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Differential cross-section and analyzing-power angular distributions have been measured for the
elastic scattering of 159.4 MeV protons on ' N and for the inelastic transitions to the 2.31-MeV and
3.95-MeV states. Elastic-scattering data for p+' C and inelastic data for the ' C( p, p')' C(4.44
MeV) reaction have also been obtained at the same energy as a normalization check. The
' N( p,p')' N(2. 31 MeV) transition has been analyzed in the distorted-wave impulse approximation.
This transition has long been regarded as a favorable test for the tensor component of the effective
nucleon-nucleon interaction. Calculations employing wave functions that provide the necessary can-
cellation of the I.=0 central-interaction transition strength do not provide a good description of the
differential cross-section angular distribution. It is suggested that more complicated reaction mecha-
nisms, e.g., (p,d)(d, p ) contributions, may be needed to describe this transition.

NUCLEAR REACTIONS ' C( p, p), ( p, p' ), E =4.44 MeV; ' N( p,p), ( p,p'),
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D%'IA analysis of 2.31-MeV transition.

I. INTRODUCTION

We report here measurements of the differential cross
sections and analyzing powers for proton elastic scattering
on ' C and ' N and for the inelastic reactions
' N(p, p')' N(2. 31 MeV), ' N(p, p')' N(3.95 MeV), and
' C(p, p')' C(4.44 MeV) at Ev ——159.4 MeV. The differen-
tial cross-section data are qualitatively similar to those
previously obtained' at Ep 122 MeV; however, the re-
sults presented here represent the first measurements of
the analyzing powers for inelastic scattering of protons by
' N at intermediate energies.

The ' N(p, p')' N(2. 31 MeV) reaction is related to the
highly retarded ' C(p )' N(g. s.) decay in the sense that it
connects the ' N ground state to the isobaric analog of the
' C ground state. The approximate proportionality be-
tween the p-decay matrix element and the 1.=0 central-
interaction (p,p ) transition amplitude thus results in the
suppression of this normally dominant amplitude. Be-
cause of this suppression, the ' N(p, p')' N(2. 31 MeV) re-

action has long been recognized as a potentially sensitive
test for the strength of the effective tensor interaction in
inelastic proton scattering.

Previous analyses of this reaction in the distorted-wave
Born approximation (DWBA) and the distorted-wave im
pulse approximation (DWIA) over the energy range
E„=-24.8—122 MeV have been largely unsuccessful in
reproducing all but the most qualitative features of the
differential cross-section angular distributions. ' On the
basis of comparison with differential cross sections alone,
it has been difficult to single out the source of the
disagreement between theory and experiment. Measure-
ments of spin-dependent observables, which would provide
additional constraints for the theoretical parameters, have
been scarce. Cornelius, Moss, and Yamaya have measured
the spin-flip probability at two angles at Ez ——32 MeV.
Their data seem to indicate a strong contribution from the
tensor part of the effective interaction, but this result is
not conclusive because the DWBA reproduces only the
qualitative trend of their data and not the magnitudes.

1983 The American Physical Society



970 TADDEUCCI, RAPAPORT, FOSTER, AND COMFORT 28

Recently, Aoki et al. have measured differential cross sec-
tion and analyzing power angular distributions at E„=21
MeV. Their DWBA analysis includes contributions from
(p,d)(d, p') intermediate channels and gives somewhat
better fits to the data than single-step calculations.

In our analysis of the present data, discussed in Sec. III,
we restrict ourselves to the single-step D%'IA. The need
for two-step contributions to the transition amplitude will
be discussed only as a possible remedy for difficulties en-
countered by the standard DWIA.

II. EXPERIMENTAL TECHNIQUE
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Targets of ' N and ' C were bombarded with 159.4-
MeV polarized protons from the Indiana University Cy-
clotron Facility (IUCF). The ' N target consisted of 12.3
mg/cm of melamine (CiH6N6) evaporated onto a 100-
pg/cm carbon backing. The ' C target was of natural
graphite with a thickness of 6.14 mg/cm and was used
for normalization purposes.

Beam polarization was periodically monitored with a
p+ He polarimeter located in the beam line between the
injector and main-stage cyclotrons. The beam was au-
tomatically cycled between spin-up and spin-down orienta-
tions at 60-sec intervals during both data taking and polar-
ization measurements. During the course of the experi-
ment the polarization for the two spin orientations did not
vary by more than +0.02 from average values of Pt =0.70
and I'&= —0.72. For any given run the estimated uncer-
tainty in the polarization for either spin orientation is less
than 15P/P

1
=0.01.

Reaction-product particles scattered into the correct an-
gle were momentum analyzed in the IUCF quadrupole-
dipole-dipole-quadrupole spectrograph operating in a
dispersion-matched mode and were detected in a helical-
cathode position-sensitive proportional chamber. Particle
identification was accomplished with a fast plastic-
scintillator b,E-E telescope following the proportional
chamber. Software-defined proton events were sorted on-
line and stored as 1-d arrays on magnetic tape. Dead time
was measured by feeding pulser signals triggered by the
current integrator through the entire electronics system.
Event rates were typically below about 1 kHz with corre-
sponding dead times of 14%%uo or less.

Due to the weakness of the 2.31-MeV transition in ' N
it was not practical at forward angles to have both
elastically-scattered and inelastically-scattered protons on
the focal plane at the same time. A thick lead block
placed in front of the focal plane at the position of the
elastic proton group removed this intense peak without in-
creasing the background.

Simple summing techniques have been used to extract
yields for the peaks corresponding to ' C and ' N elastic
scattering and for the ' C(4.44 MeV), ' N(2. 31 MeV), and
' N(3.95 MeV) excited states. All five proton energy
groups are visible in spectra obtained with the melamine
target due to its 30.3% ' C content. A spectrum obtained
with the spin-up beam at a laboratory angle of 27.5' is
shown in Fig. 1. Comparison of the ' C yields obtained
from this target with those obtained from the graphite tar-
get served as a relative normalization check. At forward
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FIG. 1. Spin-up (p,p') spectrum obtained with a melamine
(C3H6N6) target. The unidentified peaks correspond to states in
14N

800600

III. MICROSCOPIC DULIA ANALYSIS

In this section we describe the results of microscopic
DULIA calculations and their comparison to the experi-
mental angular distributions. The motivation and philoso-
phy behind specific aspects of the calculations have been
extensively discussed elsewhere. ' The calculations have
been carried out with a modified version of the code
DwBA70, which computes both direct and knockout ex-
change amplitudes exactly. In the next three subsections
we briefly summarize those details pertinent to the present
analysis.

A. Optical potential

The elastic-scattering differential cross-section and
analyzing-power angular distributions are shown in Figs. 2
and 3. The differential cross sections are displayed in ra-
tio to the Rutherford cross section

crz(8)=Z e E /[4k sin (g/2)],

angles the ' C(4.44 MeV) peak was well separated from
underlying ' N states, while at larger angles the ' C elastic
peak was well resolved from the ' N elastic peak. Abso-
lute ' C differential cross sections obtained by use of the
melamine and the graphite nominal target thicknesses
agree to better than 5%. We thus conclude that the rela-
tive normalization of the ' N and ' C cross sections re-
ported here is accurate to better than 5%. Individual un-
certainties in target thickness (S%%uo), charge collection
(2%), and background subtraction (usually less than 3%,
but 10% for the weak 2.31-MeV transition) yield a com-
bined uncertainty of about 6% for the absolute normaliza-
tion of the cross sections.
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FIG. 2. Differential cross sections and analyzing powers for
elastic scattering of 159.4-MeV protons on ' C. The differential
cross sections are plotted in ratio to the Rutherford cross sec-
tions.
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FIG. 3. Differential cross sections and analyzing powers for
elastic scattering of 159.4-MeV protons on ' N. The differential
cross sections are plotted in ratio to the Rutherford cross sec-
tions.

where k and E are the relativistic momentum and reduced
energy, and A=c =1. The solid lines in these figures
represent the results of independent parameter searches
made with the optical-model search code cUPID. The op-
tical parameters determined by these fits are presented in
Table I. The D%'IA calculations described in the follow-
ing sections employed the ' N parameters in this table.
Despite the differences between the ' C and ' N parame-

ters, test calculations show that the D%'IA results for the
inelastic transitions are insensitive to the specific choice of
parameter set.

B. Effective interaction

The effective interaction between the ith target nucleon
and the projectile may be represented as

V,fr(r)= Vo(r)+ V (r)o;.c7~+ V, (r)E; ~. q+V, (r)o; op~, r~

+[Viz(r)+ Vis,(r)z; r ]L S+[VT(r)+ VTr(r)r; r&]S&,

TABLE I. The optical potentials determined from fits to p+' C and p+' N elastic scattering at Ep=159.4 MeV. The potentials
are defined by U(r)=Vc(r)+Vfz(r)+iWf1(r)+V„(r)(l/r)(d/dr)f„(r) 1 s, where Vc is the Coulomb potential for a uniformly
charged sphere, f (r)=[1+exp(x;)] ', and x;=(r —Rf)/a; with R;=r A '~ . Well depths have units MeV and lengths have units fm.
The potentials are defined for use with relativistic kinematics. ' Also listed are the g per point for the cross section and analyzing
power fits.

Target

12C

14N
—13.9
—18.0

1.20
1.20

0.67
0.62

—13.3
—13.2

1.24
1.24

0.62
0.60

18.5
18.8

0.90
0.90

0.50
0.50

1.20
1.20

4.93
30.5

95.7
247

'Reference 20.
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where

Sp =3(o; r)(op r.) o;—.op

is the tensor operator. The strengths and radial depen-
dence of the various interaction terms are functions of the
bombarding energy. At low energies, Ep (100 MeV, it is
necessary to resort to theoretically-developed 6-matrix in-
teractions (e.g., see Ref. 10) or to simple phenomenological
interactions that have been calibrated against transitions
for which the optical potential, reaction mechanism, and
nuclear wave functions are well established. " Indeed, as
was mentioned in the Introduction, the ' N(p, p')' N (2.31
MeV) transition has been considered a good candidate for
calibration of the tensor interaction. At higher energies,
E~&100 MeV, the usual strategy has been to use a t-
matrix interaction that is derived directly from the free
nucleon-nucleon interaction, and thus has no free parame-
ters to calibrate. ' This procedure, with the interaction
strengths determined solely by the free N-N amplitudes, is
the essence of the impulse approximation (DWIA). In this
work we employ the 140-MeV t-matrix interaction of
Love and Franey (LF). ' This interaction consists of sums
of Yukawa (e "/x, x =r/a) radial shapes with varying
strengths for the central and spin-orbit components and
r XYukawa forms for the tensor interaction. The in-
teraction strengths have both real and imaginary terms.

C. Wave functions

Harmonic-oscillator single-particle wave functions have
been used to describe the bound target nucleons. The os-
cillator parameters are taken from Ref. 1, but have been
corrected for center-of-mass motion, i.e., for the
g.s.~2.31-MeV transition

p =0.588(14/13)'~ fm

and for the g.s.~3.95-MeV transition

p=0. 595(14/13)'~ fm

The calculations are in general insensitive to small varia-
tions in these parameters. We have used four sets of
shell-model wave functions in the analysis of the 2.31-
MeV transition: wave functions derived from the Cohen-
Kurath (CK) "POT" and "(8—16)2BME" two-body ma-
trix elements, '~ wave functions derived by Ensslin et al.
from electron scattering and other experimental data, '

and wave functions constructed by Visscher and Ferrell
(VF). ' These wave functions are input into the code
DWBA70 in the form of spectroscopic coefficients defined
by

ZJ(jph)=(J J) '(f~~(aj Sbj„)z ~~i),

where the particle-hole operator a b is coupled to spin
transfer J and isospin transfer ( T, T, ), and J—= (2J + 1 )

'

For purposes of comparison, it is desirable to express the
spectroscopic coefficients in a representation where the
transferred quanta (JLS) are explicit':

1

lp 2 gp

ZJ(~S) g JpJh~ S Ih 2 Jh ZJ(JpJh)

L S J
The selection rules for the direct amplitude for 1+~0+
transitions require that (JI.S)=(101) or (121). The spec-
troscopic coefficients Z, (01) and Z~ (21) thus control the
relative amounts of I.=0 and I =2 strength in the direct
(p,p') amplitude. The remaining two coefficients, Z, (11)
and Z~(10), affect only the knockon exchange ampli-
tudes. ' The spectroscopic coefficients for the
' N(p, p')' N(2. 31 MeV) transition are listed in Table II in
both the ZJ(jJh) and ZJ(I.S) representations.

D. The 2.31-MeV state in ' N

The experimental differential cross-section and
analyzing-power angular distributions for the
' N( p, p') ' N(2.31 MeV) transition are shown in Figs.

TABLE II. Spectroscopic coefficients for the ' N(p, p )
' N(2. 31 MeV) transition. The coefficients are

given in the Zz( j~jz ) representation (upper half) and in the ZJ(LS) representation (lower half).

Wave
function

CK POT'
CK 2BME"
Ensslin'
VF

Zl (1/2, 1/2)

—0.515
—0.506
—0.297
—0.518

Z 1 ( 3/2, 3/2)

0.0126
0.0042

—0.0144
—0.0122

Zi(1/2 3/2)

—0.0241
—0.0347

0.138
—0.0262

Z l (3/2, 1/2)

0.0770
0.118
0.228
0.143

CK POT'
CK 2BMEb
Ensslin'
VF

Zl (01)

0.0517
0.0169
0.0
0.0

Z&(21)

—0.477
—0.483
—0.279
—0.494

Zl(11)

0.0374
0.0588
0.259
0.0585

—0.200
—0.185
—0.121
—0.197

'Cohen-Kurath, Ref. 14.
Cohen-Kurath, Ref. 14, (8—16)2BME.

'Reference 15.
Visscher-Ferrell, Ref. 16.
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4—7. The DWIA results displayed in these figures clearly
show the effect of increasing the L =0 contribution to the
transition amplitude. The curves in Fig. 4 correspond to
0%'IA calculations employing the Ensslin wave functions,
for which the L=O central-interaction amplitude is zero.
The solid lines in this figure are the results of calculations
employing the full LF 140-MeV interaction, while the
dashed lines correspond to a calculation with the central
interaction only. The analyzing power angular distribu-
tion is reproduced best by the central interaction calcula-
tion, but this gives the poorest description of the differen-
tial cross sections.

The wave functions of Visscher and Ferrell' were also
constructed to reproduce the L =0 central-interaction can-
cellation, and are probably more realistic than those of
Ensslin. ' ' The Ensslin wave functions describe the ' C
ground state as almost entirely

I
'Po ), while in the VF

wave functions (and in the two CK wave functions as
well) the dominant component is

I
'SD). Despite these

differences, the calculated cross-section angular distribu-
tions for the Ensslin and VF wave functions are very simi-
lar in shape (Fig. 5). The differential cross sections ob-
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FIG. 5. The results of DWIA calculations employing the
wave functions of Visscher and Ferrell (Ref. 16). See also the
caption of Fig. 4.
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FIG. 4. Differential cross sections and analyzing powers for
the ' N(p, p')' N(2.31 MeV) reaction at E~=159.4 MeV. Error
bars represent counting statistics only. The wave functions of
Ensslin et al. (Ref. 15) were used in the DULIA calculations.
The solid line is the result of a calculation with the full LF 140-
MeV t-matrix interaction (Ref. 13): central ( C) +spin-
orbit(LS) + tensor(T). The dashed line is the result of a calcula-
tion employing the central interaction only, while the dotted line
results from a calculation with the tensor interaction only.

tained by using the VF wave functions are larger than
those obtained from the Ensslin wave functions because of
the larger L=2 amplitude [Z~(21); see Table II], while
the analyzing power angular distr'ibutions differ primarily
because of the large abnormal-parity Z& (11) amplitude as-
sociated with the Ensslin wave functions. When this am-
plitude is removed, the resulting analyzing-power distribu-
tion looks very similar to that obtained with the VF wave
functions.

In Fig. 6 are shown the results of calculations ernploy-
ing the CK 2BME wave functions. These wave functions
result in more L =0 strength than required by P decay, but
give better qualitative fits to the shapes of the differential
cross section and analyzing power angular distributions.
Our criterion for "goodness of fit" for the differential
cross sections is the simultaneous reproduction of the
forward-angle maximum and the minimum at 8=20'.
These two features are persistent characteristics of the an-
gular distribution for this reaction for 25 & Ep ( 120
MeV. ' (The forward-angle maximum is not as evident
in the present results because of the limited data in this re-
gion. ) Examination of the calculations indicates that the
experimental differential cross-section pattern of
maximum-minimum-maximum is produced by alternate
constructive-destructive interference between the central
and tensor amplitudes.
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FIG. 6. The results of DWIA calculations with the Cohen-
Kurath "(8—16)2BME" wave functions (Ref. 14). The dotted-
dashed line is the analyzing power distribution in the plane-wave
approximation. See also the caption of Fig. 4.

I, I

IQ 20 30 40 5Q 0 7Q

8, (deg)

FIG. 7. The results of DWIA calculations with the Cohen-
Kurath "(8—16)POT" wave functions (Refs. 14 and 17). See
also the caption of Fig. 4.

The results of calculations employing the CK POT
wave functions are shown in Fig. 7. These wave functions
contribute about nine times more central 1.=0 strength
than the CK 2BME wave functions. Here, the interfer-
ence between the central and tensor amplitudes is particu-
larly dramatic. Despite the large difference in the dif-
ferential cross-section angular distributions, the
analyzing-power angular distributions for the two Cohen-
Kurath wave function sets are very similar. This similari-
ty is not a consequence of the predominance of distortion
effects. A plane-wave calculation, plotted as the dotted-
dashed line in Fig. 6, shows that the basic shape of the
analyzing power distribution for this transition is deter-
mined by the microscopic form factor.

The results discussed above show that qualitative repro-
duction of the shape of the differential cross section angu-
lar distribution requires more central L =0 transition
strength than is indicated by the analogous P decay. If we
accept the P-decay comparison as a valid criterion for
wave function selection, then the problems encountered in
trying to reproduce the differential cross section angular
distribution are due to either the effective interaction or
the assumed reaction mechanism.

Auxiliary calculations employing different interactions
give results that are both qualitatively and quantitatively
(within 10%%uo) similar to those shown in Figs. 4—7. The
interactions tested were the LF 210-MeV t-matrix interac-

tion' and the Love 140-MeV t-matrix interaction. ' . In
addition, an alternative tensor interaction derived from
fits to the Sussex oscillator matrix elements' was substi-
tuted for the "standard" tensor terms in the above interac-
tions. The differential cross sections are changed very lit-
tle by this alternative tensor interaction while the
analyzing-power angular distributions (for the CK wave
functions) become small ( IA~ I

&0.05) for 0&25' and
more negative (3„&—0.2) for e~ 45'. Finally, the effects
of the tensor exchange amplitudes may be tested by re-
moving the Z~(11) component (Table II) from the wave
functions. The tensor exchange contributions are driven
mainly by this abnormal-parity amplitude. ' The dif-
ferential cross sections obtained from calculations with
this term removed show little difference from the results
presented in Figs. 4—7„even for the Ensslin wave func-
tions, for which Z~ (11) is relatively large.

The above tests of the sensitivity of the calculation to
details of the interaction are not exhaustive, but they sug-
gest that only gross modifications of the interaction are
likely to produce better fits to the cross section and
analyzing power angular distributions. Such modifica-
tions do not seem warranted, however, since the interac-
tions tested have produced generally satisfactory results
when applied to other transitions. ' '

The failure of the standard single-step DWIA, employ-
ing reasonable optical parameters, wave functions, and in-
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teractions, strongly suggests the need for consideration of
more complex reaction mechanisms for this transition.
Aoki et al. have performed DWBA calculations includ-
ing (p,d)(d, p ) amplitudes in an analysis of this reaction at
E~ =21 MeV. Inclusion of these two-step amplitudes pro-
duces a somewhat better fit to the differential cross sec-
tions at this energy and significantly improves the shape
of the calculated analyzing-power distributions. These au-
thors extended their two-step analysis to a maximum ener-

gy of E~ =40 MeV and compared the results to the data
of Fox and Austin. At 40 MeV the two-step amplitudes
do not greatly change the shape of the differential cross
section distribution. The main effect is an increase in
magnitude due to constructive interference between the
one-step and two-step contributions.

It has been argued that at intermediate energies
(E~~ 100 MeV) the effect of two-step contributions is
largely accounted for when using optical potentials that
accurately reproduce elastic scattering. ' For weak tran-
sitions such as ' N(p, p')' N(2. 31 MeV), however, it may be
necessary to treat such effects explicitly. It is interesting
to note that at 160 MeV the elastic two-step (p,d)(d, p) and
presumably also the inelastic (p,d)(d, p') cross sections
should be strongly forward peaked. We have shown that
wave functions that contribute too much L=O strength
give the best qualitative fits to the cross section angular
distribution. It is possible that the improved shape ob-
tained by adding more L =0 strength than is required by P
decay is a consequence of mocking up in a crude way the
presence of constructively interfering forward-peaked
two-step amplitudes. Clearly, it should be interesting to
explore this with more detailed calculations.

E. The 3.95-MeV state in ' N
and the 4.44-MeV state in ' C

The differential cross-section and analyzing-power an-
gular distributions for the ' N(p, p')' N(3.95 MeV) and
' C(p,p')' C(4.44 MeV) reactions are shown in Fig. 8.
The 0+—+2+ isoscalar transition in ' C involves angular
momentum transfer of J=2 only, while the 1+~1+ iso-
scalar transition in ' N allows J=0,1,2. The M1 com-
ponent (J=1) of the 3.95-MeV transition is very weak, '

however, with the result that this transition is primarily
J=2. Calculations performed with the CK 2BME wave
functions and the LF 140-MeV t-matrix interaction indi-
cate that the J=2 partial cross section for the 3.95-MeV
transition contributes 95%%uo of the total strength at the
peak of the angular distribution (8=20') in Fig. 8.

The similarity between the measured differential cross-
section and analyzing-power angular distributions for
these transitions is quite striking. The difference in mag-
nitude between the differential cross sections is a reflection
of the differing E2 transition strengths. The 3.95-MeV
transition has a measured E2 strength" ' ' of

B(E2)&=3.3+0.2 e fm

while the E2 strength for the 4.44-MeV transition in ' C
1S

B(E2) 1 =38.8+2.5 e fm

The ratio of these two transition strengths is 11.8+1.0, in
good agreement with the peak cross section (0=20') ratio
of 11.3+0.6 for the analogous (p,p') transitions. This pro-
portionality between B( E2) and cr(8) indicates that the
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FIG. 8. Differential cross section and analyzing power angular distributions for the ' N(p, p')' N(3.95 MeV) transition (left) and
the ' C(p,p')' C(4.44 MeV) transition (right). Error bars represent counting statistics only. The solid line is the result of a DULIA cal-
culation employing the Cohen-Kurath (8—16)2BME wave functions and the LF 140-MeV t-matrix interaction. Contributions from all
possible angular momentum transfers (J=0,1,2) are included.
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calculated differential cross section angular distribution
for the 3.95-MeV transition, shown as the solid line in Fig.
8, needs to be normalized upward by a factor of about 2.
This calculation employed the CK 2BME wave functions,
for which

8(E2)1=1.7 e fm

The apparent good fit to the data is thus somewhat fortui-
tous. In Ref. 1, however, it is shown that a reasonable fit
to the data may be restored by using an effective interac-
tion with a different tensor component and a smaller ima-
ginary central component.

For normal-parity isoscalar transitions, Kelly has
shown that density-dependent modifications to the effec-
tive interaction can lead to significant improvements in
the calculated angular distributions. The high-q differen-
tial cross section enhancement that is one characteristic of
such modifications might thus explain the discrepancy in
shape between the experimental and DWIA angular distri-
butions that is evident in Fig. 8 for 0~30. It is also
worth noting that the density dependent effects are much
less important for isovector spin-dependent interactions
and should therefore have little effect on the transition to
the 2.31-MeV state.

IV. SUMMARY AND CONCLUSIONS

straints provided by the analyzing power data would pro-
vide some clue to the nature of the theoretical difficulties.
A DWIA analysis of this reaction has been carried out
employing an optical potential obtained from fits to
p+' N elastic scattering data, a realistic t-matrix interac-
tion obtained from fits to free N-N data, and wave func-
tions chosen to reproduce to varying degrees the required
inhibition of the I.=0 central-interaction transition
strength. The shape of the differential cross section angu-
lar distribution is best reproduced when using wave func-
tions that allow too much L=0 strength (relative to the
analogous P decay). The analyzing power comparisons are
somewhat inconclusive. The best reproduction of the
analyzing powers is obtained with wave functions that
give small abnormal-parity (JLS)= (111)amplitudes.

The results of the present analysis show that some
mechanism is required for adding more L=O strength to
this transition than is required by comparison to P decay.
Aoki et aI. have recently analyzed this transition at
E =21 MeV with two-step (p,d)(d, p') amplitudes i~eluded
in their calculations. Their work suggests that the con-
structively interfering and forward-peaked (at intermediate
energies) (p,d)(d, p') process may be a good candidate for
improving the calculated differential cross section and
analyzing power angular distributions. This effect is
clearly worth further investigation.

Differential cross sections and analyzing powers have
been measured for the ' N(p, p')' N(2. 31 MeV) reaction at
Ep=159.4 MeV. The differential cross section angular
distribution for this transition has proven difficult to fit
with standard single-step DWBA and DWIA calculations.
It was hoped that the additional information and con-
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