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Two body residual interaction in the statistical multistep compound and direct theories
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It is shown that within the multistep compound theory the use of matrix elements calculated with
a density dependent two-body residual interaction of the Yukawa form makes possible reproduction
of the experimental data of multistep compound reactions with an interaction strength Vo which
turns out to be consistent with the one used in the analysis of multistep direct processes.

NUCLEAR REACTIONS Statistical multistep compound and direct analysis,
deduced two-body residual interaction strength.

I. INTRODUCTION

The statistical theories of multistep compound and
direct reactions, developed in 1980 by Feshbach, Kerman,
and Koonin, ' represent an important step toward a unified
description of nuclear reaction mechanisms. Starting with
a common set of assumptions based on the physics under-
lying the mechanisms being studied, these two quantistic
theories are concerned mainly with the description of par-
ticles emitted during the so-called precompound (or pree-
quilibrium) phase.

These two theories are quite different in nature: While
the statistical multistep compound emission (SMCE)
theory describes the long-lasting, quasiequilibrium
compound-like processes, the statistical multistep direct
emission (SMDE) theory describes the fast peripheral
direct-like processes. The very general ideas on which
both theories are based, however, make it possible to in-
clude in the same framework the other two fundamental
nuclear reaction mechanisms as limiting cases; the single-
step direct effect, (DE), widely used to describe transitions
to low-lying discrete states, takes place in the first less
"complex" step of the SMDE chain, while the compound
nucleus (CN) picture can be closely associated with the
closed states of the last and most "complex" step of the
SMCE chain.

A very important point is that, due to the quantum-
mechanical formulation of both processes, the matrix ele-
ments of the residual interaction can be explicitly calculat-
ed a priori from basic assumptions on the various in-
gredients entering in their definition, as is usually done,
for example, in any DWBA calculation. Once these ma-
trix elements are known, as is the number of levels in-
volved at each step of the chain, it is possible to calculate
both the contimuum transition probabilities present in the
SMDE cross section and the bound-to-bound and bound-
to-continuum n-exciton widths (I „' and I"„', respectively)
on which the SMCE cross section is based. This improve-
rnent over the early semiclassical preequilibrium models,
particularly the exciton model, where the intranuclear
and the continuum decay rates were calculated starting
with rather drastic assumptions, i.e., the free nucleon-

nucleon cross section for the former and the inverse cross
section for the latter, is rather important. Indeed, once the
above matrix elements are explicitly microscopically cal-
culated, it will be possible to compare on an equivalent
basis the residual interactions needed from the different
theories (SMCE, CN, SMDE, and DE) to fit the appropri-
ate experimental data.

Since the residual two-body interaction is known to be
energy and density dependent but should not be theory
dependent, the above comparison can be considered as an
important check on consistency.

The purpose of this paper is to show that by using a
realistic form for the two-body interaction, this consisten-
cy, found previously to exist between the SMDE and DE
results, can be extended to the SMCE and CN processes.

After a brief history of the applications of the SMCE
and SMDE theories to experimental data (Sec. II), the de-
tails of the new SMCE calculations are presented (Sec. III)
and some comments are made (Sec. IV).

II. APPLICATION TO EXPERIMENTAL DATA

The first applications of the SMCE theory to experi-
mental data were made by Feshbach et al. ' and the Milan
group. This work was concerned mainly with the cal-
culation of differential cross sections and total widths of
the different stages of the SMCE chain, including the
equilibrium or so-called r stage. The reactions considered,
which were either nucleon induced or He induced,
brought the composite system to an excitation energy of
20—30 MeV with an angular distribution symmetric to
90', as predicted by the SMCE theory. The numerical cal-
culations were carried out initially by using all the approx-
imations worked out by Feshbach et al. ':

(a) The radial wave functions associated with the in-
teracting particles were all assumed to be l independent
and constant within the nucleus.

(b) The two-body interaction was assumed to be of the
zero-range form

V„„(r„r2)= Vo —', vrro5(r, —r2) .

With these assumptions the radial overlap integrals for
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both bound-to-bound and bound-to-continuum transitions
can be expressed analytically as follows'.

4 3 1 , , dr Vo
8b ——V() , 7rr—()

4~ o 1 J2 1 2
QJ. 0 QJ QJ

4 31 ~, dr
5i = V() , 7rl (—)

4~ Q 1 2 1 r2QJ QJ QJ Ql

1/2
4 V()r()KmTi

2K .
3

(2.2)

(2.3)

It was therefore quite simple to develop a computer code
to compare the predictions of the SMCE theory with ex-
periments. The first guess for Vp in expression (2.1)
turned out to be 0.7 MeV and was obtained by reproduc-
ing at the same time the precompound five-exciton width
I 5 and the CN r-stage width I, extracted from the

Al( He, p) reaction by means of a multiclass fluctuation
analysis. '

Meanwhile, the Milan group also worked out the appli-
cation of the SMDE theory to reactions induced by higher
energy projectiles, thus feeding the unbound states and
giving rise to forward peaked angular distributions. The

Sn(p, n) reaction at 45 MeV was studied first, ' and the
analysis was subsequently extended to other similar reac-
tions. ".

This work was simplified by the availablilty of very well
tested DWBA computer codes, which were able to supply
the matrix elements needed to build the SMDE cross sec-
tion. The codes used' ' employ a relatively sophisticated
formulation of the inelastic scattering problem, refined
after years of application to the calculation of DE transi-
tions: The matrix elements of V„, are calculated with
realistic ingredients such as Woods-Saxon or harmonic os-
cillator wave functions and a Yukawa shape for V„,. This
work shows that a good fit of the (p,n) differential cross

I

section can be achieved with a Vo value, averaged over the
p-n and the n-n interactions, of 15—17 MeV. This value,
in turn, was shown to be consistent with the one extracted
from the usual DWBA DE analysis with a microscopic
model, " but was clearly much larger than the one ob-
tained from the SMCE work, even when this comparison
was based on the volume integrals of the zero-range and
Yukawa interactions.

Efforts were thus made to improve the SMCE formula-
tion, releasing the approximations quoted above one by
one.

In Ref. 6 harmonic oscillator wave functions and dis-
torted waves were used for the bound and continuum
states, respectively. The radial overlap integrals were thus
computed numerically. More realistic n-exciton level den-
sities were also used. The Vp value extracted from a wide
comparison with (p,n) and (n,p) cross sections and ( He, p)
five-exciton and r-stage widths was 5 MeV.

III. CALCULATION OF MATRIX ELEMENTS
OF A REALISTIC INTERACTION

IN SMCE PROCESSES

The next step in this work is obviously to replace the
zero-range form for V„, with a more realistic interaction.
In order to facilitate the comparison with the SMDE re-
sults we used a Yukawa form. An advantage of this form
is that its multipole expansion

(r;rf )=4~VpggL(r rf )IL (&;y; )II. (&fpf )*
LM

(3.1)

can be analytically expressed, through the Bessel functions
E and I, by the simple formulas'

f 8 "i"f 6 +((/2) 8" L+((/2) 9 f )'("i —"f)
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where p is the range of the interaction, assumed to be 1 fm, and L is the angular momentum transferred.
With this form the overlap integrals (2.2) and (2.3) become double integrals that can be expressed as
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(the same holds true for 5i). After the gI (r;,rf) functions
for the possible values of L have been calculated, these in-
tegrals are numerically computed by means of the Simp-
son rule for each set of values of the angular momenta of
the initial (i) and final (f) states and are inserted in the
SMCE formulas. Comparison with the experimental re-
sults of I z and I „(Refs. 4 and 5) now gives Vp ——13 MeV.

A last refinement was made by taking into account the
density dependence of V„,. This effect, which causes at-
tenuation of the interaction with increasing nuclear densi-
ty, is due to the saturating properties of nuclear forces and
was thoroughly studied recently, particularly in
Brueckner-Hartree-Fock calculations of the optical model
potential. V„,(r;, rf ) = V„,(r;, rf ) [11.4(1 —2.03p ) ] (3.4)

The introduction of this effect into the SMCE calcula-
tions was motivated by the fact that the SMCE processes,
due to their compound-like character and the importance
of low I values in the partial wave expansions, are more
likely to involve the highly dense inner part of the nucleus
than the surface-localized DE and SMDE reactions. Re-
cent DWBA calculations on (d,p) reactions, made by
Kosugi and Kosugi, ' have shown indeed the insensitivity
of the absolute value of cross sections to the density
dependence of V„,.

This effect was taken into account by replacing V„,
with a density-dependent V,'„
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as given in the theoretical work done by Jekeunne et ai. '

and Myers. ' The number 1.4 was determined by the re-
quirement that V,'„=V„, for p=po/3, as suggested by
Kobos et al. ' and the expression chosen for p was the one
given by Negele. '

The calculation of the experimental data of Refs. 4 and
5 now gives Vo ——16 MeV.

IV. CONCLUSIONS

Table I summarizes the values for Vo obtained from the
various calculations, starting from the crude assumptions
of Ref. 1 through the most refined calculations set forth in
this paper. It is very gratifying to see that the Vo value we
obtained for the SMCE (and therefore for the CN) pro-
cesses is consistent with the one used in the SMDE (and
therefore in the DE) work. Clearly, due to the physical
meaning of I' and I', for this comparison we are using
the Vo values of Ref. 11, namely the ones averaged over
unlike particles and like particles interactions. The answer
to the problem raised in the Introduction is therefore given
in quite a satisfactory way. Of course, this achievement
must be paid for. The /-independent overlap integrals of
the early work could even be calculated by hand. The re-
finements introduced now involve the calculation of 4
double integrals for each value of I „' and I „'(e). These in-
tegrals must be computed numerically. The only calcula-
tion of I „ in SMCE takes about 5 min time in a medium-

Calculation SMCE
Vo (MeV)

SMDE

zero range, constant WF
(Ref. 4)
zero range, realistic WF
(Ref. 6)
Yukawa (Ref. 11 and
present work)
density dependent
Yukawa (present work)

0.7

13
15.5—17

fast computer such as the Univac 1100/81. The cost of
the whole business increases proportionally.
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TABLE I. Values of the two-body residual interaction
strength Vo from different calculations of SMCE and SMDE
processes. The range of the Yukawa interaction was always tak-
en as 1 fm.
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