE QUANTIZATION RULE

The problem is this. The exact poles (21) depend on
two discrete parameters, n and m. The approximate poles
(27) depend on one discrete parameter only, m. How
should the identification be made? The answer lies in
looking at the residues.

But before this, note that both sets of poles also depend
on one continuous parameter W (or co, or r) which, so far,
we do not know how to determine. This dependence is
relatively trivial for the exact poles, but it is essential for
the approximate ones.

We begin by plotting the approximate poles (27), using
co as the continuous variable, i.e., we plot

E = W(co) coJ (co)I2~+—ma) . (28)

This is shown in Fig. 4(a) for a particular example. Each
curve corresponds to a particular value of m. Since all
residues are unity, the entire curves are presumed to be
meaningful.

In Fig. 4(b), we plot the exact poles (21), a double
family of straight lines of slope m. These lines are not
equally meaningful everywhere, because the residue

! (Pp(0)! g„)! might sometimes be very small. Accord- E„+m co =E„+,+ (m —1)co (29)

ing to the argument we gave in Sec. III, which looks upon
TDHF as a classical approximation to the collective
motion, we expect the overlap (pp(0)! 1t„) to be large
when W is in the vicinity of E„and small otherwise.
Thus, for the lowest possible W; the overlap with gp is
largest. As W increases, the overlap with gI becomes the
largest one, and as 8' increases some more, the overlap
with g2 becomes largest, etc, . . . Hence, we must single
out, among the many dashed lines of Fig. 4(b), those lines
which are issued from level Ep if W is small, the lines is-
sued from level EI when W is larger, and the lines issued
from level Ez when W is still larger, etc, . . . These
pieces of lines are shown as solid segments on the figure
and, when considered together, they form curved lines
which begin to resemble very strongly the curves of Fig.
4(a). The situation becomes even clearer when we switch
to the variable co against which the curves are plotted.
According to the argument of Sec. III, the levels E„with
large residues are the ones for which the level spacing cor-
responds to the value of co. If we now look for the inter-
section of the line E(n, m) with the line E(n + l, m —1),
we get the condition
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or

(30)

ity. This work was supported in part through funds pro-
vided by the U. S. Department of Energy (DOE) under
Contract DE-AC02-76ER03069.

dE d8' J (co)

dco dc' 2 Ir

ca dJ dW
2m d8' dao

(31)

which is precisely the condition on the level spacing. Go-
ing to the limit of large quantum numbers, we see that the
curves we want, for purposes of comparison with Fig.
4(a), are the envelopes of the families of straight lines
E(n +p, m —p) for variable p. These envelopes do indeed
look very similar to the curves of Fig. 4(a), the small
remaining discrepancy owing to the neglect of higher-
order diagrams in Fig. 4(a).

Once this identification of the two sets of curves has
been made, the determination of the approximate energy
levels is easy since, according to Fig. 4(b), they correspond
to those values of E for which the curve E(co) has a hor-
izontal slope. Hence, we must set the derivative of (28)
equal to zero

APPENDIX: PERIODIC TDHF
AS A VARIATIONAL PROBLEM

S = f dt g p„(t)q„(t)—H [p„(t),q„(t)]
n

(Al)

If one calculates 5S for arbitrary variations 5p„(t),5q„(t)
satisfying

5q„(t, ) =5q„(t, ) =0,
one finds after one integration by parts

(A2)

We begin by reviewing some well-known variational
properties of a classical system with coordinates q„,
momentum conjugates p„, and Hamiltonian H(p„,q„).
Hamilton's action is

According to Eq. (A31), dJ /dJV=r, while co/2m. =~
hence we are left with 5S= f,

dt's

5p„
to

BH
5qn pn+

qn

J~=2mm . (32)
(A3}

Equation (28) shows then that E = W. Thus, we reach the
result: the approximate energy levels are those values of
8' which satisfy

J (8')=2rtm, (33)

where m is an integer. This is the Bohr-Sommerfeld —type
quantization rule, derived in a completely new way.

Higher-order corrections to this have been worked out
and we shall publish them in a forthcoming paper. We
shall also present a detailed application to the Lipkin
model.
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Setting 5S =0 yields Hamilton's equations of motion; this
is Hamilton's principle. Note that S can also be written

S = f gp„dq„H(p„, q„)dt- (A4)

dq„S = drt gp„—H[p„(rI),q„(g)]r . .
n

(A5)

If one calculates 5S for arbitrary variations 5p„(rj ),5q„(g)
which keep the functions periodic, and if one also varies r,
one finds after one integration by parts

where the integral is taken along the trajectory in phase
space.

Now we consider only periodic trajectories of variable
period v., and we take one period as the integration inter-
val for S. We replace the time t by a cyclic parameter g
varying from 0 to 1, i.e., we write t =gr. Then, p„and q„
are periodic functions of g of period 1 (at least, this is so
if q„are Cartesian coordinates). The action is then

1 dq'n5S= f dig 5p„
n

BH

ap.
dPa BH—5q„+~
d g Bqn

(A6)

When this is evaluated for correct trajectories, the coeffi-
cients of 5p„and 5q„vanish by virtue of Hamilton's equa-
tions, and again by virtue of these equations H(rI) is a
constant, the energy 8" therefore one gets J= f d g gp„= IIi g p„dq„. (A8)

(sometimes called Maupertuis's action), which is the first
part of S,

5S = —W5r or BS/Br = —W . (A7) We see that, for correct trajectories,
This tells us how the action S varies when we go from a
correct trajectory to another correct trajectory with a dif-
ferent period. Let us introduce the reduced action J therefore
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5J =5S+W5r+r5W,

therefore, by virtue of (A7),

5J =~58' or BJ/BS'=~ .

(Alo)

(A11)

one finds after one integration by parts

5S= f, dtg[&5m~ li4 —«+»V~&

(A12)

which is a real quantity. The role of p„and q„ is played
by the bras and kets of the occupied single-particle states

which have to be varied independently, and
H [(qg(t) ~, ~

gr„(t) ) ] is the expectation value of the exact
Hamiltonian for the Slater determinant. For arbitrary
variations of (gz

~

and
~ gq ) satisfying the normalization

condition and

l
5'(tp) ) =

I
5)pg(t))) =0, (A13)

This tells us how the action J varies when we go from a
correct trajectory to another correct trajectory with a dif-
ferent energy.

We can now proceed to TDHF. Kerman and Koonin
have pointed out that it can be formulated in a way al-
most identical to the above Hamiltonian formulation of
classical mechanics. The action is

tlS= f 'dt gi(pre(t) ~qq(t)& —H[&qq(t) ~, ~y~(t))] . ,

&i4—+a~«+»15&~ &1.

(A14)

Setting 5S =0 yields the TDHF equations of motion.
Now we consider only periodic trajectories of variable

period ~, and we do the time integral over one period.
Once again we set t =g~, so that we write

S= f d5 gi(y~(5) d )

H[(tpg(g)
~

~')pg(ti))]r

We calculate 5S for arbitrary variations of (pq
~

and

~ y„) which keep the one-body density periodic, and we
also vary r. Things are a little different from previous re-
sults, however, because the

~ yq (g) )'s are not periodic any
more, but quasiperiodic. Let us do the variation in detail

5S= f d5+ i(5dz )+i(pz 5
)
—(5+„)—( 5&„) —5 f d H5p)).

The integration by parts is the following:

f d5(d~ 5 )=&m~ )55~) lo —f d5( 5q~) .

The integrated part does not vanish. Rather, we have

15m~(1) &
= —i5()~

I V ~(1)&+e

(O'A(1)
I 5ip~( 1) & = —i5()~ + (q ~(0) I 5)pA (0) )

«, ~
5+, & ~,'= —5e, .

Hence the variation of S is

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

1 1

5S= f dye 5' i r(E:+U)yg ——i +gg(K+U)w 5yg + +50q 5r f drtH(—rt) .
dg de

(A22)

If we restrict ourselves to correct TDHF trajectories, the
coefficients of (5qz

~

and
~
5y~ ) vanish by virtue of the

TDHF equations, and the energy H (rt) is a constant W;
hence we can write, using Eq. (9),

d ~
s'= f,'d, y („'„(„)"„'")

H[(fg(g)
~

) ~'pA(ti)&lr «24)
ss =se,—ws~. (A23)

Let us now define an action S identical to S, but built
upon the periodic part yz of the occupied single-particle
states [see Eq. (6)], in other words

One sees easily

s =s —eo, (A25)
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and therefore, for correct TDHF trajectories,

5S = —W& or BS /Bw= —8'.
We have for correct TDHF trajectories

(A29)

5J =r5W or BJ /BW=r .

This gives us the change in S when we go from one
TDHF solution to another TDHF solution with a dif-
ferent period. Finally, we introduce both forms of therefore, by virtue of (A26),
Maupertuis's action

(A30)

(A31)

(A27)

(A28)

This formula gives us the change in J when we go from
one periodic TDHF solution to another one with a dif-
ferent energy. Sometimes it can also be used to calculate
the period, in those cases where J can be evaluated from
Eq. (A28) without reference to time.
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