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A generalization of many-fermion Feynman-Goldstone diagrams is derived based on a time-
dependent unperturbed Hamiltonian along with a time-dependent reference state. In lowest order,
the time-dependent Hartree-Fock equations follow immediately from the same arguments which
lead to static Hartree-Fock when the basis is time independent. Systematic corrections to the time-
dependent Hartree-Fock mean-field approximation are obtained through higher order diagrams.

NUCLEAR STRUCTURE Generalization of Feynman-Goldstone diagrams to
,

a time-dependent reference state. Diagrammatic derivation of the time-
dependent Hartree-Fock equations and their systematic corrections.

I. INTRODUCTION

It will be shown in this paper that the usual perturba-
tion expansion for a many-fermion system in terms of
Feynman-Goldstone diagrams can be extended to the case
where the unperturbed single-particle Hamiltonian is time
dependent. The lines of the diagrams, then, cannot be
single-particle stationary states; instead, they represent ar-
bitrary solutions of the 'unperturbed single-particle
Schrodinger equation.

Some obvious applications sug:-~est themselves. For in-
stance, the time-dependent Hartree-Fock (TDHF) equa-
tion has long been used to approximate collective motion;
with the present method, TDHF appears as the zeroth or-
der in an explicit perturbation expansion which is, in prin-
ciple, exact. Applications to heavy ion scattering are also
natural.

This formalism can be very useful for a ti me
independent total Hamiltonian H, which one breaks up

I

into two time depend-ent parts, H=H&(t)+H&(t), where
Ho(t) is the unperturbed Hamiltonian and H&(t) the per-
turbation. As is often the case with other broken sym-
metries, this breaking of the time-translation symmetry
can lead to new insights and shortcuts.

II. A TIME-DEPENDENT
UNPERTURBED HAMILTONIAN

Consider one of the standard derivations of time-
dependent perturbation theory and Feynman diagrams,
for instance that of Ref. 1. The usual custom is to write
H =Ho+H~, where Ho is time independent and H ~ possi-
bly time dependent. But actually the argument goes
through just as well, with very little change, if Ho is time
dependent. We show this now.

The first step is to write the exact propagator K(t, t') as
a product of many propagators over infinitesimal time in-
tervals:

K(t, t')= lim K(t, t e)K(t e, t——2e) . K—(t'+e, t'), X factors .
e~O

N~ oc
Ne=t —t'

Then each propagator is expanded in powers of H &. One possibility is

(2)

which is correct for infinitesimal e. It is better, however, to keep a unitary form for the zero-order part of (2), hence to
write

K (r+ e, r) =Ko(r+ e, r) i eH &—
where Ko is the unperturbed propagator. The next step is to carry expansion (3) into (1) and to collect terms according
to their order in H&. The products of unperturbed propagators are recombined into single propagators and one obtains
the following perturbation expansion of K(t, t'), which is the usual one except for the fact that Ko(r, r') is calculated
with a time-dependent Ho.
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K(t, t')=Kp(t, t') i—f dt~Kp(t, t])H&(t&)Kp(t&, t')
+oo +oo

+( t) f dt, f &t2Kp(t, t, )H, (t~)Kp(t&&t2)H, (t2)Kp(t2&t )+
The integrals extend from —ao to + ao because we are using the usual definition

Kp(t, t') and K(t, t')=0 when t t'&—0 .

(4)

Now we denote each term in expansion (4) by an unlabeled Feynman diagram, as shown in Fig. l: each line stands for a
Kp(r, ~ ), each vertex for an H, (r), and all intermediate times are to be integrated upon, with a factor i for —each.

The next problem is that of choosing a basis to label the states. This is where things start to differ from the case
where Hp does not depend on time. In the latter case, the eigenstates of Hp form a natural choice. Here, with Hp de-

pending on time, two possibilities come to mind. One is to use a completely arbitrary, time-independent basis,
I
p),

I
v),

I
p), . . . . Then, for example, the first-order term in & p I

K(t, t')
I
v) is written

—i dt( p Eptt) p p H)t) cr o. .Ept)t' v (6)
PcT

The other possibility is to use as a basis a complete orthonormal set of solutions of the time-dependent Schrodinger
equation for H p,

t—
I
P(t)) =Ho(t)

I
P(t)) .

dt

Because of the Hermiticity of Hp, which we assume, a basis which has been chosen orthonormal at one particular time
remains orthonormal for all times. Let

I
a(t)),

I
P(t)), etc, , be such a basis. Let us calculate terms in the pertur-

bation expansion of &a(t)
I
K(t, t')

I

P(t') ). We can use for r &r'

Kp(r r)
I
y(7'))=

I
y(7))

which simplifies things greatly; no matrix elements of propagators appear in the expansion at all, as long as we keep the
integration times within the proper intervals. The expansion is then

&a(t)
I
K(t, t') I&(t') &=&a

I
~& i f—dt, & (at&) H&(t&)

I
P(t, )&

+( —t)' f, &t] f, &t2/ &a(t$) IH](t]) Iy(t]))&y(t2) IH](t2)
I
p(t2))+ (9)

r

This is the type of basis that will be used in the
remainder of this paper. Essentially, it is the interaction
representation, but for a time-dependent unperturbed
Hamiltonian. Figure 2 shows how each term of expansion
(9) can be denoted by a Feynman diagram in which we
have labeled the intermediate states and the intermediate
times. Each vertex contributes a matrix element of H&(t)
in the time-dependent basis, but lines do not contribute
anything, except limits for the time integrations.

One final note, when both Hp and H, are time indepen-
dent, which is a frequent occurrence, it makes sense to
Fourier transform the propagator to get an "energy propa-
gator. " In a Feynman diagram associated with an energy
propagator, there is an unperturbed propagator associated
with each line, and this is usually some sort of "energy
denominator. " Calculations done with these energy
denominators are usually quicker and more efficient than
the calculation of the time integrals occurring in the time
propagator, but this is not so here. If Hp(t) or

I
a(t) ) are

I

complicated functions of time, there is no reason to expect
that a Fourier transformation will bring any simplifica-
tion. The natural thing to do, therefore, is the obvious
"time calculation" as defined by the integrals of Eq. (9).
In some later papers, however, we shall apply the present
formalism to the case of a "quasiperiodic" basis, for
which each state of the basis reproduces itself after one
period, except for a phase factor. Then it will make sense
again to Fourier transform, with a Fourier series rather
than a Fourier integral, and again something similar to an
energy denominator will appear.

III. MANY-BODY EXTENSION

Consider now a system composed of several particles,
and suppose that the Hamiltonian Hp is a sum of single-
particle Hamiltonians, each of them time dependent,
h,„(t) We take .a basis which is a product of single-

+ III

+ III

FIG. l. Unlabeled Feynman diagrams occurring in the ex-
pansion of E(t, t'), Eq. (4).

FIG. 2. Labeled Feynman diagrams contributing to
(a(t)

I
K(t, t')

I
P(t') &, Eq. (9). The time-dependent unperturbed

states a,g,y, . . . , are solutions to the time-dependent
Schrodinger equation (7).
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particle bases, each of them time dependent in the ap-
propriate Hamiltonian. %'e assume that H~, which may
also be time dependent, consists of few-body interactions:
a one-body term, a two-body term, perhaps three- and
four-body terms, but not much more. We are still calcu-
lating matrix elements of the exact propagator using ex-
pansion (9), but now ~a}, ~P), . . . , are many-body
states.

Then it is obvious that each matrix element of H& in (9)
involves only a few particles. This is reflected in the
Feynman diagrams, provided that we draw a line for each
particle, instead of a single line for the whole system.
This is a good thing to do anyway, since it gives one a
much more intuitive sense of the history of the system,
which is what Feynman diagrams are for. Each one-body
interaction in a Feynman diagram contributes a matrix
element such as (a(r) ~H&(r) ~b(~)}; each two-body in-
teraction contributes

(g(r)$(r) ~H](r) ~c(r)d(r)),

etc, . . . As before, the lines of the diagram contribute
nothing, except the ordering of the times at their extremi-
ties.

Examples of such diagrams are shown in Fig. 3. Two
more things are obvious at this point. One is that a dia-
gram may be the product of two independent contribu-
tions, each of which may be time integrated without refer-
ence to the other; this is true, for instance, of diagrams
3(a) and (c). The other is that a diagram does not always
define a unique ordering of the intermediate times it con-
tains. An example is diagram 3(d), in which the times t3
and t4 could be ordered either way. This means that this
single diagram arises from two different terms in the
fourth-order part of (9).

The conclusion is that many-body Feynman diagrams
constitute a much more flexible and rich algebra than the
"linear" algebra of equations like (9). From now on we
shall use them in preference to the equations.

IV. FEYNMAN-GOLDSTONE DIAGRAMS

Suppose that the many-body system consists of E iden-

tical fermions. Then one can use Goldstone's idea, saying
that one picks a Fermi sea and one uses this Fermi sea as
the "reference state. " Then one draws diagrams showing
only the difference between the actual state of the system
and the reference state; these are the Feynman-Goldstone
(FG) diagrams. A single particle which appears in the ac-
tual state, but not in the reference state, is represented by a
"particle" line, with an arrow pointing up; a single parti-
cle appearing in the reference state, but not in the actual

state, is represented by a "hole" line, with an arrow point-
ing down.

The big difference is that now the reference state, or the
Fermi sea, is going to be time dependent. It will be made
up of S orthonormal time-dependent single-particle orbi-
tals, each of which is a solution of the time-dependent
Schrodinger equation for the time-dependent single-
particle Hamiltonian ho(t) O.f course, it has no meaning
now to pick the Fermi sea so as to fill the orbitals of
lowest energy: the Fermi sea will be picked for conveni-
ence, depending on the problem. It may not be at all an
approximation to the exact ground state of the system; it
is just a convenient reference state.

The rules for calculating these diagrams are similar to
the rules for FG diagrams in a time-independent basis, in-
cluding the sign rule for hole lines and closed loops.
There is one exception: The contribution of each line,
particle or hole, is just unity; the entire time dependence is
included in the matrix elements of the interaction. This
has been shown in Sec. II, and the situation would be the
same for the usual diagrams with a time-independent
basis, if the basis was rendered time dependent by multi-
plying each eigenstate of Ho,

~

a ), by its harmonic time-
—iE t

dependence e . One does not usually do that; howev-—iE t
er, one includes e with the propagator, and thus it
contributes to a line.

Various arguments concerning the one-to-one
correspondence between the original Feynman diagram
and its FG equivalent, and concerning the Pauli principle,
are the same in this case as they were for the time-
independent basis. In this latter case, it was also impor-
tant to distinguish two ways of calculating diagrams: one
with individual propagators (one propagator for each line),
the other with global propagators (one propagator for each
time interval of the whole system). Here this distinction
disappears, since the lines do not contribute anything; all
that remains is a question of limits of time integrations,
and the number of diagrams to be dealt with is smaller if
those limits are chosen as in the case of individual propa-
gators, which is what was implied in the example of Fig.
3(d).

Some examples of FG diagrams in a time-dependent
basis are shown in Fig. 4. The "vacuum-to-vacuum" dia-
grams 4(a) and (b) are contributions to the amplitude

(p.(r) ~K(r, r')
~ p.(r')), (10)

where $0(r) is the time-dependent reference state or Fermi
sea, and K(t, t') is the exact propagator. The "blank" dia-
gram part of (10), i.e.,

(yo(&)
~
Ko(& &')

~

$0(&') ), (11)
where Ko(t, t') is the unperturbed propagator, is just equal
to unity. The numerical value of diagram 4(a) is

ti'$

Q s(

FIG. 3. Four Feynman diagrams occurring in the expansion
of E(t, t') for a four-particle system. Diagram (a) contains a
three-body interaction; the others contain two-body interactions.

FIG. 4. Examples of unlabeled and labeled time-dependent
based Feynman-Goldstone diagrams.
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—„' y ( —i)' f, dt, f',dt2&a(ti)a(ti)
I

V
1
«ti»(t~) &&a(t~}b(tz)

I
V I~(t~)&(tz) &,

abAB

where a, b, . . . , are time-dependent unperturbed particle states, A,B, . . . , are hole states, and V is an antisymmetrized
two-body interaction, assumed time independent. Diagram 4(c) contributes to the amplitude

&b(t)c(t)A(t) ~K(t, t')
~

a(t')& .

Its numerical value is

—g( i—)' f dt, f dt, &b(t, )
~
U(t, ) ~d(t, )&&d(t, )e(t, )

~

V ~a(t, )A(t, }&,

where U(t) is an assumed time-dependent one-body perturbation.

V. FIRST APPLICATION: THE TIME-DEPENDENT
HARTREE-POCK APPROXIMATION AND

ITS CORRECTIONS

For this application, the total Hamiltonian is time in-
dependent and consists of a one-body kinetic energy E and
a two-body interaction V,

The idea is to have a time dependen-t one body mea-n field-
U(t) which one includes in the unperturbed Hamiltonian.
Thus, one writes

H =H, (t)+H, (t),

Ho(t) =IC+ U(t),

H, (t)=V—U(t) .

One determines U(t) by demanding some convenient dia-
gram cancellations. The simplest cancellation to ask for
is that of Fig. 5 where the one-body vertex represents the
—U(t) part of II&(t). This means that all "Goldstone
bubbles" and all —U(t) vertices disappear from all FG di-
agrams, except for the two first order diagrams whose to-
tal cancellation is prevented by a factor —, in the "double
bubble" (Fig. 6).

The algebraic expression of this cancellation is

&P(t)
~

U(t) ~a(t)&=/ &P(t)&(t)
~
V~tz(t)~(t)&, (lg)

I

where the sum extends over all hole states (all states of the
Fermi sea) and a and P designate either particle or hole
states. The single-particle basis is made up of solutions of
the time-dependent Schrodinger equation for Ho(t}. In
view of (18), this equation is

i ~a(t)&=K )a(t)&
dt

+g ] p(t)&&p(t)~(t) [ v]«t}~(t)&,

where the summation over P runs over the complete set,
particles plus holes. This is just the time-dependent
Hartree-Pock (TDHF) equation.

Thus, we have a perturbation formalism for which
TDHF is the zeroth order. Corrections to TDHF can be
obtained to any desired order by calculating the corre-
sponding diagrams.

VI. FURTHER APPLICATIONS

The applications of this method are numerous and far
ranging, extending much beyond the boundaries of nuclear
physics. In the following paper, we begin to examine the
use of periodic TDHF solutions to calculate energy levels
associated with collective motion. Corrections to TDHF
will be presented in later papers. %'ork has also been done
on the description of highly collective scattering problems,
such as collisions between Leavy ions.

We shall not, at this point, try to make a definitive
comparison with the method of functional integrals. I.et
us just say that many things which have been derived by
functional integrals can also be derived this way, and that
the systematic calculation of corrections to a mean field
approximation is often easier by the present method.

This work was supported in part through funds provid-
ed by the U.S. Department of Energy (DOE) under Con-
tract DE-AC-02-76ERO3069.

FIG. 5. Diagrammatic definition of the time-dependent
Hartree-Pock one-body mean field.

FIG. 6. The two noncanceling, first-order diagrams in the
TDHF approximation. The first one involves a pair of
equivalent hole lines, hence a 2 symmetry factor.
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