PHYSICAL REVIEW C

VOLUME 28, NUMBER 2

AUGUST 1983

Shell-model calculations of high-spin isomers in neutron-deficient $1g_{9/2}$ -shell nuclei

K. Ogawa Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan (Received 25 April 1983)

The neutron-deficient $1g_{9/2}$ -shell nuclei are studied in the framework of the shell model with the $(1g_{9/2}, 2p_{1/2})^{-n}$ configuration. Several "spin-gap" isomers with a half-life of an order of a second are predicted in ⁹⁵Pd, ⁹⁵Ag, ⁹⁶Cd, and ⁹⁷Cd. Among them, the $J = \frac{21}{2}^+$ state in ⁹⁵Pd is predicted to be an isomer which corresponds to ⁹⁵Pd^m recently observed by Nolte and Hick. It is also shown that the high-spin isomers above the proton threshold are rather stable against the proton emission.

NUCLEAR STRUCTURE ⁹⁵Pd, ⁹⁵Ag, ⁹⁶Cd, ⁹⁷Cd; calculated levels, lifetime; $1g_{9/2}$ - $2p_{1/2}$ shell model; predicted long-lived isomers with high spin.

Recently Nolte and Hick found a new β -decaying isomer in ⁹⁵Pd with a half-life of $14 \pm 1 \text{ sec.}^1$ From the spins of daughter states in ⁹⁵Rh, they have estimated a spin value of $J = \frac{21}{2}^+$ for this isomer. It is quite feasible that such a long-lived state is a "spin-gap" isomer^{2,3} which is originated from the property of the effective interaction between protons and neutrons in the $1g_{9/2}$ shell. In the following, we report the results of the shell-model calculations on nuclei in the ⁹⁵Pd region focusing on the possible existence of high-spin isomers.

In the present calculations, the nucleus ¹⁰⁰Sn is assumed to be an inert core because Z = N = 50 is magic⁴ and the model space employed consists of $1g_{9/2}$ and $2p_{1/2}$ orbitals for active proton holes (\bar{p}) and neutron holes (\bar{n}) .

The Hamiltonian

$$H = H_{\overline{p}} + H_{\overline{n}} + V_{\overline{pp}} + V_{\overline{nn}} + V_{\overline{pn}} \tag{1}$$

is taken from the shell-model studies for the N = 50 and N = 49 nuclei around ${}^{90}\text{Zr}$. ${}^{5-7}$ The \overline{p} - \overline{p} and the \overline{p} - \overline{n} interactions, $V_{\overline{p}\overline{p}}$ and $V_{\overline{p}\overline{n}}$, used in the present paper are derived from V_{pp} and $V_{\overline{p}\overline{n}}$ of Ref. 7. The Coulomb effects are included in the \overline{p} - \overline{p} interaction. The matrix elements of $V_{\overline{n}\overline{n}}$ are assumed to be the same as the T = 1 component in the \overline{p} - \overline{n} interaction. The single-hole energies of $\overline{\epsilon}_{p}(j)$ and $\overline{\epsilon}_{n}(j)$ relative to the 100 Sn core are derived from the single-particle and -hole energies of $\epsilon_{p}(j)$ and $\overline{\epsilon}_{n}(j)$ with respect to the 88 Sr core in conjunction with the two-body effective interactions mentioned above.

The calculated energy spectrum of ⁹⁵Pd is shown in Fig. 1. The existence of two isomers is suggested; one is a $J = \frac{1}{2}^{-1}$ state laying at 0.85 MeV and the other is a $J = \frac{21}{2}^{+}$ state at 1.90 MeV. The present model predicts the $J = \frac{21}{2}^{+}$ state at 5 keV above the $J = \frac{17}{2}^{+}$ state. This ordering, however, is very sensitive to the details of the two-body interactions adopted. For example, if one takes the more attractive value for the matrix element of $\langle 1g_{3/2} | V_{pn} | 1g_{3/2} \rangle_{J=9}$ by 40 keV, the ordering is inversed. This ambiguity in the value of the matrix element is possible since the statistical error in the original least-square fit was 70 keV for this element.⁷ The energy difference between these two levels, $E(\frac{21}{2}^{+}) - E(\frac{17}{2}^{+})$, is predicted to be 20 keV with the effective interactions by Serduke, Lawson, and Gloeckner⁶ and -40 keV by the $g_{3/2}^{*}$ model with the empirical interaction derived from the ⁹⁰Nb spectrum.⁸ Thus, it is highly expected that the lowest $J = \frac{21}{2}^+$ state is lying below the lowest $J = \frac{17}{2}^+$ state and a spin gap exists between the $J = \frac{13}{2}^+$ and the $\frac{21}{2}^+$ states which will be called an *E*4 spin gap in this paper.

Using the resultant wave functions we investigate the decay properties of the $J = \frac{21}{2}^+$ state, i.e., the E4 transition to the $J = \frac{13}{2}^+$ state at 1.32 MeV and the β^+ decay to ⁹⁵Ru. The partial half-life for the E4 transition is calculated to be 80 sec under the assumption of

$$e_{\rm p} \langle 1g_{9/2} | r^4 | 1g_{9/2} \rangle = 500 \ e \ {\rm fm}^4$$

and of the energy difference $\Delta E = 0.6$ MeV, though the calculated result depends much more critically on the latter. For the β^+ decay we introduce the effective Gamov-Teller (GT) single-particle matrix element with the reduction factor α , namely,

$$\langle (1g_{9/2})_n || t_+ \sigma || (1g_{9/2})_p \rangle^{\text{eff}} = (\frac{110}{9})^{1/2} \alpha$$
 (2)

- -

FIG. 1. Calculated energy levels of 95 Pd. The lowest levels with each spin-parity state below 3 MeV are shown by solid lines for positive-parity states and by dashed lines for negative-parity states. The transitions from the isomeric states are indicated by arrows.

<u>28</u> 958

Another matrix element

$$\langle (2p_{1/2})_n || t_+ \sigma || (2p_{1/2})_p \rangle^{\text{eff}}$$

is assumed to be the same as the single-particle estimate. By using a value of $\alpha = 0.5$ which reproduces the measured log*ft* value for β^+ transition of

$${}^{93}\text{Ru}(\frac{9}{2}^+\text{g.s.}) \rightarrow {}^{93}\text{Tc}(\frac{9}{2}^+\text{g.s.})$$
 ,

we calculate the log ft values of GT transitions to several low-lying $\frac{19}{2}^+$ and $\frac{21}{2}^+$ states in 95 Rh. A log ft value of 5.66 is obtained for the main transition to the 95 Rh ($\frac{19}{2}^+$ at 3.4 MeV). The partial half-life of the GT transitions above is estimated as about 80 sec. Therefore, the calculated value of the half-life is 40 sec, though a larger value of α provides better agreement with the measured half-life of 14 sec. Since any other high-spin states in 95 Pd are not accompanied by a larger spin gap than E4, we conclude that the spin of the observed isomer 95 Pd^m must be $J = \frac{21}{2}^+$. Furthermore, because of a large Q_{EC} value, the β -delayed proton emission from this state which has been observed by Nolte and Hick¹ is expected in the present shell model.

In Fig. 2 we show the calculated energy spectrum of 95 Ag. The $J = \frac{23}{2}^+$ state obtained at 2.56 MeV is associated with an M3 spin gap and expected to be an isomer as well as the $J = \frac{1}{2}^-$ state at 0.66 MeV. To estimate the lifetime of the $J = \frac{23}{2}^+$ state one has to pay attention to the direct proton emission from this state. The threshold for the proton emission B_p in 95 Ag is calculated to be 0.84 MeV by the present model. Similar values ($B_p = 0.88 \sim 1.51$ MeV) are obtained by various mass formulas.^{9,10} Based on the *R*matrix theory we have calculated the probability of the proton emission from this state to the $J = 0^+$ and 2^+ states in 94 Pd and found that the predicted partial lifetime will be larger than a year. This hindrance is due to high angular momentum (l = 12 or 10) carried by the emitted proton.

According to the discussion above, the lifetime of the $J = \frac{23}{2}^+$ state is actually determined by the M3 transition and by the β^+ decay. By the use of the effective values of the matrix element of

$$\langle 1g_{9/2} \parallel M3 \parallel 1g_{9/2} \rangle = 410 \ \mu_{\rm N} \, {\rm fm}^2$$

for protons and $-180 \ \mu_{\rm N} {\rm fm}^2$ for neutrons, the partial halflife of the M3 transition is calculated to be 0.4 sec. A com-

FIG. 2. Calculated energy levels of 95 Ag. The lowest levels with each spin-parity state below 3 MeV are shown. The proton threshold is indicated by the dotted line.

FIG. 3. Calculated energy levels of 96 Cd. The lowest levels with each spin-parity state below 6 MeV are shown.

parable value, 1.0 sec, is obtained for the β^+ decay to the low-lying states in ⁹⁵Pd. Then we get a value of 0.3 sec for the half-life of the $J = \frac{23}{2}^+$ isomeric state in ⁹⁵Ag. Since the threshold energy for ⁹⁴Rh(10⁺) + p is about 4.6 MeV in ⁹⁵Pd, it is expected that the β -delayed proton emission occurs through the highly excited $J = \frac{21}{2}^+$ states in ⁹⁵Pd.

The result for the even-even nucleus ⁹⁶Cd is shown in Fig. 3. The $J = 16^+$ state predicted at 5.30 MeV appears with a *E*6 spin gap. Though the state lies above the proton threshold ($B_p = 2.96$ MeV) and has been suggested as a possible proton emitter by Peker *et al.*, ¹¹ it is shown, similarly to ⁹⁵Ag, that the state is almost stable against the proton emission. A value of 0.5 sec is calculated as the halflife with a reduction factor $\alpha = 0.5$ for the GT operator [Eq. (2)]. It is also suggested that this isomeric state is a precursor for the β -delayed proton emission, since the ⁹⁵Pd($\frac{29}{2}^+$) + p channel opens at the excitation energy of about 6.1 MeV in ⁹⁶Ag.

The spin-gap isomers observed in even-even nuclei are very rare. Up to now we have only three examples, i.e., the $J = 12^+$ state in ⁵²Fe,¹² the $J = 16^+$ state in ¹⁷⁸Hf,¹³ and the $J = (16^+)$ state in ²¹²Po.¹⁴ The isomer predicted by the present shell model will be a new example in the even-even nucleus.

In ⁹⁷Cd (Fig. 4), two states, the $J = \frac{1}{2}^{-1}$ state at 0.78 MeV

FIG. 4. Calculated energy levels of 97 Cd. The lowest levels with each spin-parity state below 3.5 MeV are shown.

960

and the $J = \frac{25}{2}^+$ state at 2.41 MeV, are predicted as isomeric states. The $J = \frac{25}{2}^+$ state is obtained with the E6 spin gap and expected to be a pure β^+ -decaying isomer. Since the $J = \frac{21}{2}^+$ state is the highest spin state in the present model for ⁹⁷Ag, the daughter states to which the isomeric state can decay by the GT transition are produced by excitation of the neutron core, i.e., $|(1g_{9/2})^{-1}(1g_{7/2})\rangle$ neutron component. Since such core excited states exist at relatively high excitation energy region in ⁹⁷Ag, it is expected that the lifetime will be longer than a second and the branching ratio of the β -delayed proton emission, e.g.,

K. OGAWA

$${}^{97}\text{Cd}(\frac{25}{2}^+) \rightarrow 97\text{Ag}^*(\frac{23}{2}^+) \rightarrow {}^{96}\text{Pd}(10^+) + p$$

- ¹E. Nolte and H. Hick, Phys. Lett. <u>97B</u>, 55 (1980).
- ²N. Auerbach and I. Talmi, Phys. Lett. <u>10</u>, 297 (1964).
- ³I. Talmi, in *Lectures in Theoretical Physics VIIIC*, edited by P. D. Kunz *et al.* (University of Colorado Press, Boulder, 1966), p. 39.
- ⁴R. A. Sorensen, in *Proceedings of 4th International Conference on the Nuclei Far from Stability, 1981, Hølsinger,* edited by L. O. Skolen, CERN Report No. CERN 81-09, 1981, p. 498.
- ⁵D. H. Gloeckner and F. J. D. Serduke, Nucl. Phys. <u>A220</u>, 477 (1974), and references therein.
- ⁶F. J. D. Serduke, R. D. Lawson, and D. H. Gloeckner, Nucl. Phys. <u>A256</u>, 45 (1976).
- ⁷R. Gross and A. Frenkel, Nucl. Phys. <u>A267</u>, 85 (1976).
- ⁸R. C. Bearse, J. R. Comfort, J. P. Schiffer, M. M. Stautberg, and J.

will be large. The precursor character of ^{97}Cd has been indicated by the experiment at the ISOLDE on-line isotope separator.¹⁵

In summary, possible existence of long-lived state with high spins are suggested in 95 Pd, 95 Ag, and 96,97 Cd. This is because the effective p-n interaction favors an aligned p-n pair which can be directly shown by the M9 spin gap predicted in 98 In. The high-spin isomers above the proton threshold are predicted to be mostly stable against the direct proton emission in the present cases, but will be precursors of the β -delayed proton emission. The numerical calculations were carried out with FACOM M-180 II AD at the Institute for Nuclear Study, University of Tokyo.

C. Stoltzfus, Phys. Rev. Lett. 23, 864 (1964).

- ⁹1975 Mass Prediction, edited by S. Maripun, At. Data Nucl. Data Tables <u>17</u>, 477 (1976).
- ¹⁰M. Uno and M. Yamada, Prog. Theor. Phys. <u>65</u>, 1322 (1981).
- ¹¹L. K. Peker, E. I. Volmyansky, V. E. Bunakov, and S. G. Ogloblin, Phys. Lett. <u>36B</u>, 547 (1971).
- ¹²D. F. Geesaman, R. Malmin, R. L. McGrath, J. W. Noé, and J. Cerny, Phys. Rev. Lett. <u>34</u>, 326 (1975).
- ¹³R. G. Helmer and C. W. Reich, Nucl. Phys. <u>A211</u>, 1 (1973).
- ¹⁴I. Perlman, Phys. Rev. <u>127</u>, 917 (1962).
- ¹⁵T. Elmroth, E. Hagberg, P. G. Hansen, J. C. Hardy, B. Jonson, H. L. Ravn, P. Tidemand-Petersson, and ISOLDE Collaboration, Nucl. Phys. <u>A304</u>, 493 (1978).