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Total binding energies for nuclei with 14&3 & 18 are obtained from a realistic effective no-core
Hamiltonian, H,ff, using moment methods. The lowest few moments of Hdf are evaluated in an os-
cillator model space of four major shells. These moments are then used to determine a number of
continuous and discrete density of states functions, each of which yields an estimate for the H,ff

ground state energy. The adjustable discrete density of states functions which we introduce are
based upon realistic single-particle Hamiltonians. With a reasonable selection of moment method in-

gredients we obtain good agreement between theory and experiment for relative binding energies
within each A chain. The most stable isobar is correctly predicted in all cases and Coulomb energy
differences are in close agreement with experiment. Thus, the valley of P stability is well reproduced
in this approach with a simple overall shift in absolute binding energies for each A chain.

NUCLEAR STRUCTURE Binding energies from moment methods; spectral
properties of realistic effective no-core Hamiltonian; approximate density of

states function based on realistic single-particle Hamiltonians.

I. INTRODUCTION

One of the long standing goals of nuclear theory has
been to test the hypothesis that the nuclear ground state
and low-lying excitations could be primarily understood
within a nonrelativistic framework using an interaction
which fits two-nucleon experiments. The most convincing
evidence to date that this hypothesis may be false comes
from the coupled cluster [or exp(s)] calculations of the Bo-
chum group. ' For example, with a realistic nucleon-
nucleon interaction, they find that theory underbinds ' O
by 38/o and underbinds Ca by 30%. On the other hand,
the exp(s) results for ' 0 and ' 0 (Ref. 2) indicate that
somewhat better rekatioe binding energies and spectral
properties may be obtained. Also, reasonable excited state
spectra for ' 0 are obtained.

The present work employs moment methods (MM's)
with the goal to investigate the conclusions of the exp(s)
method and to extend the discussion to ground states of a
larger range of nuclei in the A =16 region. Our results are
consistent with those of the exp(s}.method but we employ
quite a different set of approximations.

Our earliest effort applied MM's to obtain binding en-
ergies of s-d shell nuclei with respect to ' 0 using realistic
effective shell model Hamiltonians. Later, we presented
preliminary results ' of the present investigation where
realistic no-core Hamiltonians were used to obtain the
binding energy of ' O. As these applications grew in
scope we felt a need to assess the overall accuracy of
MM's when only the few lowest moments were used in
very large model spaces to predict the ground state (g.s.)
energy for a given Hamiltonian. We thus performed an
extensive set of tests of the MM approach using a soluble
Hamiltonian in ultralarge model spaces. This most re-

cent effort {hereafter referred to as I) serves to guide the
realistic calculations on which we report here.

One concern for accuracy arises because the physically
interesting low-energy part of the nuclear spectrum lies
several standard deviations from the centroid of the densi-
ty of states (DOS) function, p(E), in typical applications
with large model spaces. Therefore, in I we assessed the
accuracy of extrapolating into this low-energy region from
a knowledge of the first few moments of p(E) using the
soluble harmonic oscillator Hamiltonian. The accuracy
was studied as a function of model space size, parametri-
zation chosen for p(E), method of truncation of the model
space, and other ingredients. The basic conclusions in I
were fourfold:

(1) To a good approximation the error in the MM esti-
mate of the g.s. energy grew only linearly with the loga-
rithm of the many-body basis space dimensionality.

(2} The standard truncation scheme based on single par-
ticle energies ("energy truncation scheme" ) led to the
lowest absolute errors and to the least dependence on the
parametrization chosen for p(E).

(3) The two-moment Gaussian DOS distribution and the
three-moment Weibull distribution, led to the lowest abso-
lute errors and the least dependence of the error on model
space dimensionality.

(4} Errors in relative ground state energies for
14&2 &18 were much smal1er and less dimensionality
dependent than errors in total energies.

Based upon the conclusions of I we have applied MM's
with an optimum choice of ingredients to obtain binding
energies of 14&3 &18 nuclei from a realistic no-core
Hamiltonian. Our primary concentration is on relative
binding energies, especially binding energy differences
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within A chains, since MM's are expected to be most accu-
rate there, and since the exp(s) results imply that reason-
able agreement between theory and experiment might be
obtained.

We proceed in Sec. II to introduce our notation,
describe the realistic H, ff and to outline our approach.
The centroid, width, and skewness of the H, ff DOS func-
tion are the primary inputs for our MM calculations. In
Sec. III we describe how the centroid, width, and skewness
change as one proceeds from the model Hamiltonian of I
to the realistic H, ff which we employ. The question of the
optimum basis dimensionality is addressed in Sec. IV.
MM results for the absolute g.s. energy of ' O and for the
Coulomb energies of 3 = 16 nuclei indicate that the har-
monic oscillator basis employing the first four major
shells is optimum. Our main results for relative binding
energies as calculated in such a basis are presented in Sec.
V. We conclude in Sec. VI with a summary of our find-
ings.

II. CONVENTIONS AND PRELIMINARIES

We generally follow the notations of I for basis states,
truncation schemes, and DOS distributions and their
characteristics. However, we add a gap operator C to the
basis Hamiltonian which boosts the energies of selected
states Man. y-body eigenstates,

~ P; ), of the modified har-
monic oscillator (h.o.) Hamiltonian

Hp ——T+ U+C;
N+Z g2 N+Z

T= g V'k, U= g —,'mco~ ~xk j

k=l m2

then serve as expansion states for our treatment of a nu-
clear system with N neutrons and Z protons. We fix
Ace = 14 MeV which is appropriate to nuclei with
3 =X+Z=16, and we confine our calculations to sys-
tems having 14(A & 18. Single-particle (s.p.) eigenstates
of Hp carry the usual labels (n, i, s = —,', j, mj, t = —,', and
t, ) but now have energies

e =fico(2n + l + —,
'

) +C, 2n + I & XE

(excluded s.p. states),

@=iico(2n +I + —,
'

), 2n +l & 1VE

(active s.p. states).

Note that the s.p. states have been partitioned into "ac-
tive" and "excluded" groups according to energy (energy
truncation scheme), and that the gap operator C of Eq. (1)
is defined to boost the energy of each excluded s.p. state
by an amount C. The active orbits constitute a "no-core"
model space.

For fixed NE, the finite expansion basis
I ~

P;);i=1,2, . . . , D] consists of all Slater determinants
which can be constructed by distributing the %+Z parti-
cles among the active s.p. states. The gap operator C has
no effect on the Hp eigenstates which are retained in the
expansion basis, and thus has no effect upon the results
presented in I. However, due to truncation, C does affect
our realistic effective nuclear Hamiltonian, H, ff, obtained
for the no-core model space.

We present calculations only for XE ——2,3,4,5, and we
denote the associated bases by E20, E40, E70, and E112,
respectively, in accordance with I. The bulk of the results
we report are for the E40 basis in which the active s.p.
states are confined to the first four major oscillator shells.
For E40, dimensionalities for nuclei near ' O are D —10' .

The nuclear Hamiltonian used in the present study has
the form

Heff =Trel + Veff+ VCoul

where T„l is the relative kinetic energy operator, V,ff is an
effective N-N interaction obtained from the Reid soft-core
interaction, and Vc,„l is the Coulomb interaction between
protons. The methods used to calculate V,ff as a function
of C and X~ have been presented elsewhere. ' In this
work we have improved upon previous calculations of the
no-core V,ff by including the lowest order folded diagram
along with the standard 6-matrix term. This additional
diagram weakens the C dependence of V,ff as may be ex-
pected. To gauge the importance of this correction we
note that some V,ff matrix elements in the XE——2 space
changed by as much as 25% at small C values when the
folded diagram was included. The corresponding matrix
elements changed by only a few percent in the Xz ——5
space.

We have sought to include the most important contribu-
tions to H, ff at the two-body interaction level with the
hope that MM's would permit us to evaluate physically in-
teresting quantities in sufficiently large model spaces that
we could neglect effective three- and higher-body interac-
tions. Recall that without a core there can be no core-
polarization —type diagrams. The residual C dependence
of our results provides a gauge for the extent to which this
level of approximation can be justified. For the basis size
used in the bulk of our calculations, we find that the rela-
tive binding energies of the nuclei we consider are, indeed,
rather C independent over a broad range.

For fixed (X,Z) the full diagonalization of the matrix

would result in D eigenvalues El &E2 ( . &ED which
define the calculated total DOS distribution

p(&)= g 5(E —&I) .

The exact moments of p(E) can be determined without de-
tailed knowledge of the Ei [see Eq. (7) of I] by using the
trace reduction techniques of Ginocchio and Ayik. ' '" To
obtain an estimate of the calculated g.s. energy, El, one
first constructs an approximation p, (E) with the same
dimensionality and first few moments as p. p, (E) is then
integrated from —Oc to an energy E, where an area of —,

state is first accumulated, ' and E,(X,Z) becomes the
MM estimate of El(X,Z).

For a two-body Hamiltonian such as H, ff computation
times for the higher moments of p(E) grow rapidly with
the number of active s.p. states. We have calculated the
first two moments for bases through E112, and the first
three moments for E20 and E40 bases. This has been
done for a variety of C values. As in I we use (E'), cr, and
y to denote the centroid, width, and skewness of p(E),
respectively. Again we employ the Gaussian (poq), and
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three-moment Weibull distribution (pw) as candidates for
continuous p, functions.

The accuracy of the MM in estimating E1 depends
upon how well p, {E) approximates p{E) in the region of
interest. The use of functional forms based on the Gram-
Charlier series was originally motivated by the assumption
that p(E) would be not too far from Gaussian for large
bases. This assumption was found in I to be untrue for
the energy-truncated, no-core bases. Furthermore, the
Gram-Charlier series with three or more moments can
have regions of negative density of states which can lead
to ambiguities in predicting the ground state energy. This
difficulty led us to investigate the three-moment Weibull
distribution in I since it is guaranteed to be positive every-
where. However, the Weibull results tended in I to be
comparable with those obtained using the two-moment
Gaussian, and it is not clear how to improve the Weibull
results in any systematic manner when higher moments
are available.

The accumulation of these reasons leads us to introduce
here an alternative class of p, candidates. These are ad-
justable discrete DOS distributions constructed by distri-
buting noninteracting nucleons among a collection of s.p.
states in all possible ways consistent with the Pauli princi-
ple. In each case we begin with a seed spectrum specified
by dimensionless input energies

[d; }= [2,6, 12,20};
psM. [e;}=[0,1, 1.3, 1.8,2. 1,2.3,2.5,2.8,3.0, 3.3},

[d; }= [2,4, 2, 6,2,4, 8,4, 2, 6};
pEs' [6 }= [0, 1,2, . . . , 19}

The [e;,d; } for p~o are recognized to be those of a h.o.
Hamiltonian. The s.p. energies and degeneracies for psM
are typical of a one-body nuclear shell model Hamiltonian.
The specific [e';,d;} values listed for psM in Eq. (5) are
taken from the single-neutron orbitals found by Flocard
and Quentin in a density dependent Hartree-Fock (DDHF)
calculation of ' 0 using the Skyrme III interaction. ' The
inputs for pEs describe equally spaced s.p. orbitals of de-
generacy 2. Because of this diffuse structure, pEs is closest
in spirit to the continuous p, . The inputs in Eqs. (5) can
be truncated or expanded in an obvious manner to form
inputs appropriate to expansion bases that are smaller or
larger than E40.

In practice, the enumeration of the

d d
N Z

[e;)0; i=1,2, . . . , k}
and degeneracies

[d;; i =1,2, . . . , k}

of s.p. orbitals. This s.p. spectrum is taken to be the same
for both protons and neutrons. We then apply a simple
three-parameter power transformation

e,' =be~+c, i =1,2, . . . , k (4)

to generate a new set of s.p. energies. For fixed {p,b, c) the
associated discrete p, (E) is constructed by enumerating
the distinct ways of distributing 1V+Z noninteracting nu-
cleons among the orbitals [e,',d;}. The corresponding E
is then simply the lowest-energy multiparticle state contri-
buting to p (E). The numerical integration used to deter-
mine E, for each continuous p, is not required for the
discrete p .

The parameters (p, b, c) in Eq. (4) are chosen such that
the resulting p, (E) has the first three moments of the p(E)
we wish to approximate. In addition g,".

, d;=d must
equal the number of active single proton (neutron) states
in the harmonic oscillator basis. This ensures that p, and

p have the same total dimensionality as well. Since the
moments of p(E) vary with the number of nucleons, dif-
ferent {p,b, c) are required for each {%,Z).

A different discrete p, (E) is generated by each choice of
input [e;,d;}. We have chosen three input s.p. spectra
with quite different degeneracy structures so that it is easy
to observe the sensitivity of the output E, to variations in
the inputs. In each case the scale of the dimensionless E;
has been chosen by fixing e1 ——0 and e2 ——1. When approx-
imating p{E) in an E40 basis, the three ordered sets of in-
puts are

states comprising each discrete p, is not necessary. The
skewness of a discrete p, is independent of the values of b
and c in Eq. (4) and may be written as a function of p and
the [E;,d; } by using trace reduction techniques. Thus p is
fixed by the known skewness of p(E). b and c are then
chosen in turn to reproduce the width and centroid of p.
The s.p. spectra [E;,d;} determined by this process are
displayed in Fig. 1 for a typical application to H, f~. Here
values of p substantially less than 1 are required to repro-
duce the large skewness found for the realistic nuclear
Hamiltonian (p=0.66,0.66,0.31 for p~o, psM, pEs, respec-
tively, in Fig. 1). This suggests that large rearrangement
energies are associated with highly excited states of these
nuclei.

III. CHARACTERISTICS GF THE DGS DISTRIBUTION

H ff differs in several important respects from the h.o.
Hamiltonian which was treated by MM in I: the removal
of the center-of-mass (c.m. ) kinetic energy; the inclusion
of the Coulomb repulsion between protons; and the pres-
ence of a strong (even though renormalized) two-nucleon
interaction. We depict the different p(E) characteristics
for model and realistic Hamiltonians in Fig. 2 for the E40
expansion basis. Here H1 is an energy-shifted version of
the h.o. basis Hamiltonian with a potential

N+Z
U'= g ( —,mco

~
xk

~

—36.625 MeV) .
k=1

The energy shift is included to facilitate the comparison of
model and realistic results in Sec. IV, and it has been
chosen such that H1 has a g.s. energy of —82 MeV for the
N =Z=8 system. This is the g.s. energy obtained in the
exp(s} calculation of ' 0 using the Reid and Coulomb po-
tentials. '
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FIG. 1. Adjusted single particle spectra for the discrete distri-
butions pHo, psM, and pEs in a particular application to ' O. The
s.p. spectra are assumed to be identical for neutrons and protons,
and the degeneracies of the levels for each type of particle are
shown (each ES level is twofold degenerate). The three discrete
density-of-states distributions have the same dimensionality, cen-
troid, width, and skewness as would be obtained from the diago-
nalization of H, ff (' 0) in an E40, C=20 MeV basis of harmonic
oscillator eigenfunctions. To obtain pHo, for example, one
enumerates the energies of the 5.9&&10" ways of distributing 8

net.-trons and 8 protons among the 80 single-particle states
shown. The ground-state energies of pHo, psM, and pEs are
—98.2, —82.9, and —78.4 MeV, respectively.

The progression of panels from left to right in Fig. 2 is
intended to indicate the changes which occur as the Ham-
iltonian becomes more realistic. The removal of the c.m.
energy lowers the energy expectation value of each basis
state by an amount which generally grows with increasing
unperturbed basis energy. For N =Z = 8

is about 11 MeV for the lowest unperturbed state, but
averages 32 MeV for basis states having all 16 particles in
the fourth major shell. The net effect upon p(E) of replac-
ing T by T„~ in H, is to lower (E) by 23 MeV, to de-
crease o by 1%, and to increase

~ y ~
by 9% for ' 0, with

similar changes for neighboring nuclei. The addition of
Vc,„~ produces a similar differential shift which also tends
to compress the calculated eigenvalues toward their mean.
For N =Z'=8, (P; ~

Vc,„~ ~ P;) equals 14 MeV for the

FIG. 2. Characteristics of the DOS distributions p(E) for
three Hamiltonians as functions of particle numbers A and Z.
p(E) is the density of calculated eigenvalues which would result
from the diagonalization of H; in an E40, Ace=14 MeV, C=20
MeV basis of harmonic oscillator eigenfunctions. H I is an
energy-shifted version of the basis Hamiltonian, and H3 is the
effective Hamiltonian for the finite basis, H,«of Eq. (2).

lowest unperturbed state, while averaging only 10 MeV for
basis states constructed from s.p. states in the fourth ma-
jor shell. The effect of adding Vc,„~ to T„~+U' in Fig. 2
is to increase (E) by 11 MeV and to reduce both o and

~ y ~
by 0.6% for ' O. For fixed A, and increasing Z, the

Coulomb interaction produces a simple rise of the 02 cen-
troids.

Not surprisingly, the effect of replacing U' by V,ff is
seen in Fig. 2 to be considerably more dramatic than the
combined effects of c.m. removal and Coulomb addition.
The renormalized two-nucleon interaction produces a no-
ticeable increase in width and a particularly large increase
in the degree of skewness of p(E). For H&, as for the
model problem in I, the X =Z=8 skewnesses are —0.070
and —0.164 for the E20 and E40 bases, respectively, and
the skewness approaches —0.215 as the basis size expands
(%~~ ao ). By contrast the Huff (C=20 MeV) skewnesses
are —0.258 and —0.269 for E20 and E40, respectively.

The large skewness observed for the realistic Hamiltoni-
an argues against DOS approximations, such as pG,
which are based on a Gaussian form. This is one motiva-
tion for considering alternate approximations, such as the
adjustable discrete distributions introduced in Sec. II.
However, the skewness values obtained in the E20 realistic
calculations are too large to permit the use of the simple
discrete approximations we chose. That is, for E20 no
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value of p can be found in Eq. (4) such that our discrete

p, 's possess the Hcff skewness. As evidenced by Fig. 1, no
similar problem exists for the larger basis spaces ~here the
input s.p. seed spectra are richer.

IV. OPTIMUM BASIS SIZE

As the h.o. expansion basis is enlarged, the approxima-
tions used in the construction of H, ff are 1ess severe and
the lower eigenvalues of H, ff should approach those of the
full Hamiltonian H (H =T„~+V+ Vc,„~, V=Reid poten-
tial). In particular, as NE increases, the g.s. eigenvalue of
H, fr (' 0) is expected to converge to some value near the
exp(s) result of —82 MeV for all values of C and fuo
However, as the basis is enlarged the error in the MM esti-
mate of the H, ff g.s. energy should generally grow if a
fixed number of moments are employed. One therefore
expects that there will be an optimum basis size where the
MM treatment of H, ff with a few moments yields the
most accurate estimate of the H g.s. energy. The optimal
basis size can be estimated by considering the dimensional-
ity dependence of the MM results for the ' 0 g.s. energy
and for Coulomb energies.

A. Calculated g.s. energy of ' 0
The MM estimate of the H,ff

' 0 g.s. energy is
displayed in Fig. 3 for various choices of C, Nz, and the
form of the DOS approximation p, (E). As the expansion
basis is enlarged, the C dependence of the H, ff g.s. energy
is expected to moderate. This feature is observed in Fig. 3
for the energy estimate from each of the three continuous
distributions. As seen in I, the absolute errors in the MM
estimates are expected to grow with increasing basis
dimensionality. This trend is also evidenced in Fig. 3 by
the divergence of the various MM estimates from one
another as we proceed from E20 to E40.

MM estimates of the g.s. energy for the shifted h.o.
Hamiltonian, H~ of Fig. 2, have been included in Fig. 3
for comparison. Since the exact binding energy of H& is
known (5.125 MeV per particle for N =Z=8), the errors
in the MM estimates of the H& g.s. are manifest in Fig. 3.
For E40, pEs and psM lead to too little binding for H~, pHo
reproduces the exact result, and the three continuous DOS
approximations lead to overbinding. Similar orderings
and spreads of the MM estimates are observed for H& and
H, ff. Thus, the dependence of the H, ff results on the
choice of MM ingredients is so systematic as to be under-
standable from the soluble model applications. If we
make a simple "correction" of each E40 H, ff estimate by
subtracting the known error in the corresponding H

&
MM

calculation, the results lie in a band approximately bound-
ed by the present pHo and pw curves in Fig

As we proceed from E20 to E40 in Fig. 3, the MM esti-
mates are seen to generally rise toward the exp(s) value.
However, this trend appears to reverse as we further en-
large the basis. The centroid and width of p(E) have been
calculated for the next two larger bases, E70 and E112. If
we assume that the H, ff skewness increases slowly with D
as the model problem of I, e.g., that y= —0.28+0.02 for
' 0 in an E70 C=20 basis, we can estimate the three-
moment E, values for the larger spaces. The effect of
proceeding from E40 to E70 is then generally a small
clockwise rotation and downward shift of the E40 curves
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FIG. 3. Ground state binding energy per particle of H, ~f (' 0)
as a function of the basis gap parameter for the E20 and E40
bases. The moment method estimate ( —E,/16) is displayed for
six choices of the DOS approximation p, (E). Each distribution,
with the exception of the Gaussian (pG2), has the first three mo-
ments of the DOS which would result from the diagonalization
of H, ff in the basis. The experimental binding energy of ' 0 and
the result of an exp(s) calculation (Ref. 1) are also shown. Points
in the far right-hand column are g.s. estimates resulting from
the application of MM to the shifted harmonic oscillator Hamil-
tonian Hl (' 0) of Fig. 2. The exact Hi g.s. energy coincides
with the exp(s) value.

B. A =16 Coulomb energies

Calculations of Coulomb energies provide evidence that
errors in relative energies are also smallest in the E40
basis. For fixed N and Z we define the Coulomb energy
AE, (N, Z), as the difference in the g.s. energies of H, ff and
H ff Vc,„~. An estimate of hE, is obtained by applying
MM to each of these two Hamiltonians in turn. Results
for 3=16 nuclei are displayed in Fig. 4 for an E40 basis.
The expected linear dependence of AE, on Z is observed.
In fact the E40 MM curves for the various choices of p,
are seen to bracket the serniempirical result of Myers and
Swiatecki'4:

in Fig. 3. For example, the E70 psM estimate ranges from

9.3& —EsM/16 MeV & 5.3

on —1 & C/MeV &45, while the E70 Gaussian estimate
ranges over 11.3 & —E&2/16 MeV & 7.6. This downward
shifting of the MM estimates away from the exp(s) value
accelerates for the E112 basis. Beyond E40, the absolute
error in the MM technique is evidently growing faster
than the reduction in error produced by using H, ff in a
larger model space.
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In summary, errors in total and relative binding energies
for the full Hamiltonian are evidently smallest when
MM's are applied to H, ff in the E40 basis. We conse-
quently confine our calculations to E40 for the remainder
of this work.

V. CALCULATED RELATIVE ENERGIES
FOR NUCLEI NEAR ' O

Errors in MM estimates of relative binding energies
were generally found in I to be substantially smaller than
errors in total binding energies. We now apply MM's in
an E40 basis to evaluate the relative binding energies of
14 &A & 18 nuclei using the realistic no-core effective
Hamiltonian. With reasonable choices of MM ingredients,
we obtain relative binding energies which are in good
agreement with experiment and only weakly dependent on
C.

A. Gap parameter dependence

20 40 80 10060

Z2

FIG. 4. Moment method estimates of the H, qf Coulomb ener-
gies of 2=16, 4&Z &10 systems. Results obtained using a
C=20 MeV, E40 expansion basis are shown for each of the six
DOS approximations discussed in the text (solid curves). The
three discrete approximations lead to nearly coincident results.
The semiempirical result of Myers and Swiatecki (Ref. 14), Eq.
(6), which summarizes the experimental data is shown for com-
parison. The inset displays the MM estimated g.s. difference
E,(N, Z) —E,(Z, N) for two pairs of mirror nuclei when the
Coulomb potential is retained in H,ff. Again the basis is E40,
C=20 MeV. The experimental energy differences are taken
from Ref. 15.

The residual C dependence of the total binding energy is
the price we must pay for working in a limited basis. For
E40 the triplet ((E)/MeV, o/MeV, y) of p(E) charac-
teristics for H, ff is (246,54, —0.30), (276,50,—0.27), and
(304,47, —0.23} for C = —1, 20, and 55 MeV, respectively.
These are examples of the moment variations which result
in the C dependence of the total ' 0 binding energy esti-
mates depicted in the lower portion of Fig. 3.

Calculated relati Ue g.s. energies, particularly those
within a given A chain, exhibit much less C dependence
than absolute energies. For a given choice of the p, form,
the g.s. energy difference between a pair of nearby nuclei
is generally observed to fall monotonically as C is in-
creased. That is, as the calculated absolute binding energy
of ' 0 falls, energy separations fall as well.

To quantitatively describe the C dependence of relative
g.s. energies it is helpful to introduce

6
&
=E+ (N =6 Z = 8 ) —E& ( 10, 8 )

0.717Z 1.69
c

A 1/3 A2/3
MeV .

and

A2 E,(11,5) E,—(—8, 8) . —
Calculated Coulomb energies exhibit little dependence on
the basis gap parameter, and the bracketing of the semi-
empirical result occurs for all —1(C/MeV(45 in the
E40 basis. Differences in the g.s. energies of mirror nu-
clei, which are due solely to the Coulomb term in H, ff, are
similarly well reproduced by E40 MM calculations, as il-
lustrated by the inset in Fig. 4.

As the expansion basis is enlarged, we expect that AE~
resulting from the actual diagonalizations of H, ff and
H ff Vc,„~ would stabilize, presumably near the value
given by Eq. (6). However, we find that the MM estimates
of AE, show clear evidence of diverging from the semi-
empirical result as the basis size increases beyond E40. As
the basis dimensionality is increased, the MM estimates of
AE, drop steadily, and the semiempirical result is not
bracketed beyond E40. We interpret this as further indi-
cation that errors inherent in the moment method outstrip
the reduction in H, ff renormalization errors for bases
beyond E40 when only three moments are used to fix
p, (E).

These are measures of the energy separation between A
chains, and the energy variation within A chains, respec-
tively. The experimental counterparts of 6& and A2 are
each near 40 MeV. The following rule of thumb summa-
rizes our MM calculations: For a given p, in an E40
basis, a 6 MeV increase in C results in a 10 MeV decrease
in the calculated ' 0 binding energy, a 4 MeV decrease in
6&, and a 1 MeV decrease in 62. Energy differences
within an A chain are thus quite stable to changes in C,
while the energy separation between A chains is more
strongly tied to the calculated ' 0 energy.

B. Comparison with experiment

Calculated g.s. energies, relative to ' 0, are displayed in
Fig. 5 for each of our six choices of the p, form. Dif-
ferent gap parameters have been used for the continuous
and discrete p, so that the predicted ' 0 g.s. energy is
roughly the same for each distribution, i.e., slightly below
the experimental value (see Fig. 3). This facilitates the
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tion. psM, whose input s.p. spectrum is between the pEs
and pHo extremes, does very well in reproducing the
overall appearance of the experimental relative energy pat-
tern.

It is enlightening to ask to what extent are the psM MM
results of Fig. 5 guaranteed to be good simply by the
choice of a realistic input s.p. spectrum. To answer this
question, we include in Fig. 5 the binding energy pattern
obtained by simply placing particles into the lowest avail-
able states of the DDHF single-particle potentials from
which the Ie;,d; I for psM are taken. This corresponds to
using the power transformation formula with parameters
(p, b, c, )=(l, 15.5 MeV, —35 MeV) for all (N, Z), or,
equivalently, to neglecting all information from the calcu-
lated moments of H,~f. Clearly the moment results are
crucial for obtaining the good agreement with experiment
shown for psM in Fig. 5.

The choice of the seed s.p. inputs for the adjustable
discrete distribution, Ie;,d; I, is highly arbitrary, although
the most reasonable of our three choices (psM) is seen to
lead to the best agreement with experiment. Rather than
freely choosing the I e;,d; ), one can use an input set gen-
erated by the Hamiltonian being treated. As an example
of such a procedure, we have performed a spherical
Hartree-Pock (SHF) calculation on H, rr (N =Z=8) in the
E40 basis and used the resulting single-neutron orbits to
fix the Ie;,d; I. This was done for each value of the gap
parameter. With the Ie;,d; I thus fixed by the ' 0 SHF
calculation, the power transformation method was used
for each (N, Z) to match the associated discrete distribu-
tions (psHF) to the first three moments of H, ff ~ The
lowest eigenvalue of psHF(E) was then the MM estimate of
the Hd~ g,s. energy.

In the psHF calculations, the C dependence of absolute
and relative energies was again found to follow the rule of
thumb started earlier; at the E40 level, calculated energy
differences within A chains were the least dependent on
the choice of C, and hence the most meaningful. These
energy differences are displayed in Fig. 6 for the limits of
the range ( —1&C/MeV&55) within which we have cal-
culated H, f~. Clearly, the dependence of MM relative
binding energies on the value of C is rather weak and the
overall agreement with experiment is quite good.

The residual discrepancies in Fig. 6 between the psHF re-
sults and experiment appear to be due to too little spin-
orbit splitting, consistent with the long-standing problem
with realistic interactions in nuclear theory. Our SHF
spin orbit splittings are similar to the coupled-cluster re-
sults of Ref. 2. psM results, which have been included in
Fig. 6, are seen to be consistently closer to experiment.
The s.p. seed spectrum for psM, which is taken from
phenomenological DDHF results using the Skyrme III in-
teraction, ' exhibits considerably more spin-orbit splitting
than is found in the SHF H,ff calculation. The input en-
ergy spacings of the lowest four s.p. orbits
(Os t/2 Op3/2 Op ~/q, Od5/z) have the greatest influence on the
MM results, since these orbits are partially or fully filled
f'or 14&A &18 nuclei. For psM the Op~/2-Ods/2 energy
gap is about 35% smaller than that of psHF, due to the
larger Od5/2 Od3/2 splitting in the former. By suitably in-
creasing the Odg/2 Od3/2 splitting in the psHF input list,
f e;,1;), the psHF results in Fig. 6 can be made nearly iden-
tical with those of psM. This could be an indication that
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FIG. 5. Calculated g.s energies for 14(3 (18 nuclei relative
to the calculated ' 0 energy. In the left and central columns,
MM estimates of H,ff(X,Z) relative energies are shown for six
choices of the DOS function p, (E}. In each case an E40 expan-
sion basis was used, with C=20 MeV for tpoq, po3,pwca, and
C = —1 MeV for IpHo, pss, psMI. The third column displays the
Flocard-Quentin (Ref. 13) single-neutron orbits which are used
in the seed re;, d;I for psM. The g.s. energy spectrum which re-
sults from filling these fixed orbits with neutrons and protons,
consistent with the Pauli principle, is also shown. The experi-
mental energy differences are those of Ref. 15.

comparison of A-chain separations which are generally
found to be proportional to the ' 0 energy. The appear-
ances of the predicted g.s. energy patterns at other values
of' C may be inferred from Fig. 5 and the stated rule of
thumb for the 5;.

When compared with experiment, the continuous p, re-
sults in Fig. 5 exhibit the same strengths and deficiencies
that were observed in I. Average A-chain separations are
reasonably well reproduced, particularly for pw, but too
small a variation within each A chain is found. Closed
shell phenomena, such as the energy gap between ' O and
its immediate A=16 neighbors, are again not reproduced
by the MM calculations employing continuous p, . When
the Gram-Charlier series is used to approximate the H,~f

DOS, there is no evident improvement in the results when
thi. rd-moment information is added. However, a notice-
able movement toward experiment occurs when the
Gaussian is replaced by the three-moment Weibull distri-
bution.

As a group, the three discrete distributions do much
better in predicting relative energies within A chains. pEs,
which is closest in spirit to continuous p„ leads to relative
energy estimates similar to those of the Weibull distribu-
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FIG. 6. Ground state energies within A chains, relative to the
lowest-energy member of the chain. The H, ff MM estimate of
E,(N, Z) —E, (NO, ZO) is displayed where (XO,ZO)=(8, 6), (8,7),
(8,8), (9,8), and (10,8) for A =14, 15, 16, 17, and 18, respectively.
The corresponding experimental energy differences are taken
from Ref. 15. MM results in an E40 basis are shown for two
choices of the approximate DOS distribution. For psHF the seed
inputs, Ie;,d;I in Eq. (4), are taken from a spherical Hartree-
Fock calculation of Hd~ (N =Z=8). The seed inputs for psM
are from a density dependent Hartree-Fock calculation (Ref. 13).
The degree of C dependence is similar for the psHF and psM re-
sults.

difficulties with theoretical binding energies of nuclei are
closely tied to the problem of theoretical spin-orbit split-
tings.

VI. SUMMARY

We have used moment methods with a realistic H, ff to
obtain binding energies of nuclei with 14(A & 18. In ad-
dition to the continuous density-of-states functions em-
ployed in I, we have introduced a class of adjustable
discrete DOS functions. Each discrete function is generat-
ed from a list Ie;,d; I of input s.p. energies and degenera-
cies. The e; are modified by a simple power transforma-
tion to yield a many-body spectrum in agreement with the
calculated first three moments of H,~~. The choice of the
input set Ie;,1;I thus replaces the choice of functional
form one makes when employing a continuous DOS dis-
tribution. We have used three diverse choices of I e;,d; I in
the preliminary calculations to illustrate the degree to
which output binding energies are dependent on the input
list.

While the choice of a power law transformation, such as
Eq. (4), is convenient for matching moments of the realis-
tic spectra to moments of the discrete DOS functions, it
also provides a simple picture of the behavior of the sys-
tem at high excitation energies. That is, when we choose a
"realistic" input s.p. spectrum such as a Hartree-Fock or
phenomenological shell model spectrum, the moments re-
quire a substantial compression of the high-lying s.p. spec-

tra. This indicates large rearrangement energies are asso-
ciated with highly excited states of these nuclei. On this
basis we may also conclude that the adjustable discrete
DOS method proposed here should be helpful in relating
knowledge of nuclear level densities to realistic effective
Hamiltonians.

The approximations employed fall into two major
categories: the neglect of effective many-body forces in
obtaining H, ~~ for no-core model spaces, and the approxi-
mation of obtaining the ground state energy of H,ff from
only its few lowest moments. As the model space size is
increased, the error in the g.s. energy induced by neglect-
ing many-body forces should fall, while the error in the
MM estimation process with a fixed number of moments
is expected to grow. By a comparison with the exp(s) re-
sults' for ' 0 we find an optimum balance of diminishing
errors in Hd~ and increasing errors in MM is obtained
with an E40 basis. (Such a basis contains 5.9&10' Slater
determinants for ' O.) The choice of E40 as the optimal
basis size for the 3=16 region when three moments of
H, ~~ are used is supported by Coulomb energy calcula-
tions.

The importance of neglected effective many-body forces
is gauged by the residual dependence of binding energies
on the gap parameter C. For the E40 basis, the binding
energy per particle for ' 0 changed by approximately 1

MeV for each change of 10 MeV in C (Fig. 3). However,
calculated relative binding energies within an 3 chain were
found to be nearly independent of C (Fig. 6).

Relative binding energies calculated using continuous
DOS functions displayed the same successes and
shortcomings that were observed in the model calculations
of I. In particular, the continuous functions led to too
small a variation of predicted binding energies within each
A chain. Discrete DOS functions generated using sensible
choices of I e;,d; I were much more successful in reproduc-
ing experimental energy separations with A chains. An in-
put list based on the HF spectrum from H, ~~ was found to
be quite adequate, but a DDHF s.p. spectrum led to im-
proved agreement with experimental relative binding ener-
gies due to a more accurate spin-orbit splitting.

The main results of this work are presented in Fig. 6
and show that, where the methods employed are most
stable, we obtain good agreement between theoretical and
experimental relative binding energies within each
chain. We view with satisfaction the accurate prediction
of' the most stable isobar in all cases.

The current effort does not begin to address the poten-
tial advantages of partitioning model spaces according to
some symmetry scheme. ' However, future progress in
applications of realistic effective Hamiltonians in large
model spaces will depend upon successfully implementing
methods of partitioning the space.
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