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Configuration space Faddeev continuum calculations: p-d s-wave scattering length
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Formulation of s-wave zero-energy Faddeev-type scattering equations including a Coulomb in-
teraction is discussed. Numerical solutions of these equations for the s-wave NN potential models of
Malfliet and Tjon are obtained using spline techniques. Kohn variational estimates are presented
and comparison is made to previously published results. Our quartet pd scattering lengths are larger
than others previously obtained, and our pd doublet results are smaller than the corresponding nd re-
sults, and thus in contrast to the experimental values. An explication of this feature is presented in
terms of a model two-body problem. Perturbation theory for the Coulomb corrections to the scatter-
ing length is developed and confirms the Kohn estimates.

NUCLEAR REACTIONS H(p, p) H, E=0 MeV, p-d s-wave scattering lengths,
configuration space Faddeev calculations.

I. INTRODUCTION

Two of the primary reasons for performing calculations
with exact few-body equations are to probe for novel
features of physical observables and to test our under-
standing of nuclear forces by direct comparison with data.
Trinucleon bound state investigations have yielded impor-
tant results in each category. For an attractive two-body
potential, the interaction becomes more attractive in a
two-body system as well as in a three-body system when
the scattering length becomes larger; however, as the effec-
tive range becomes larger the interaction becomes more at-
tractive in the two-body system but less attractive in the
three-body system. ' This effect was, in fact, the basis of
the early argument that nucleon-nucleon forces are not of
zero range: Thomas showed that a zero-range attractive
force would lead to infinite binding energy for the tri-
ton. ' Total binding energies and binding energy differ-
ences are two of the most precisely determined quantities
in nuclear physics. The H- He binding energy difference
provides a test of our understanding of Coulomb forces,
charge symmetry breaking, neutron-proton mass differ-
ence effects, etc. Nevertheless, it is the scattering prob-
lem which offers us the opportunity to explore in depth
the accuracy of our knowledge of the nucleon-nucleon
force. Neutron-deuteron (nd) elastic scattering at zero in-
cident energy is the simplest three-nucleon scattering
problem in physics. In spite of this, it was several years
after Faddeev's revolutionary work on the t-matrix ap-
proach to the solution of the three-body scattering prob-
lem that the correct experimental nd quartet ("a„d) and
doublet ( a„d) s-wave scattering lengths were determined
from the competing possibilities. '

Pursuit of a solution to this dilemma concerning the
correct choice of nd scattering lengths led to the discovery

of an interesting linear relationship between the nd doublet
scattering length and the triton binding energy B( H).
First emphasized by Phillips, ' this relationship was expli-
citly noted as being the result of a pole in the scattering
amplitude by several authors' '

k cot5= ——+—r,k +Pk2 4

0
(1+k /aR)

=R( —1+—,arok +aPk )/(aR+k ) .

a~ ——11.88+0') fm,

a~ ——2.73+0.10 fm .
(2)

These are to be compared with nd values of a„z——6.4 fm
and a„d ——0.65 fm. The sign and approximate magnitude
of the quartet difference a~d —a„d have been reproduced
by several theoretical calculations. ' The estimate of
a& ——13.3 fm by Alt in a separable potential model

It is clear that k cot5 has a pole at k = —aR, and that the
pole position (corresponding to the bound state of H)
varies linearly with the scattering length a, near that pole.
It has since been demonstrated numerically that most
nucleon-nucleon potential models produce values of a„d
and B( H) which fall along the Phillips line whenever the
triplet potential reproduces the correct binding energy of
the deuteron. ' It was in part the intuition gained from
this simple linear relationship based upon short-range,
two-body forces (as the binding energy of the triton is re-
duced, the magnitude of the doublet scattering length is
increased) that led to the general acceptance of the s-wave
proton-deuteron (pd) quartet and doublet scattering length
values determined from phase shift analyses of the avail-
able low-energy pd elastic scattering data, ' '
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study is the only one of these estimates which is signifi-
cantly larger than the experimental value. The Jost func-
tion approximation procedure of Timm and Stingl, ' the
dispersion relation approach of Eyre, Phillips, and Roig,
and the approximation procedure of Avishai and Rinat
all estimated values of a& in agreement with the quoted
experimental result. The doublet estimates of Refs. 20 and
21 also agree qualitatively with the experimental value of
a&, implying a large increase in the magnitude of the

doublet scattering length when a Coulomb force is present.
Qur calculations based upon configuration space Fad-

deev equations and (partial-wave) local s-wave nucleon-
nucleon interactions suggest that the experimental s-wave
pd scattering lengths should be reevaluated. In particular,
we make the following points:

(1) We find a„d to be approximately 14 fm, in reason-
able agreement with the Alt-Grassberger-Sandhas (AGS)
equation estimate of Alt for a separable model with no
short-range repulsion.

(2) We find a& to be approximately zero, in contradic-
tion to intuitive estimates based upon experience with the
Phillips line; our value of a& is smaller than a„d, rather
than larger.

This novel feature of the "Coulomb correction" to the
doublet scattering length is, in fact, analogous to the
Coulomb corrections in a corresponding two-body prob-
lem, as we will demonstrate. In addition, our large quartet
scattering length is confirmed by perturbation theory esti-
mates. Therefore, our results are readily understandable.

In Sec. II of this paper we review the three-body scatter-
ing equations in configuration space. We choose to work
in configuration space because we wish to explore the
three-body continuum wave functions and because the
long-range Coulomb interaction is naturally introduced in
that space. In Sec. III we discuss the numerical solution
of the partial-wave equations including the important
boundary condition question. In Sec. IV we discuss our
numerical results and present graphically the differences
in the wave functions resulting from the choice of equa-
tions to be solved. In Sec. V we discuss the relationship of
our predictions to scattering lengths in the two-body po-
tential problem. We summarize our conclusions in Sec.
VI.

II. FADDEEV EQUATIQNS
IN CONFIGURATION SPACE:

MQDIFIED EQUATIQNS

= —V(x;)lf(x, y, )+0(xk yk)J, (3)

where T is the kinetic energy operator and V(x; ) is the
two-body potential representing the nuclear-plus-Coulomb
interaction between particles j and k. The Schrodinger
wave function is given by

(t ( x 1 Y 1 ) +e( x 2 y 2 ) + t('( x 3 y 3 )

where we have used the Jacobi coordinates

x =rJ —lk

y; = —,(r~+ rk) —r;,

for particles with coordinates r;, rj, and rk. The two-
body potentials have the form

2

V( x; ) = V~( x; ) + Pcj'
XI.

does include higher partial waves which arise from the
perinuted terms of the Faddeev amplitude. For a short-
range interaction the approximation of limiting the num-
ber of partial waves gives reasonably accurate solutions.
The Coulomb potential is not a short-range interaction.
Thus, one must either explicitly include more partial
waves or else modify the Faddeev equations so that the ef-
fective interactio~ has a short range. We choose to follow
the latter approach. The possibility of using modified
equations has been suggested by Redish. Sasakawa and
Sawada studied the particular case of the Coulomb po-
tential. The techniques described in this paper are similar
to those used for our He bound state calculation. In this
section we present a general derivation. We define three
different ways in which to modify the Faddeev equations
when a Coulomb force is included. In Sec. IV we present
numerical results for these three choices of the modified
Faddeev equations. %'e restrict ourselves to the s-wav-.
scattering solutions.

As in our previous studies ' ' we decompose the
Schrodinger equation into the three coupled Faddeev
equations

[T+V(x;)—EJQ(x;, y;)

The zero incident energy in a non-Coulomb scattering
length calculation dictates that only amplitudes coupling
to W =0 open channels are required, where W is the total
orbital angular momentum of the system. The MalAiet-
Tjon potential acts only in the s wave; i.e., one has a
nonzero force only for l =0 interacting pairs. Therefore,
in our nd scattering length investigations, " only the l =0,
2 =0, W=O partial wave of the Faddeev amplitude was
nonzero. (The 1=0 interaction implies that the angular
momentum J of the spectator must also be zero. ) The size
of the numerical calculations is considerably reduced when
the Faddeev amplitude is restricted to the l =0, 4 =0 par-
tial wave. Nevertheless, the Schrodinger wave function

where V& is the strong nuclear potential and

—,(1+rJ )(1+rk)——

is the charge projection operator. Because V(x;) contains
the long-range Coulomb potential, the coupling to the
higher partial waves in Eq. (3) cannot be neglected. How-
ever, Eq. (3) can be modified by adding terms to the three
coupled equations, such that the coupling terms on the
right-hand side of Eq. (3) fall off faster than I/y and the
sum of the three equations is still the Schrodinger equa-
tion. That is, we rewrite Eq. (3) in the form
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2

T+ V~(x;)+ Pz~'"+ WJ(x;, y;)Pc'+ Wk(x;, y;)PCJ E—i'(x;, y;)
x;

VN(x;)+
' Pc' —W;(x, , y, )Pc' 1 (x, , y, ) — ~~(x;)+ Pc' —W;(xk yk)Pc" 4(xk, yk»
Xg Xg

where the 8' are arbitrary.
For the choice

W~(xi, yj)=e /yi, (9)

the equations reduce to the form used in our He bound
state calculations. For this case the coupling terms on the
right-hand side of Eq. (8) fall off as 1/yj (1/yk) for large
values of yj (yk). Thus, the coupling to higher partial
waves is reduced. We emphasize that the left-hand side of
Eq. (8) contains the long-range Coulomb distortion effects
because of the terms which are proportional to 1/y;.

A second choice for the W; is

2

W;(xj, yj)=
X

For this choice the Coulomb terms on the right-hand side
of Eq. (8) cancel completely. On the left-hand side of Eq.
(8), one has the Coulomb distortion terms of the form

(xi, , )
0 (x;,y; ) = X3(i;j,k)rli(i;j, k)

x;y;

for the quartet case and

I —Q ~ ~ 4$( l)yl )
pi =p ( x;, y; ) = X~( i;j, k) i) (iij,k)

0$(xi~yi )
X,(i;j,k)q, (i;j,k)

x;y;
(14)

for the doublet case. The P are the reduced Faddeev am-
plitudes having /=I. =M=0. The X (g) are the spin
(isospin) functions defined by Schiff. Specifically, the
spin functions are

Xi ——( —,, 1)—, ,
1 1

X2 ——( —,,0) —, ,
1 1

Xj

2

/ y; —x;/2[

00 7'

, P„(p),
p T)

(11) and the isospin functions are

W; =e2/r (12)

in all partial waves. For this choice, the Coulomb cou-
pling terms on the right-hand side of Eq. (8) are not iden-
tically zero but will fall off as 1/yi (1/yk) for large values

Of these three possible modifications of the Faddeev
equations, that defined by Eq. (10) is optimal. The long
range Coulomb coupling on the right-hand side of Eq. (8)
vanishes, which makes the 1=0 approximation for the
Faddeev amplitude work best. This will be demonstrated
numerically in Sec. IV, where scattering lengths from
Faddeev solutions and Kohn variational procedures are
compared.

III. NUMERICAL METHGDS

where r & (r & ) is the lesser (greater) of y; and x; /2, and p
is the cosine of the angle between x; and y;. In this case,
restricting the Faddeev amplitude to the I =0 partial wave
corresponds to replacing a part of the Coulomb interaction
by e /r &, that is, we neglect a small part of the Coulomb
potential which has a short range.

From the discussion above one can see that an obvious
third choice for Wi is simply 0(x;,X ) = l yi+(x;) F(x;,y; »— (yi) iud(x; ), (17)

where ud is the deuteron bound-state wave function. The
J$ and A functions are defined in terms of the modified
Bessel function I j and K~ with arguments

e 4 Mac
p&k, y =

fg2
' 3 fi

W(y;) =Ii(2~zg )/~z;,
~(y;)=2~z;ICi(2~z;) .

The quantity peak; is the reduced mass of particle i and
the bound jk pair. We use A /M =41.47 MeV fm
throughout. Note that both

W(y;) —+ 1
cz~O

g =( —,',0)—, .

The numerical solution of the Faddeev equations is con-
siderably simplified if one removes the known structures
from the P functions. For the quartet amplitude we de-
fine F(x;,y; ) according to

Bemuse we restrict our consideration to s-wave strong
interactions, the quartet (J=—', ) system is described by a
single Faddeev amplitude and the doublet (J= —, ) system
is described by a total of two Faddeev amplitudes. (We
neglect the small T= —, admixture to the wave function in
this discussion. ) We write these amplitudes as

M(y;) ~ 1
a~O

as the Coulomb interaction (a=e /Pic) is turned off, so
that one recovers the amplitude for nd scattering.

For the doublet case we define F,(x;,y;) and F,(x;,y;)
according to
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and

$, (x;,y;) =F,(x;,y;)

y, (x, ,y,. ) = [y,~(y, ) F,—(x;,y; )M(y; )]ud(x; ) . (2l)

It is only necessary to remove the deuteron and asymptotic
structures from the amplitude in which the interacting
pair is in a triplet state. Again these amplitudes reduce to
those of Ref. 24 when the Coulomb interaction vanishes.

The integrodifferential equation for the quartet function
F(x„y, ) is

B 3 B QQd BF 3 8M 8j
ud(xi )M(yI ) 2 +—

2 F(xi,yI )+2% (yi ) + —', ud(xi )
Bx I 4 By I CfX1 BX1 ~3 1 ~31

1+ud(xi)M(yI)[Uc(yi ) —UD(xi, yi )]F(xi,yI )+ —, U, (xi) dP ud(x2)A (y2)F(x2,y2)
X23'2

1

[Uc(3 I ) UD(XI 3 1)lyl~(yI ) d(XI )+ Ut(XI ) dP 3 2 d(X2)~(y2)

Here P is the cosine of the angle between xi and yi,
Mac 1

I y'
UD(x,y)= Wi 0(x, y),

and

U, (x)= V, (x) .
M

Note that if W(x, y) is not explicitly 1/y, then the scattering length will not vanish identically when one sets V, (x) —=0.
We shall return to the point in Sec. IV.

The coupled equations to be solved for F,(x;,y; ) and F,(x;,y; ) are the following (tt = MEd/A, w—here Ed is the deute-
ron binding energy):

B' 3 B' X13 1 & 3—~' E,(x„yI)—U, (x, ) F,(xi,yi)+ dP [—.F,(x2,y»+ 4 ud(X2)~(y2)Et(x»y2)]
Bx I 4 By I

' X23'2

2 1
X 13'1

[ 3 Uc(XI )+7 D(XI 3 I )]F (xi 3 I ) 3 dP [ Uc(XI ) UD(X2 3 2)l[ 4 Es(x2 3 2)+ 4 ud(X2)~(y2)Ft(X2 3 2)]—1

3 X 13'1= ——,Ug(XI) dP y2ud(X2)Jqy2) ——, dP [Uc(XI)—UD(X2,y2)]y2ud(X2)W(y2) (23)

and

B2 3 B2 du BE, , d~ BF,
ud(x I )M(yi ) 2 +—

2 Et(xi,yi )+2% (yi ) + p ud(xi ) + [Uc(3 I ) UD(x I 3 1)1
BX1 4 BP1 CPX1 BX 1 ~3'1 ~3'1

Xud(XI )A"(yI)Ft(xi, yI ) —U, (xi) dP [—,F, (x2,y2)+ —4ud(X2)A (y2)F, (x2,y2)]

1

c(3 I ) UD(xi 3 1)lylud(xl )~(yi ) 4 Ut(xi ) dP 3 2ud(X2)~(x2) ' (24)
XZPZ

X1 =P COSH, (25a)

v3
y1 —— p sin8 .

2
(25b)

Actual numerical calculations were performed by mak-
ing the standard change of variables to the p-(9 coordi-
nates, ~~'27 which are defined by

The F(p, 8) functions are expressed in terms of bicubic
splines on a rectangular grid of these p-0 coordinates. The
coefficients of the splines are obtained using the method
of orthogonal collocation. We take advantage of the fact
that the knots of the splines do not have to be equally
spaced. The function E(p, 19) varies slowly for larger
values of p. We break p into two regions, (O,pb, ) and
(pb„p,„). We use a uniform distribution of splines be-
tween ~, and p,„but scale by the factor S& inside ~,
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TABLE I. Potential parameters for the Malfliet-Tjon, Yu-
kawa, and exponential models studied.

Model

MT I
mp MT III

MT IV
Yuk, (AAY)

(26) Yuk, (AAY)p(x;,y; ) ~ [y;Jr (y; ) —a M(y; ) ]u d(x; ) .
oo

In the 0 variable we use a uniform distribution between 0
and ~/6 but scale as for p between m /6 and m /2.

Using standard Cxreen's function techniques, it ca
shown that the reduced quartet amplitude has the asy
totic form

(MeV fm)

513.968
626.885
65.120
56.3653
70.7476

Pa
(fm ')

1.550
1.550
0.633
0.863
0.712

(MeV fm)

1438.720
1438.720

0
0
0

pz
(fm ')

3.110
3.110

That is, the scattering length is the asymptote of the func-
tion F(x;,y;). Similarly, for the doublet case, the asymp-
totic forms of the reduced amplitudes for large values of
y; are

Exp, (AAY)
Exp, (AAY)

{MeV)
111.4584
181.7537

1.415
1.453

(MeV)
0
0

P, (x;,y;) ~ 0,

4i(xi X ) ~ b;J (y;) —'a~(y;)]ud(x;)

(27a)

(27b)

addition of a Coulomb force does not alter the procedure
except in that we calculate two different scattering length
estimates, one with an s-wave projected Coulomb potential
and one with the full Coulomb interaction.

For all of the reduced amplitudes, the boundary condition
for large values of x; is

P(x;,y;) ~ 0 . (28)

These boundary conditions along with

P(0,y;) =P(x;,0)=0 (29)

for all reduced amplitudes provide a unique solution for
both the quartet and doublet Faddeev equations.

As a further check on the accuracy of our solution, we
make Kohn variational estimates of the scattering lengths
utilizing the wave functions obtained as solutions to the
Faddeev equations. A complete discussion of the deriva-
tion of the Kohn estimates can be found in Ref. 24. The

IV. NUMERICAL RESULTS

V(r)=(V~e " —V~e " )/r . (30)

The parameters of the MT I-III model are listed in Table I
along with those of the MT IV (purely attractive potential)
model. Parameters for Yukawa and exponential

We study in detail the stability, convergence, and accu-
racy of our configuration space solution to the zero-energy
scattering length problem utilizing the Malfliet- Tjon
singlet and triplet s-wave potentials I and III (the MT I-III
model). These partial-wave local two-body potentials are
sums of Yukawa forms exhibiting a long-range attraction
and a short-range repulsion,

TABLE II. Mesh parameters used in the accuracy and convergence study of the pd scattering length
calculations using the MT I-III potential model.

Case

1

2
3
4
5
6
7
8
9

10

18
15
15
15
15
15
15
12
12
10

12
12
12
12
12
12
12

8
8

10

15.
12.
10.
10.
10.
10.
10.
10.
10.
10.

1.3
1 ~ 3
1.3
1.3
1.3
1.3
1.2
1.3
1.3
1.3

Pmax

80.
80.
70.
80.
80
80.
80.
70.
70.
58.

20
20
20
14
20
20
20
16
18
18

Sg

1.3
1.3
1.3
1.3
1.2
1.4
1.3
1.3
1.3
1.3

11
12
13
14
15
16
17
18
19
20

14
14
14
10
10
10
10
10
10
14

12
12
8

10
8

10
10
10
10
12

12.
12.
12.
12.
12.
12.
12.
10.
15.
15.

1.3
1.3
1.3
1.3
}.3
1.4
1.3
1.3
1.3
1.3

82.
82.
82.
82.
68.
82.
82.
82.
82.
82.

18
16
16
16
16
16
16
16
16
17

1.3
1.3
1.3
1.3
1.3
1.3
1.4
1.3
1.3
1.3
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( —V~e
""

) potentials fitted to the separable potential
scattering lengths and effective ranges of Aaron, Amado,
and Yam (AAY) are also listed for our comparison with
the quartet scattering length result of Alt.

As was the case in our study of the nd scattering
lengths we consider the MT I-III model in greatest detail.
We list in Table II the mesh parameter values for a selec-
tion of the test cases run for the quartet and doublet pd
scattering lengths. In Table III we provide the value ex-
tracted from the asymptotic wave function and the corre-
sponding Kohn variational estimate (a ) based upon that
wave function and an s-wave projected Coulomb potential.
In all cases we have used the modified Faddeev equation
corresponding to the choice of Eq. (10) in Sec. II. That is,
we have selected the case in which there is no Coulomb
coupling on the right-hand side of Eq. (8), the choice in
which

Mac
UD(x;,y;) =

ly+" /
I r=o

in Eqs. (22)—(24). Note that, as remarked above, a and a
do not vanish for this choice of W~ when the strong poten-
tial vanishes. However, a( V, —:0) (0.005 fm, so that a
correction for this effect is smaller than the numerical un-
certainty of our solution.

As was true in our study of the bound state, the sensi-
tivity of the solution to the p-grid parameters proved to be
the more complex. Convergence with respect to the cutoff
radius p „was obtained by about 80 fm, somewhat larger
than in the case of nd scattering, as one would expect. A
pt„value of between 10 and 12 fm was again optimal. As

Case

1

2
3

5
6
7
8
9

10

13.765
13.766
13.765
13.627
13.735
13.767
13.764
13.749
13.762
13.753

4~K

13.766
13.766
13.766
13.766
13.766
13.766
13.766
13.765
13.765
13.754

4 K,F

13.962
13.962
13.962
13.962
13.962
13.962
13.962
13.960
13.960
13.950

2gK 2 K,F

TABLE III. MT I-III model quartet and doublet scattering
lengths along with the s-wave projected and full Kohn estimates
for the mesh parameters listed in Table I. Units are fm.

for the nd problem, the number of splines (%1) in the inte-
rior region must be 10—12 to provide a reasonable solu-
tion, and the scale factor Sp should lie between 1.2 and
1.4. In the exterior region, where the wave function is rel-
atively smooth, a uniform spacing of as large as 6—7 fm is
feasible. At least three 8 points uniformly distributed be-
tween 0 and n./6 were needed for a reasonable solution.
Scaling the 0 distribution between ~/6 and m/2 such that
more points (NI) lie in the region of the deuteron bound
state was important. At least 16 points were needed in
that region with a scale factor S& of between 1.2 and 1.4.

The difference between the result derived from the
asymptotic form of the wave function and the Kohn vari-
ational results (a ' ) is due primarily to the inclusion of
higher partial waves of the Coulomb interaction in the
Kohn calculation. That is, there is no s-wave projection in
the a ' results. In contrast, when one uses an s-wave pro-
jected Coulomb interaction in the Kohn variational equa-
tion, the Kohn results a agree well with the values ex-
tracted from the asymptotic part of the wave function.
Thus, our best estimates of the quartet and doublet s-wave
projected scattering length values are 13.76+0.01 fm and
0.15+0.01 fm. Our best estimate of the physical scatter-
ing lengths, including all partial waves by means of the
Kohn variational procedure, are 13.96+0.01 fm and
0.003+0.002 fm.

I.et us turn our attention to the question of comparing
results from the three different Coulomb modification
procedures defined in Sec. II. In Table IV we list a re-
sults extracted from the wave function and results estimat-
ed via the Kohn procedure. It is clear that failure to re-
move the higher partial-wave Coulomb coupling from the
right-hand side of Eq. (8) has a non-negligible effect when
one then imposes an s-wave projection on the solution.
However, it is also clear from the a ' results that the
complete Schrodinger wave function comes very close to
producing the right estimate of a for all three procedures.
The effect on the wave function of having a long range
coupling on the right-hand side of Eq. (8) can be seen by
comparing I', amplitudes in Figs. 1 and 2. In Fig. 1, F,
obtained using the e /x; choice for W~ vanishes smoothly
at large distances. In Fig. 2, F, obtained with the e /r &

choice for W~ still shows significant structure out to p,„.
(E„ from e /yj shows the same structure in the asymptotic
region. ) Thus, removal of long-range coupling to the
higher partial waves is important in generating an accu-
rate solution of the pd scattering problem.

Although we have not discussed its effect, the ampli-
tude for doublet pd scattering contains a (closed) T= —,

isospin channel. This channel has but a small effect be-

11
12
13
14
15
16
17
18
19
20

0.1543
0.1648
0..1638
0.1639
0.1648
-0.1629
0.1492
0.1588
0.1629
0.1539

0.1555
0.1555
0.1557
0.1566
0.1569
0.1569
0.1566
0.1565
0.1579
0.1555

0.0031
0.0031
0.0033
0.0043
0.0045
0.0046
0.0043
0.0041
0.0055
0.0031

8;
Eq. (9)
Eq. (10)
Eq. {12)

—0.4967
0.1543

—0.5065

—0.5179
0.1555

—0.5273

2 K,F

0.0366
0.0031
0.0151

TABLE IV. Comparison of pd doublet scattering lengths us-
ing modifications of the Faddeev equations specified by Eqs. (9),
(10), and (12). Units are fm.
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TABLE V. Comparison of model nd and pd scattering lengths for Yukawa, exponential, and MT po-
tentials with results of Alt. Units are fm.

Model

4
&nd

4a&
4 K,F

pd
2

&nd

2a&
2 K,F

6.32

13.3

Exponential

6.33
13.4
13.6

—6.4
—7.6
—7.8

Yukawa

6.39
13.6
13.8

—2.1

—3.6
—3.8

MT I-III

6.44

13.8
14.0
0.70
0.15

0.003

MT IV

6.54

14.0
14.3

duce the two-body scattering lengths and effective ranges
of Ref. 29. We compare nd and pd results for a and a in
Table V. Our exponential potential model, which has no
1/r singularity, yields a value for a in very good agree-
ment with that of Alt. The Yukawa potential a result lies
half-way between the exponential potential result and that
from our MT I-III model calculation. Clearly, the pd
quartet scattering length shows minimal sensitivity to the
off-shell differences of the purely attractive potentials, al-
though the differences are larger than one sees for the cor-
responding nd quartet scattering lengths. The inclusion of
short-range repulsion leads to a larger Coulomb correc-
tion. For completeness, we also provide quartet results for
the purely attractive MT IV model. We list the a results
for the Yukawa and exponential models. We note that in
each case a becomes more negative when the Coulomb in-
teraction is included. (It is well known that simple poten-
tial models overbind the triton and lead to negative values
of the nd doublet scattering length. ) We return to this in
Sec. V. More importantly, we see for the MT I-III model
that a~d is smaller than a„d, not larger. This is in
disagreement with the observed relationship between the
triton binding energy and the nd doublet scattering length,
where one sees a„d increase as 8 ( H) decreases. The
Coulomb force reduces the binding energy of He com-
pared to H, but we also find a~d to be less than a„d.

P(r) ~ (r —a) .

Our a& is the Coulomb modified strong-interaction
scattering length; the value would be —7.8 fm for the pp
system. By definition, ac ——0 when the strong interaction
vanishes and we have only the usual Rutherford scatter-
ing. As a concrete example, we choose to work with the
MT IV potential. In Fig. 3, we plot the non-Coulomb and
Coulomb scattering lengths (a and ac) as a function of X,
an arbitrary strength parameter by which we multiply the
potential. [A similar set of curves is obtained when the
Reid soft core (RSC) two-body interaction ' is utilized. ]
For negative values of the strength parameter X the two-
body interaction is repulsive, whereas for positive values
of X the potential is attractive. Both a and a& vanish at
X=0, as they must. Near X= 1.2 the first bound state ap-
pears and the scattering lengths become infinite; the same
condition holds at the appearance of the second bound
state near X=5. For X&0, one finds that ac & a; that is,
the Coulomb interaction makes the repulsive strong in-
teraction more repulsive, as anticipated. For X~ 0 the sit-
uation is not quite so simple. Except near a =0, one finds
that the curve for ac is shifted with respect to that for a
in such a manner that ac~a. That is, the repulsive
Coulomb interaction reduces the attraction of the strong
interaction. For example, at X=1 the purely strong in-
teraction result of a = —17 fm is modified to a value of

V. ANALYSIS OF RESULTS

p(r) ~ rJr(x) —ac% (x), (31)

where the arguments are related by x =2ZZ'apr. Recall
that without a Coulomb force, one has

Clearly our pd doublet scattering length result disagrees
with both the published experimental values and previous
theoretical estimates based upon approximate methods of
including Coulomb effects. Also, our pd quartet scatter-
ing length result is significantly larger than the experimen-
tal value, although it is in reasonable agreement with
Alt's.

In order to explicate the results of our calculations, we
consider first the zero-energy, two-body problem in which
the interaction is the sum of a strong, short-range poten-
tial and a Coulomb potential. Asymptotically the wave
function has the form

I

I I I Il I

0 I 2 3 4 5 6 7 8 9 IO I I I2
X

FICx. 3. Two-body scattering lengths a (solid curve) and a~
(dashed curve) as functions of X times the strength of the poten-
tial for the MT IV model.
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ac ———8 fm. Except for small values of the scattering
lengths, the shift in the curve corresponds to the reduction
in binding energy due to Coulomb repulsion that one sees,
for example, in the binding of He compared to the bind-
ing of H.

In Fig. 4 we plot the small region near a =0 in order to
study the inverted relationship between a and ac. We
display results for both the MT IV and RSC potentials to
illustrate the effects of introducing short-range repulsion
into the problem. In both cases, we find ac &a between
the crossing points defined by a =ac. This is the reverse
of the situation found for most values of X including the
familiar case of pp and nn scattering. It lies outside the
region of most physical scattering problems, which can be
understood in terms of the simple shift in bound state en-
ergies due to Coulomb repulsion mentioned above. How-
ever, there are physical situations in which experimental
scattering lengths are small; a prime example is mN
scattering where the scattering lengths are of the order of
0.1 fm

To aid the reader in understanding this property of
Coulomb modified strong interactions, we consider the
simple rank-one separable potential of the form

V(r, r') = (32)
2p 4m. r r'

where A and P are the strength and range of the potential
and p is the two-body reduced mass. The resulting re-
duced wave function with no Coulomb force is

where the g and W integrals are

g = —f e ~" g(r) f e ~"f(r')dr'

+f(r) f e ~"g (r')dr' dr

—ip
2

and

(35)

(36)

(37)

P
—2e g/P

where the exponential integral is

00
( )n n

E&(x) = —[ln(x)+0. 5772 . ]—g nnf

(38)

(39)

respectively. In the presence of a Coulomb force, the
functions become f(r)=rW(x) and g(r)=M(x), such
that the g and W integrals are given by

g = —P '
—, —~ '~/~E, (2$/P)

u (r) =f(r) —ag (r),
where the two-body Green's function is given by

G(r, r& )= f (r )g(r& ) . —

(33)
g=2ZZ'@ac/fi .

Thus, the Coulomb modified scattering length is
T

0 /A+@ ——— e E (2g/P)

(40)

For zero-energy scattering, one has f(r)=r and g(r)=1.
The scattering length is given by the well known relation-
ship

(34)

0.5

0.0

-2.0

O
0.5

-4.0
4.0 5.0 6.0

} i I i ) i I

3,5 3.6 3.7 3.8
X

FIG. 4. Two-body scattering lengths a (solid curve) and ac
(dashed curve) as functions of X times the strength of the poten-
tial for the RSC and MT IV models.

(41)

To first order in the fine structure constant, the Coulomb
modified scattering length ac and the purely strong in-
teraction scattering length a are simply related by

=—(1—2g/P) + /[in(2$/P) +0.5772 . ]
1

a

=—+6
a

Here, A. determines the slope of the curve near a =0 and 5
represents the shift in the curve discussed above. The fact
that Jr(x) ~ 1 for all values of r is the reason that we find
k ~ 1 for this model; hence, az ~ a in the region near a & 0.
(For a more general discussion see the Appendix. ) There-
fore, even in this simple separable potential model, we find
an illustration of the fact that a& ~a for all situations in
which the scattering length a is large enough that the shift
5 due to the Coulomb repulsion dominates, whereas for a
small region near a =0 we have ac &a due to the proper-
ties of the Coulomb function W(x).

Based upon this brief discussion of the two-body
scattering problem involving strong-plus-Coulomb forces,
it should be clear that a~d ~ a„d, because a„d (—=6.4 fm)
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is large. Likewise, one can understand that a~ —a„d ——0,
because a„d (=-0.7 fm) is small. When a„d is sufficiently
small, the actual situat][on can be a~ Q Q~d.

To ensure that these same effects hold for the three-
body problem, we have also studied Eq. (22) as a function
of X, where X is an arbitrary strength multiplying the
strong interaction coupling terms on the right-hand side of
the equation. A value of X= 1 corresponds to the physical
quartet problem; a value of X= —2 corresponds to a
three-boson pmblem in which two of the particles are
charged. Similar behavior was found.

In order to further check our results, we have calculated
the change in a& resulting from the Coulomb interaction
in first-order perturbation theory. The details of how this
was implemented are discussed in the Appendix. Two sets
of calculations were performed for both the quartet and
doublet cases. The Coulomb potential was scaled by a di-
mensionless parameter g, which varied from 0 to 1.2 in
steps of 0.1, and the scattering length was calculated for
each g using the Faddeev method and the Kohn variation-
al procedure. The Kohn values of a~/a were fit to vari-
ous polynomials in g and ging using the linear least
squares approach. Simple low order polynomials were
adequate for excellent fits. The linear (in g and alogy)
approximation to these fits was in virtually perfect agree-
ment with the perturbation theory estimate.

An example of this is shown in Fig. 5, where the ratio
ac/a is plotted versus i). For comparison, the linear fits
to ac and 1/ac are shown also. Clearly in this case the
latter is the preferable approximation. On this scale there

is a negligible difference between the linearized fit and
perturbation theory. It is rather surprising in view of the
large Coulomb shift that first-order perturbation theory
works so well and accounts for most of the Coulomb shift.

The doublet scattering length nearly vanishes for q= 1,
and this behavior cannot be reproduced using a linear ex-
pansion in g for 1/ac. Consequently, a linear expansion
for ac works best. These calculations confirm both our
Kohn estimates and the essential correctness of our pro-
cedure.

VI. CONCLUSIONS

We have calculated the Coulomb modified strong in-
teraction pd scattering lengths using our configuration
space formulation of the Faddeev equations. For the s-
wave nucleon-nucleon interactions of Malfliet and Tjon
(MT I-III), we find a& =-14 fm, in reasonable agreement
with the AGS equation estimate of Alt using rank-one se-
parable potentials. This is some 2 fm larger than the ac-
cepted experimenta1 value. %'e find a& -=0 fm, in
disagreement with the accepted experimental value and
with intuitive ideas based upon the established linear rela-
tion between the triton binding energy and the doublet nd
scattering length. Furthermore, we find a~d and a& to
be more sensitive to properties of the potential model
(off-shell effects) than either a„d, which depends essen-
tially upon only the deuteron binding energy, or a„d,
which is determined by the same properties that determine
the triton binding energy.

Low-energy pd cross sections are suppressed by the
Gamow factor and are therefore difficult to measure accu-
rately. Clearly, further theoretical investigations are in or-
der concerning the correct procedure for extrapolating to
zero energy, since this was the source of difficulty in
determining the nd scattering lengths. However, the low-
energy pd elastic data are not numerous. %'e hope that
these calculations mill call to attention the fact that the pd
quartet and doublet scattering lengths are just as funda-
mental as the triton binding energy, the H —He energy
difference, and the nd scattering lengths. As such, they
deserve more than the benign neglect which they have re-
cently received.¹teadded in proof. Since the completion of this work,
a calculation by Kvitsinski [Pis ma Zh. Eksp. Teor. Fiz.
36, 375 (1982)] has appeared. Based upon the formalism
of Merkuriev [Yad. Fiz. 23, 6 (1976)], these results are at
variance with ours. A recent report by Zankel and
Mathelitsch (Nucleon-deuteron low energy parameters,
UNIGRAZ-UTP 7/83) confirms our results. For an ex-
tensive discussion of the alternative formalisms, the reader
should consult Chandler [Nucl. Phys. A353, 129c (1981)].

(o/ i I r

O.O 0.2 0.4 0.8
I

0.6 I.O l.2

FIG. 5. Comparison for pd quartet scattering of the ratio
a~/a from the exact calculation with perturbation theory expan-
sions for 1/ac and ac.

APPENDIX: PERTURBATION THEORY

One of the august techniques used to estimate the size
of various physica1 effects and to check the validity of dif-
ficult calculations is perturbation theory, usually limited
to first order. To confirm our anomalous results for the
shift in the p-d scattering 1ength in the presence of the
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Coulomb potential, we have estimated this shift using
first-order perturbation theory in the Coulomb interaction.
As we will see explicitly below, this perturbation expan-
sion is infinite in each order if performed literally, because
the infinite range of the Coulomb force does not produce a
sufficient rate of convergence in the necessary integrals.
Nevertheless, it is possible to isolate the finite, correct
parts of these divergent integrals in a unique way for the
following reasons: (1) The integrals over the near-zone
part of the scattering wave function are finite; (2) the in-
finities arise from the asymptotic region of the wave func-
tion, whose form is known; (3) consequently, the infinities
can be extracted, and the correct finite residue uniquely
identified; (4) the analytic results for the separable
Yamaguchi model provide an unambiguous check on our
procedure. We perform this analysis below for the two
body problem; the extension to the three-body (or X-body)
problem is trivial.

Motivated by the separable potential result for the
Coulomb corrected scattering length ac, we ~rite our per-
turbation expansion in the form

(A7)

~ —[ln(g) +y],(~0

where we have approximated each form by its perturba-
tion expansion in (ZZ'a), in spite of the 1/k factor. The
additional factors in Eq. (A5) are required because 5O isC ~

not well behaved; it has linear and logarithmic divergences
in 1/k. Thus, we can presume that the divergences in Eq.
(A4) are isomorphs of the one in Eqs. (A7) and (AS).

We therefore calculate at very tiny k, and develop our
perturbation expansion. To the order we work it suffices
to expand all expressions involving phase shifts to first or-
der. We write 50/k—:—ac(k), 50/k= —a, and use the
standard D%'BA expression

ac
=—+5-=—+pe+ g(lng+2y),

A, 1

a a
(A 1)

ac-—a+/ f p (r) +g f p (r) (A9)

where y is Euler's constant and

g =2ZZ'@ac /fi (A2)

where

p(r) = —a cos(kr)g(r)sin(kr)
k

(A10)

depends on the proton numbers, Z and Z', the reduced
mass, p, and the fine structure constant, a. The unknown
parameter e can depend on the unperturbed (non-
Coulomb) scattering length, a. The dependence of the re-
sult on In(' has been assumed, and will be demonstrated
below.

The s-wave scattering length wave function has the
form

P(r) =r —ag(r),

where g(r) —+[0,1] as r~[0, oo]. Perturbation theory
yields

2ZZ, pic ~
2 dr

2
+2kRa —a [y+ln(2kR)], (A 1 1)

where we have expanded the sine and cosine integrals for
small k. Using Eqs. (A5)—(AS) and substituting (A9) into
k cot5O in Eq. (A5), we find that

1 1= —+ b, +g[2y+ 1n(g) ],
a

(A12)

where

and g (r) —+1 for r & R. The first integral can be evaluated

after dropping the pure Coulomb piece. We find

f P'(r) =asi(2kR—) —a'Ci(2kR)
R r

00 2Sr —2ag+a dr .
0 T

(A4) f [g(r) —1]dr jf dr —+g lnR .2g g'(r) (A13)

Every term is divergent, including quadratic, linear, and
logarithmic divergences. The quadratic one is simply the
"pure Coulomb" scattering length and should be dropped;
our result must vanish when a vanishes. The remaining
divergences presumably arise because of the peculiarities
of the Coulomb corrected s-wave scattering length as de-
fined by

= lim [k cot(50)C0(g)+2(kh(g)], (A5)
ac k 0

where

g =ZZ'@ac /haik =g/2k

diverges as the relative momentum k vanishes. The stan-
dard auxiliary functions are given by

and

X—1= 2g f [—1 —g(r)]«, (A15)

5=/[in(g)+2y] —g f dr +gin(R) .

Nope that the condition A, & 1 corresponds

f (1 g)dr~0. Since —g(r) vanishes at r=O and asymp-

The expression (A13) is independent of R for sufficiently
large R, and is now independent of the diverging factors
of 1/k and ln(k). This expression is our primary result in

this appendix. We note that the ln(g) term arose from
ln(g) in Eq. (AS). Comparing with Eq. (Al) we find

e= ——f [1—g (r)]dr —f dr + lnR, (A1—4)
a 0 p.
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2 —g[y+ ln(P/2) ], (A17)

totically approaches 1, this will occur in most cir-
cumstances.

For the Yamaguchi model it is easily found that
rp

2 f r(1 g)d—r J—(g —1)dr . (A18)

We can also make a connection between (A14) and the
standard expression for the effective range, rp,

which agrees with the perturbative expansion of the exact
result. This confirms the correctness of our expressions.
The various expansions we have made are correct but the
procedure lacks rigor; doubtless they can be made
mathematically respectable.

For the three-body problem we must integrate Eq. (A13)
over the Jacobi coordinates x and y, instead of just r,
which corresponds to y. This is a trivial change, and is
easily implemented.

Except for a factor of 1/r in each integrand, Eq. (A14) is
the same as Eq. (A18). Physically, this is reasonable and
reminds us that the "effective range" determines the
amount of the Coulomb energy shift. The precise amount
depends on the balance of the two contributions, which is
sensitive to the size of a.

Finally, anyone interested in the extension of Coulomb
scattering lengths and effective ranges to nonzero l should
consult Ref. 33.
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