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The neutron-deficient 1g9j2-shell nuclei are studied in the framework of the shell model with the
( 1g 9/2 2p 1j/2)

" configuration. Several "spin-gap" isomers with a half-life of an order of a second are
21 +

predicted in 95Pd, Ag, Cd, and Cd. Among them, the J =
2

state in Pd is predicted to be an iso-

mer which corresponds to Pd~ recently observed by Nolte and Hick. It is also shown that the high-spin
isomers above the proton threshold are rather stable against the proton emission.

' NUCLEAR STRUCTURE 5Pd, Ag, Cd, Cd; calculated levels, lifetime; 1g9/2-
'

2pij2 shell model; predicted long-lived isomers with high spin.

Recently Nolte and Hick found a new P-decaying isomer
in 'Pd with a half-life of 14+1 sec. ' From the spins of
daughter states in Rh, they have estimated a spin value of

21+J=
2

for this isomer. It is quite feasible that such a

long-lived state is a "spin-gap" isomer which is originated
from the property of the effective interaction between pro-
tons and neutrons in the 1g9j2 shell. In the following, we
report the results of the shell-model calculations on nuclei
in the 9 Pd region focusing on the possible existence of
high-spin isomers.

In the present calculations, the nucleus ' Sn is assumed
to be an inert core because Z =X = 50 is magic and the
model space employed consists of 1g9j2 and 2pig2 orbitals for
active proton holes (p) and neutron holes (n).

The Hamiltonian

H =H-+ H-„+ V—„„+V„--„+ V—„
is taken from the shell-model studies for the %=50 and
% =49 nuclei around Zr. The p-p and the p-n interac-
tions, V—and V—„, used in the present paper are derived
from V» and V „- of Ref. 7. The Coulomb effects are in-

cluded in the p-p interaction. The matrix elements of V„—„
are assumed to be the same as the T = 1 component in the
p-n interaction. The single-hole energies of e,(j) and e„(j)
relative to the ' Sn core are derived from the single-particle
and -hole energies of e„(j) and e„(j) with respect to the

Sr core in conjunction with the two-body effective interac-
tions mentioned above.

The calculated energy spectrum of 9~Pd is shown in Fig. 1.
The existence of two isomers is suggested; one is a J= —,

21 +
state laying at 0.85 MeV and the other is a J =

2
state at

21 +
1.90 MeV. The present model predicts the J =

2 state at
17+

5 keV above the J=
2

state. This ordering, ho~ever, is

very sensitive to the details of the two-body interactions
adopted. For example, if one takes the more attractive
value for the matrix element of (lg9/2 I V» I lg9/2 )/ 9 by 40
keV, the ordering is inversed. This ambiguity in the value
of the matrix element is possible since the statistical error in
the original least-square fit was 70 keV for this element.
The energy difference between these two levels,

21 + 17 +E (—, ) —E (—, ), is predicted to be 20 keV with the ef-
fective interactions by Serduke, Lawson, and Gloeckner
and —40 keV by the g9g2 model with the empirical interaction

derived from the 9 Nb spectrum. Thus, it is highly expect-2i+
ed that the lowest J=

2
state is lying below the lowest

i7+ 13 +J = —, state and a spin gap exists between the J=—
2

21+
and the

2
states which will be called an E4 spin gap in

this paper.
Using the resultant wave functions we investigate the de-

21 +
cay properties of the J = — state, i.e., the E4 transition to

13 +
the J = — state at 1.32 MeV and the P+ decay to Ru.
The partial half-life for the E4 transition is calculated to be
80 sec under the assumption of

((lg9/2)„ll r+a. II (lg9/2)p)'"= ( '9 )' ~a

„MeV
I
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FIG. 1. Calculated energy levels of 95Pd. The lowest levels
with each spin-parity state below 3 MeV are shown by solid lines
for positive-parity states and by dashed lines for negative-parity
states. The transitions from the isomeric states are indicated by
arrows.
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e, (lg9/2 I r I 1g9/2) = 500 e fm4

and of the energy difference 4E =0.6 MeV, though the cal-
culated result depends much more critically on the latter.
For the P+ decay we introduce the effective Gamov-Teller
(GT) single-particle matrix element with the reduction fac-
tor a, namely,
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Another matrix element

((2ptg)„ II t+oII (2.pqp)p)' "

is assumed to be the same as the single-particle estimate.
By using a value of o. =0.5 which reproduces the measured
logft value for P+ transition of

"Ru( —', g.s. ) "Tc(—', g.s.)

„MeV

3 t
5t 7 t

8'

10'
16'

we calculate the logft values of GT transitions to several
19 + 21+ 95low-lying
2

and
2

states in Rh. A logfr value of
5.66 is obtained for the main transition to the 95Rh ( 2

at

3.4 MeV). The partial half-life of the GT transitions above
is estimated as about 80 sec. Therefore, the calculated
value of the half-life is 40 sec, though a larger value of n
provides better agreement with the measured half-life of 14
sec. Since any other high-spin states in 'Pd are not accom-
panied by a larger spin gap than E4, we conclude that the
spin of the observed isomer 'Pd must be J =

2
. Furth-

ermore, because of a large 0Ec value, the P-delayed proton
emission from this state which has been observed by Nolte
and Hick' is expected in the present shell model.

In Fig. 2 we show the calculated energy spectrum of 'Ag.
23 +

The J=
2

state obtained at 2.56 MeV is associated with

an M3 spin gap and expected to be an isomer as well as the
J =

2
state at 0.66 MeV. To estimate the lifetime of the1

=23J =
2

state one has to pay attention to the direct proton
emission from this state. The threshold for the proton
emission B~ in Ag is calculated to be 0.84 MeV by the
present model. Similar values (8~=0.88 —1.51 MeV) are
obtained by various mass formulas. 9 ' Based on the R-
matrix theory we have calculated the probability of the pro-
ton emission from this state to the J =0+ and 2+ states in

Pd and found that the predicted partial lifetime will be
larger than a year. This hindrance is due to high angular
momentum (I = 12 or 10) carried by the emitted proton.

According to the discussion above, the lifetime of the
23 +J = —, state is actually determined by the M3 transition

and by the P+ decay. By the use of the effective values of
the matrix element of

( 1g9/2 I I M3 I I 1g9~,) = 410 p, N fm

for protons and —180 p, Nfm for neutrons, the partial half-
life of the M3 transition is calculated to be 0.4 sec. A com-
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FIG. 3. Calculated energy levels of Cd. The lowest levels with
each spin-parity state below 6 MeV are shown.

parable value, 1.0 sec, is obtained for the P+ decay to the
low-lying states in Pd. Then we get a value of 0.3 sec for
the half-life of the J=

2
isomeric state in Ag. Since the

23+ . 95

threshold energy for Rh(10+)+p is about 4.6 MeV in
'Pd, it is expected that the P-delayed proton emission oc-

curs through the highly excited J =
2

states in Pd.
The result for the even-even nucleus Cd is shown in

Fig. 3. The J =16+ state predicted at 5.30 MeV appears
with a E6 spin gap. Though the state lies above the proton
threshold (8~=2.96 MeV) and has been suggested as a
possible proton emitter by Peker et a/. , " it is shown, simi-
larly to 'Ag, that the state is almost stable against the pro-
ton emission. A value of 0.5 sec is calculated as the half-
life with a reduction factor a =0.5 for the GT operator [Eq.
(2)]. It is also suggested that this isomeric state is a precur-
sor for the P-delayed proton emission, since the

29 +
Pd( —, )+p channel opens at the excitation energy of

about 6.1 MeV in Ag.
The spin-gap isomers observed in even-even nuclei are

very rare. Up to now we have only three examples, i.e., the
J = 12+ state in Fe, ' the J = 16+ state in ' Hf, ' and the
J= (16+) state in "'Po.' The isomer predicted by the
present shell model will be a new example in the even-even
nucleus.

ln 9 Cd (Fig. 4), two states, the J =
2 state at 0.78 MeV
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FIG. 2. Calculated energy levels of Ag. The lowest levels with
each spin-parity state below 3 MeV are shown. The proton thresh-
old is indicated by the dotted line.

FIG. 4. Calculated energy levels of Cd. The lowest levels with
each spin-parity state below 3.5 MeV are shown.
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2S+
and the J=

2
state at 2.41 MeV, are predicted as isomer-

2S+
ic states. The J=

2
state is obtained with the E6 spin

gap and expected to be a pure P+-decaying isomer. Since
the J =

2 state is the highest spin state in the present
model for 'Ag, the daughter states to which the isomeric
state can decay by the GT transition are produced by excita-
tion of the neutron core, i.e. , I(lg9/2) '(1gy2)) neutron
component. Since such core excited states exist at relatively
high excitation energy region in 'Ag, it is expected that the
lifetime will be longer than a second and the branching ratio
of the P-delayed proton emission, e.g. ,

9 Cd(
~ ) 97Ag'(

~ ) Pd(10+) + p

will be large. The precursor character of 'Cd has been indi-
cated by the experiment at the ISOLDE on-linc isotope
separator. '5

In summary, possible existence of long-lived state with
high spins are suggested in 9 Pd, Ag, and '97Cd. This is
because the effective p-n interaction favors an aligned p-n
pair which can be directly shown by the M9 spin gap
predicted in 'In. The high-spin isomers above the proton
threshold are predicted to be mostly stable against the direct
proton emission in the present cases, but will be precursors
of the P-delayed proton emission. The numerical calcula-
tions were carried out with FACOM M-180 II AD at the In-
stitute for Nuclear Study, University of Tokyo.
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