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The effect of finite boson number in the interacting boson approximation is one of its most distin-

guishing features. These effects are investigated in terms of the deviations of y~g band E2 transi-
tions from the rotational (Alaga) values which provide one of the most crucial tests of collective
models of deformed nuclei. It is shown that the empirical systematics of these deviations displays a
strong mass dependence, that the interacting boson approximation successfully reproduces these sys-
tematic trends, and does so primarily by virtue of the variations in boson number and not because of
parameter variations. Moreover, the origin of the N dependence lies in the characteristic way in

which the SU(3) symmetry is broken in calculations for realistic deformed nuclei and involves, in an
essential way, the X dependence of the SU(3) ) ~P transitions.

NUCLEAR STRUCTURE Interacting boson model, finite boson number ef-
fects, relation to geometric models.

I. INTRODUCTION

The formalism' -' of the interacting boson approxima-
tion (IBA) incorporates an explicit dependence on boson
number X, where N is the sum of the number of s and d
bosons (N =n, +nd) and, in this feature, differs essentially
from geometrical or shape models. Nevertheless, recent
studies have indicated that the two approaches become
largely equivalent as X~oo. Thus, there has long been
active interest both in the relation between this model and
geometrical models and in the role played by finite N in
the predictions of the IBA. These issues are of broader
importance because of the light they may shed on the
more general question of the significance of levels from
adjacent shells in the structure of low lying collective
states in heavy nuclei.

For a number of years, it was thought that the effects of
finite boson number in the IBA would show up most
dramatically among high spin states in terms of spin cut-
offs at I =2K and falloffs toward zero in 8(E2) values
connecting successive high spin states of, for example, the
quasiground band. A number of experimental tests
were indeed carried out, with mixed results, but it has re-
cently become recognized that it is in just such states that
one approaches the limit of expected applicability of the
IBA in that other degrees of freedom, such as two particle
pair excitations, begin to play a major role.

Conversely, for low spin states, it was then widely anti-
cipated that finite X effects would be of little practical im-
portance. For example, in the SU(5) limit, the IBA
predicts a B(E2}value from the two phonon to one pho-
non state that is related to the one phonon to ground state
B(E2) value by the factor 2(N —I)/X, which goes to the
geometrical hmit of 2 as X~ co. For typical vibrational
nuclei, where %=6—8, this correction is only =15%. In
deformed nuclei, where %=12—18, one might expect such

finite % effects to be even smaller.
However, very recently, some results have begun

to emerge ' for deformed nuclei that suggest that these
effects are extremely important for low lying low spin
states. Indeed, finite X effects are the key ingredient in
enabling the IBA to generate systematic predictions over
series of nuclei that are borne out empirically. It is the
purpose of this paper to address the question of the role of
finite X in the IBA by examining y—+g band E2 transi-
tions in deformed nuclei which, as will be evident below,
are a particularly sensitive probe of these effects. More-
over, it will be shown that a study of the origin of these X
effects provides an explanation for their unexpected im-
portance.

II. FINITE BOSON NUMBER EFFECTS
IN DEFORMED NUCLEI

A. General discussion

In this paper the discussion is limited to deformed, or
near deformed, nuclei where the y band is below the P
band. The reason for this restriction is practical, not fun-
damental, namely, that the IBA Hamiltonian that can be
used to describe these nuclei is particularly simple: The
essential predictions in fact depend on a single parameter.

The IBA Hamiltonian of relevance here, then, is sim-

II= —IrQ Q a'I. I. ', —
where

Q=(std+dts)' '+ (dtd)' '

and I, is the boson angular momentum operator. The
operator Q also determines E2 transition rates since the
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E2 operator is T(E2)=aQ. The coefficient X in Q is tak-
en as a free parameter which is allowed to vary from the
SU(3) value of —~35/2= —2.958 down to the O(6) value
of zero. Since 7 also determines the relative strengths of
E2 transitions, it is usually fixed from a ratio of B(E2)
values, a suitable one being the ratio

B(E2;2r~Os)/B(E2;2s~os) .

This ratio has an inter-band, inter-representation transi-
tion in the numerator and is therefore zero in the SU(3)
limit: For g& —2.958, it is finite and highly sensitive to
X. The other parameters in H and T(E2) are of no conse-
quence whatsoever for the present discussion. The con-
stant a is merely an overall normalization factor for
B(E2) values. The I. L term is diagonal and therefore
cannot change the energy separation of states of the same
spin nor their wave functions. The parameter ~ also has
no effect on wave functions or transition rates. It serves
only to determine the overall energy scale. Thus, the
model, as used here, involves a one parameter calculation.
Of course, it is not intended that H of Eq. (1) will be suffi-
cient to adequately describe each deformed nucleus in de-
tail. Certainly, additional terms, such as one in ~"P P,
may have to be added to fine tune the predictions. Such
refinements, however important in actual calculations, are
extraneous to the present discussion and may be ignored.

One of the most interesting predictions of the IBA, and
one that will be shown to play an important role in the
structure and N dependence of y~g transitions, is that of
strong, allowed E2 transitions connecting P and y bands
in deformed nuclei. These transitions are a feature in
direct opposition to the pure harmonic geometric model in
which such transitions are forbidden since they would
change the phonon number by two. They arise in the IBA
as a natural consequence of the SU(3) limit and, indeed,
persist in calculations with broken SU(3) for typical de-
formed nuclei where they continue to dominate the P~g
transitions. These transitions are difficult to detect empir-
ically due to their low energy but have been observed"
and do indeed dominate P~g transitions where the ap-
propriate experiments have been carried out.

B. y-g band mixing

The IBA in deformed nuclei has been shown ' ' to
successfully account for the detailed branching ratios of
y~g transitions and to include "automatically" the ob-
served empirical deviations of these branching ratios from
the simple rotational (Alaga) values.

It is perhaps easiest to discuss this feature in the context
of the Mikhailov plot formalism. This has been described
elsewhere. '" ' The essential point is that, in the presence
of b,% =2 mixing, the y~g B(E2) values are modified
and, under certain approximations, can be expressed by

B(E2 Iy~Ig )

2(I,22 —2
~ I,O)

=Mi M2[Is(Is+1) Ir(Ir+1)] (3)

where I~ is a ground band spin and Iz is a y band spin.
The quantities M~ and M2 are directly related to the

direct (unmixed) ~=2 transition matrix element and the
y-g mixing amplitude, respectively. Explicitly,

g I IE2111(r) —4M»

M, =(15/8~)'"eQ, ~, .
(4)

Here, ez is the spin independent part of the y-g mixing
amplitude. The full mixing amplitude is given by erfr(I),
where

f'r(I) v 2[(I 1)I(I+1)(I+2)]
The approximations inherent in Eq. (3) are that one can
neglect other spin dependent AC =2 mixing effects, that
the quadrupole moments of the ground and y bands are
the same, and that the spin dependence of the mixing
fr(I) is that arising from ddt =2 mixing of rotational
wave functions. In typical deformed nuclei, all three as-
sumptions are generally well satisfied insofar as their im-
pact on y~g transitions is concerned.

The advantage of Eq. (3) is that, essentially, the intrinsic
E2 transition matrix elements on the left are described by
a straight line with intercept M~ and slope M2 when plot-
ted against Is(Is+1) I&(I&+1—). Thus, via this formal-
ism, any set of data, or calculations, which fall on a
straight line on a Mikhailov plot, can be dissected to dis-
close separately the implicit direct transition matrix ele-
ment contained in M& and the mixing effects given by M2.
The most common '" ' indicator of the mixing is the
parameter Z& which is given by

—2M,Z-
M)+4M2

which can be deduced from branching ratios rather than
absolute B(E2) values.

Given that an IBA calculation correctly gives the direct
average ~=2 y~g transition matrix element, which, in
practice, is ensured by the choice of the parameter P, and
that both the data and the IBA calculations lie on a
straight line on a Mikhailov plot, then the extent of agree-
ment or disagreement between the data and calculations
for all the y~g transitions can be compactly assessed by
extracting and comparing empirical and predicted effec-
tive values of the single parameter Z&. In Ref. 8, such a
comparison was presented for a number of nuclei in the
rare earth region. The empirical Z& values showed a rath-
er smooth behavior for each element and the IBA calcula-
tions agreed with the data within a factor of 2 in all cases.

In order to investigate this more thoroughly, a more ex-
tensive literature search has been instituted to obtain a
larger number of empirical Z& values, particularly in the
upper half of the rare earth region (Yb, Hf, W, and Os nu-
clei). In most cases it has been possible to extract these
values from a full multipoint Mikhailov analysis: In a few
cases only one or a pair of branching ratios was known.
The search covered all deformed and transitional nu-
clei"' ' ' subject to the criterion that Ez&Ep. The
empirical systematics of Z& values, shown in Fig. 1,
display a remarkable behavior when plotted against a bo-
son number. The values exhibit a smooth cup-shaped sys-
tematics with a minimum at midshell. This regularity in
itself suggests a simple underlying mechanism and strong-
ly hints that the mechanism is related to the variations in
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FIG. 1. Systematics of empirical Z~ values extracted from
8(E2) ratios of Refs. 11, 13, and 17—41 for rare-earth, de-
formed nuclei with Ez & Ep plotted as a function of X.
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FIG. 2. Empirical g values [see Eq. (2)] deduced for the nu-
clei in Fig. 1.

the number of valence nucleons.
In order to compare these empirical Zz values with ones

calculated with the IBA, the appropriate 7 values must
first be determined, using ratios of y~g to g~g B(E2)
values. These have been extracted for the nuclei of Fig. 1

and the results are shown in Fig. 2. It is important to note
that, for the nuclei in the center of the region displayed in
Fig. 1 (the well deformed nuclei), the X values fall in a
narrow range which can be conservatively encompassed by
the values from —0.9 to —1.2. For the transitional nuclei,
such as the very neutron deficient Er isotopes and the
heavy Os isotopes which, in each case, are approaching the
O(6) limit, the 7 values drop well below this range.

Recalling that the quantity Z& is only properly defined
if a Mikhailov plot yields a straight line, it is necessary be-
fore proceeding further to verify that such a behavior is
indeed characteristic of these IBA calculations. This is
most easily done by presenting a matrix of Mikhailov

plots for a set of X and 7 values. Figure 3 shows Mi-
khailov plots of IBA calculations of y~g transitions for
%=16, 12, and 10 and g= —1.5, —1.0, and —0.5. It is
clear from the figure that the IBA leads to a straight line
for large X and

l
X

l
values. As either decreases, a curva-

ture begins to appear, most notably a rolling over for spin
increasing transitions. Closer inspection shows that, if

I
X

~

N & 12, a reasonable straight line results.
In light of the above discussion and Fig. 3, it is evident

that the calculated Z& values for the transitional light Er
and heavy Os nuclei must be extracted from partially
curved Mikhailov plots and thus are only of approximate
validity and even then primarily so only for spin decreas-
ing transitions. With this caveat in mind, the calculated
Z& values can be compared with the empirical ones and
the results are indicated by the dashed lines in Fig. 4. It is
clear that, overall, the IBA reproduces the empirical
values of Z& rather well both over the entire region as well
as for each element. In all cases, the agreement is again
within a factor of 2. The Z& values are underestimated
for the very light Er nuclei, but the arguments given above
imply that the Mikhailov-based comparison should be
treated more qualitatively in such cases.

Since the IBA does reproduce the empirical Zz sys-
tematics which themselves exhibit an apparent boson
number dependence, it remains for us to ascertain if this
dependence arises in the IBA implicity, via changes in P,
or directly, via the boson number variations in the struc-
ture of the IBA states. As pointed out earlier, the X values
for most well deformed nuclei fall in a narrow range. The
band of Z& values corresponding to this range is shown in
Fig. 5. This provides a conservative way of distinguishing
g from % effects by utilizing the extreme values of g for
well deformed nuclei. It is clear from the figure that the
IBA automatically gives a cup shaped vari-ation of Zr by
virtue of the explicit variation with mass of the boson num
ber.

Not only does this result highlight the importance of
boson number effects in determining the predictions of the
IBA, even for low lying, low spin states, but it also points
to the underlying microscopy behind the IBA in the sense
that, although the ISA is ostensibly phenomenological, it
provides many predictions that are beyond the scope of
geometrical models unless microscopic [e.g., random
phase approximation lRPA)] ingredients are introduced
externally.

The discussion so far has been mainly restricted to those
nuclei for which 0.9( ~X

~

(1.2, and therefore excludes
some of the larger Zz values in Fig. 1, corresponding to X
and g values where the Mikhailov plots for the IBA ex-
hibited substantial curvature. However, one can still esti-
mate approximate Z& values for these nuclei. The results
were presented in Fig. 4 and„as remarked in the context of
that figure, show reasonable agreement with the data. To
understand the origin of the large Zz values for the transi-
tional low N Er and Os nuclei, it is useful to present an ex-
panded form of Fig. 5 where Z& contours for a larger
range of g values are included, and where the Z& value for
each nucleus is indicated by positioning it according to its
1V and g values. This is shown in Fig. 6. It is important
to note that for the transitional nuclei, the boson number
is no longer the controlling factor. Now, it is primarily the
rapidly decreasing J values (see Fig. 2), albeit reinforced
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FIG. 6. Calculated Z~ values as a function of N and g. The
lines show the systematic behavior of Z& as a function of N, for
the constant g values listed on the right. The dashed portions
correspond to g, N combinations for which the Mikhailov plots
exhibit substantial curvature. These Zz values should be treated
more qualitatively. The points are the calculated values for
specific nuclei. They are plotted according to their boson number
N and the g values shown in Fig. 2.

by the effects of the steadily dropping N values, that lead
to the large increase in y-g mixing.

The respective roles of N and 7 can be seen more quan-
titatively by drawing an average curve through the empiri-
cal X values in Fig. 2 (neglecting for simplicity the
anomalous Gd and Yb points) and then by plotting for
each N the change in Z&, relative to its minimum value,
for g= —1.14 and N=16, due to decreases in N and
changes in g. This is shown in Fig. 7 where, for any N,
the height of each crosshatched area gives either the N or
the X effect. As pointed out above, it is clear that for the
well deformed nuclei (N&12) the boson number effects
dominate, and give way to 7 effects in the transitional re-
gions.

C. Origin and interpretation of the y~g transitions

It has been shown that the y~g transitions in deformed
nuclei empirically display a systematic pattern of devia-
tions from the Alaga rules that is rather well reproduced
in the IBA, largely as a result of variations in boson num-
ber N. The origin of these results in the IBA calculations
can be understood in terms of the structure of the IBA
Hamiltonian and the wave functions involved. Although
the Hamiltonian is usually expressed in an SU(5) basis,
this is not particularly convenient or illuminating for de-
formed nuclei. It is more useful to make a unitary
transformation and deduce the effects of H in terms of
matrix elements which admix SU(3) states. Figure 8
shows a plot, for 2+ states, of the magnitude of some of
the LK =0 and 2 symmetry breaking matrix elements be-
tween SU(3) states as a function of X. The most impor-
tant feature, pointed out in an earlier study, ' is the

FIG. 7. The relative contributions to changes in Zz, relative
to its value for N = 16 and g = —1.14, due to changes in N and
g. The N contribution is obtained from a contour plot similar to
Fig. 6 for P= —1.14. The J' contribution is obtained by utilizing
a curve of P values against N obtained by averaging the values in
Fig. 2 (neglecting the anomalous Gd and Yb points) and then,
for each N, taking the difference between Zz calculated for the
appropriate g value, and for g= —1.14.
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FIG. 8. The hE =0 and 2 IBA matrix elements admixing
SU(3) states, plotted as a function of g for N =12.

dominance of ddt =0 matrix elements. It will be shown
that this is directly reAected in the resultant wave func-
tions. As with the Hamiltonian, these wave functions are
usually expressed in terms of SU(5) basis states. In de-
formed nuclei, however, they then become extremely com-
plicated and hardly amenable to the recognition of simple
regularities. An enormous simplification and ease of
physical interpretation arises, however, if the IBA wave
functions are reexpanded in an SU(3) basis. This ap-
proach has been discussed in Ref. 43 where, for example,
the evolving structure of the low lying 2+ states as a func-
tion of SU(3) symmetry breaking is readily apparent (see
Fig. l of Ref. 43). In the context of the current formal-
ism, which employs a consistent form of the quadrupole
operator in H and T(E2), Fig. 9 presents a similar decom-
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where X2—1 and XO ~s given by
r

Xo ——— (I —l)(I)(I +1)(I+2)
4(A, +2)(A, +3)(A,—I +2)(X+I+3)

1/2

(9)

Note that Xp is effectively a y-P mixing amplitude and
that it has a strong N dependence (for N »I, Xo
=1/A, =1/N ). The slope, M2, as mentioned earlier, in a
Mikhailov formalism for ~=2 mixing, is given by

M2 =(15/8')'~ eg e

= ( 15/8m. )
' ego(N)Xp(N) /f r (I), (10)

where the last expression uses Eqs. (8) and (9) and neglects
the miniscule spin dependence in the denominator of Xo.
Since the quadrupole moments of deformed nuclei are
very closely proportional to N in the IBA, the N depen-
dence of Mz, given by Qo(N)Xp(N), is well approximated
simply by 1/N. Thus, the basic structure of the y and P
bands in the SU(3) limit, which effectively involves a~=2 mixing, measured by Xo, directly leads to a strong
N dependence in the y~P contribution to "y~g" transi-
tions.

To summarize, the y-P contribution to the calculated
"y~g" transitions arises from the large hK =0 mixing
characteristic of SU(3) symmetry breaking for typical de-
formed nuclei, which admixes large P components in the
ground band, and from the group structure of the IBA
which, contrary to the harmonic geometrical model, al-
lows the component y~P SU(3) transitions. The
dependence of the calculated y-P contributions to the
"y~g" transitions in turn stems from that of the y-P
mixing inherent in the SU(3) limit.

the N dependence as well. Hence, a rather detailed but yet
elementary understanding of the behavior of the IBA cal-
culations of "y—+g" transitions can be obtained by further
study of these two constituent amplitudes.

This is easiest for the more important y-P amplitude
which arises from two aspects of the specific structure of
the IBA in deformed nuclei, namely the large ~=0 ma-
trix elements that generate the SU(3) symmetry breaking
and thereby admix substantial P amplitudes into the SU{3)
ground band, and the allowed nature of the y~P SU(3)
transitions. Recalling that an allowed intra-representation
transition, such as y~P, has almost no dependence on the
values of X chosen in the E2 operator, the role of finite N
in such a transition can be assessed by inspecting its SU(3)
behavior.

In the SU(3) limit of the IBA, the ground band is
represented by the quantum numbers (A, ,p) =(2N, O),
whereas the next representation is characterized by

(A, ',p, ') =(A, —4,2) =(2N —4,2).

The (2N —4, 2) representation is comprised of two bands:
a pure E =0 band, and a second band which is predom-
inantly IC =2 (y band} with a small admixture of E =O.
The SU(3) wave function of the predominantly K =2 band
in the (A, ',p') =(2N —4, 2} representation is then given by

i
(1,',P')1(2I) =Xp

i
(A, ',P'), K =O,I )

+X2
~

(1,',p'), X =2,I),

The origin of the slope and N dependence of the y~g
component of the "y~g" transition is more difficult to
identify but also arises from finite N effects. In general,
aside from the type of mixing arguments just discussed,
any E2 matrix element in the IBA will also depend on
those finite N effects which relate to the expectation
values of the number of d bosons, (n~), in the wave func-
tions. Thus, a priori, it is not surprising that an IBA
Mikhailov plot is not horizontal since (n~) will be spin
dependent and it will be different for different bands.

A measure of these effects in the present case is given
by the normalized difference, En', in (ne(I)) for the y
and g bands:

(nq(I„)) —(nq(I ))
3 ng{Iy, Ie,N) =

N —( n~(I& )

Values of b, ne can be easily calculated from the SU(5) ex-
pansion of the wave functions. The calculations show
that, for the same spin, (nq) for the "y'* band is higher
than for the "g" band. Thus finite dimensionality effects
are not equal for the two bands. Moreover, the d boson
number within a band increases with spin. Therefore, a
spin decreasi'ng y~g transition such as a 6& ~4~+ transi-
tion will be much more affected by finite N than a spin in-
creasing one such as 4& ~6&+. In fact, it turns out that a
plot of hn~ against the same abscissa as in the Mikhailov
plot results in a straight line with finite slope and that the
fractional change in this slope with decreasing N is direct-
ly proportional to the rate of change in the slope of the
y~g amplitude.

Very recently, the N dependence of these same y~g
transitions was calculated analytically utilizing SU(3)
wave functions and shown to be closely approximated by
1/v N. Thus the N dependence of the "y~g" transitions
results from the 1/N variation due to the y~P com-
ponent and the 1/vN variation arising from the y~g
component. Figure 11 shows the relative sizes of these
two components, for N =16, by using the results of Fig.
10 and then, using this normalization, displays the
changes in each component due to decreasing N. The
solid line for the y~P component is obtained from actual
calculations. The dashed line is simply calculated from
the variations in the calculated quadrupole moments and
from the N dependence of the quantity [see Eq. (9)]

Xo =Xo{N)/f r(I),
where the small J dependence remaining in Xo is neglect-
ed.

III. SUMMARY

A crucial test of collective models for deformed nuclei
lies in their ability to correctly predict the deviations of
inter-band transitions from the Alaga rules since such de-
viations reflect important nonrotational components in the
wave functions. Empirically, the best studied of such
transitions are those connecting y and ground bands. The
systematics of these deviations from the Alaga rules was
extracted (in terms of Z& values) from the literature and
shown to have a remarkably smooth, nearly parabolic,
shape when plotted against boson number N. IBA calcu-
lations were shown to reproduce these systematics in an
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FIG. 11. Absolute value of the slope of the SU(3) y~P and
y~g Mikhailov plots as a function N. The solid line for the
y~P slope is obtained from numerical calculations of these
transitions. The dashed line for the y~g transitions, which is
normalized to the solid one at N =16, is obtained from the N
dependence of the product Xogo, where Xo Xo jf'r(B ——and
where the very small remaining spin dependence of Xo is
neglected. The dashed line for the y~g slope is obtained from
Van Isacker's (Ref. 44) approximate expression, M2(y~g)
=1/~N, and from the calculated value of the slope at N =16
obtained from Fig. 10.

SU(3) states to produce wave functions for realistic calcu-
lations. Specifically, it originates essentially from two
sources, from the differences in average d boson number
in the y and g bands, and more importantly, from the
dependence of the mixing of pure E =0 and 2 states on N
to produce the analog of y and P bands in the IBA. It is
indeed because of such inherent mixing effects that the N
dependence in "y-g" transitions is much stronger than had
been anticipated using the simple argument given in the
Introduction.

It is important to assess the meaning of these results
carefully, by distinguishing between variations in boson
number and the absolute value of N. The present results
demonstrate the fundamental importance of boson number
variations in the IBA due to changes in mass. It does not
establish, however, a specific value for N. Such a deter-
mination, if possible at all, must result from further stud-
ies, although recent work on g factors near Z =64,
N=90, in an IBA-2 context, has led to a very suggestive
discrimination between two sets of proton boson numbers.
Ultimately, this question is of substantial importance,
both in assessing the role of intruder orbits in modifying
the effective boson number applicable to a given nucleus,
and since it represents the crucial foundation upon which
any essential link with the underlying shell model basis
must be built.

extremely simple (consistent Q) formalism incorporating
only one parameter, X. This analysis permitted the isola-
tion of 7 and N effects and showed that, for the majority
of well deformed nuclei, the principal determinant of the
systematic behavior of "y~g" transitions is specifically
the explicit N dependence in the IBA. Finally, it was
shown that this N dependence arises primarily from the
structure of the SU(3) wave functions, and from the
predominantly ~=0 symmetry breaking which admixes
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