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The quasifree scattering process ' C(e, e p) "8 is investigated in the distorted wave impulse

approximation using the effective Hamiltonian of McVoy and Van Hove. The off-energy-
shell effects are correctly taken into account by replacing the momentum of the proton by
the gradient operator T. The influence of the spin-orbit coupling in the final state interac-

tion and the nuclear deformation has also been studied. The results indicate that the effect
of the gradient operator is to decrease the cross section over a wide range of momentum and

to shift the peak of the cross section towards the higher mofnentum region. It is found that
the spin-orbit interaction affects only the maxima and minima of the cross section. The de-

formed oblate potential of Nilsson with N and N+2 coupling for the bound state wave

function is found to improve the agreement of the cross section with the experimental data.

NUCLEAR REACTIONS Quasifree electron scattering from ' C, dis-

torted wave impulse approximation, off-shell effects, gradient operator
for the proton, nuclear deformation, oblate deformed Nilsson wave func-

tion.

I. INTRODUCTION

The quasifree knockout process has been widely
used with various particles as a probe for the investi-
gation of nuclear structure. The reaction is concep-
tually simple in its formalism and yields reliable in-
formation about the single particle aspects in light
nuclei. ' More than a decade ago, the quasifree
(e, e'p) reaction was studied by one of us in the
plane wave impulse approximation (PWIA) using
the effective Hamiltonian of McVoy and Van Hove
for the electron-nucleon interaction, and subsequent-
ly the treatment has been greatly improved by Epp
and Griffy and Radhakant by including the final
state interaction for the process. In recent years,
Mougey et al. and Boffi et al. ' have contributed
substantially to the study of this process and dex-
terously extracted the single particle features in nu-
clei using a factorizable form for the coincidence
cross section. The aim of the present investigation
was to carefully assess the off-energy-shell effects in
the quasifree process. Our results indicate that the
off-shell effects reduce the coincidence cross section
in ' C by about 50%, and this is in accordance with
the experimental observation of Mougey et al. who
reported that the absolute cross section is 40% lower
than expected from the theory which neglects the
off-shell effects.

The process of quasifree scattering of electrons in-
volves the study of the following four essential in-
gredients, viz. ,

(1) the effective Hamiltonian for the basic
electron-proton interaction,

(2) off-energy-shell effects which inevitably occur
in the nuclear problem,

(3) the bound state wave function of the nucleon
which is knocked out, and

(4) the final state interaction of the outgoing pro-
ton with the residual nucleus.

For the effective electron-proton interaction, we use
the McVoy and Van Hove Hamiltonian which
reproduces the free electron-proton cross section
admirably well. Also this Hamiltonian allows the
inclusion of off-energy-shell effects in the case of
the electron-nucleus interaction. The off-energy-
shell effects are taken into account correctly by re-
placing the momentum of the proton by the gradient
operator V'. The Saxon-Woods form of Elton and
Swift and CHannini and Ricco' potentials are used
to generate the bound state wave functions. These
potentials correctly yield the separation energy of
the protons in different shells. Since it is known
that the ground state of the ' C nucleus is deformed,
the deformed oblate potential of Nilsson is also used
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in the study. The optical potentials of Crlassgold
and Kellogg, " Giannini and Ricco, ' and Jackson
and Abdul-Jalil' are used for the final state interac-
tion of the proton with the residual nucleus, and
these potentials yield the elastic proton-nucleus
scattering data quite well.

The purpose of this paper was to tnake a sys-
tematic and detailed study of the various factors
that influence the quasifree scattering process and to
investigate the effect of the gradient operator V and
the nuclear deformation on the coincidence cross
section. The approach is rigorous and does not aim
at the factorization of the cross section into the free
electron-proton cross section and the nuclear spec-
tral function. The plan of the paper is outlined
below. The general formalism for the reaction pro-
cess is presented in Sec. II. The evaluation of nu-
clear matrix elements in the distorted wave impulse
approximation (DWIA) is detailed in Sec. III. In
contrast to the work of Radhakant, we have ob-
tained a simple and compact expression for the en-
tire matrix element of the process in DWIA with a
view to investigate the effect of the gradient opera-
tor V and the spin-orbit coupling for the outgoing
proton. The evaluation of the distorted spectral
density function from one of the terms of the matrix
element has also been outlined in that section. The
deformation of the nucleus also infiuences the cross
section along with the final state interaction. In Sec.
IV the effect of the nuclear deformation on the cross
section is discussed using the nuclear wave functions
obtained by extending the Nilsson model to include
the single particle orbitals and contributions from
higher major shells. In Sec. V the results obtained
for the reaction ' C(e, e'p) "8 are compared with the
available experimental data and earlier calcula-
tions.

II. CxENERAL FORMALISM

The quasifree knockout of a proton by an electron
is illustrated in Fig. 1. An incident electron (energy

(Ep p)')

, (e„,q„)

FIG. 1. Quasifree knockout process with final state in-

teraction.

E; and momentum k; ) is scattered by a proton with
momentum p; and separation energy E, bound in-
side a nucleus. In the PWIA, the rest of the nucleus
is assumed to be not affected but moving with
momentum q~ = —p;, where p; is the momentum
of the struck proton in the nucleus. The conserva-
tion laws of momentum and energy require that

qz ———p;=k; —kf pf
2

f= '+ '+
2(W —1)M '

where Ef and kf are the final energy and momen-
tum of the electron and pf is the momentum of the
emitted proton with kinetic energy Ez. The interac-
tion between the electron and the proton is
represented by the McVoy and Van Hove Hamil-
tonian.

The matrix element for the reaction with the
above Hamiltonian can be written in a compact
form as given below.

2

2(A —1)M

24~e 2

'(lff
~
Q —a J u; )F(q„)5 E; E, Ef———

The quantities involved in Eq. (3) are defined in our earlier work. Squaring the matrix element, summing, and
averaging over electron spins, we obtain

e' '
~M

~

= ~ ~F(q„) [(4EEf+q )QQ* —q 'J J *+2(kf J)(k; J*)+2(kf J )(k' J)

2Ef I(k;.J )Q*+(k;.J *—)QI 2E; I(kf J )Q*+(—kf. J ')QI] . (4)



90 NATARAJAN, ARUNACHALAM, GIRIJA, AND DEVANATHAN 28

The coincidence cross section is given by

CT 27T

dEfdA, dA& 4E;Ef

where pf is the three-particle density of states given
in Ref. 2.

III. EVALUATION
OF NUCLEAR MATRIX ELEMENTS

IN DULIA

The complexity of the problem increases when the
plane wave approximation is replaced by the distort-
ed wave formalism which includes the final state in-

teraction between the residual nucleus and the emit-
ted proton. However, in the distorted wave theory
of Epp and Griffy the momentum operator p has
been replaced by the asymptotic momentum pf
which is valid only for plane waves. The procedure
of Radhakant is cumbersome and numerically diffi-
cult for evaluation since it involves a large number
of terms in the matrix element. Thus, the earlier
works are approximate and incomplete. Here, we
present a complete and rigorous method of evaluat-
ing the matrix element in DWIA including the gra-
dient operator V and the spin-orbit coupling for the
knocked-out proton. The quantities Q and J in Eq.
(3) assume simple forms if we restrict our considera-
tion to nuclei with closed shells or subshells.

Q=(pf, —,m, 1+ (1+2K) e' '' u„IJ(r),L , JM), —
8M

J = (pf, —,m,
l
pe' '+e''q "p+i(1+K)(o Xq)e'"''

l
u„lJ(r),L , JM)—

2M (pf, —,m, e' ''I(q+2p)+i(1+K)(o Xq)I
l
u„iz(r), L

2 JM) .

They depend upon the shell from which the proton is knocked out and
l
u„LJ(r),L , JM ) re—presents the single

particle shell model wave function. Replacing the proton momentum p by the gradient operator V', we have

where

~ pf —.m.
l

e"' X 2 ~".o&A pr(p ~ v)KN u LJ(r) L
2M „,N =0,1,A, ,

—+ 0 vAoo —q, Ao) —E) XP), A)o= 2iF&, A—» ——0, Ko ——1, K~ i (1+K)—q—~

ln Eq. (8), &0 and oo denote unit operators whereas V'& and cr~ denote the gradient operator and the Pauli spin
operator, respectively. With a view to include the effect of the spin-orbit coupling' ' in the final state interac-
tion, the outgoing proton wave function is expanded in terms of the definite final angular momentum states Jf.
We arrive at the following expression using the angular momentum algebra:

(4vr)' mf m(i)' f Yl (Pf)Y( ' (q)A„~(p, k, , v)K~
lg, /, Jf,L, W

Pl, N, mf, mq, P) A,

X C(lf —,Jf mfm, Mf )C(lqnL, mqpmL )C(LX&,ml Am~)

XC(~r~Jf~Mim~Mf)~gl J (Pfr) if z JfllJi (er)

X t I: &i,(r ) X ~n 1L, Xo'x I w I I un, i, q, (r) ir 2 ~i &. . (10)

When the momentum transfer q is chosen along Z
direction,

I:q1„,&m, O(4~)'"

and v becomes zero.
The radial part of the proton wave function

gj J (pf r) is obtained by solving the Schrodingerf f
wave equation with suitable proton-nucleus optical
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potential that can reproduce the elastic scattering
data. In the limit of the plane wave approximation,
the radial wave function gt I (pfr) reduces' to thef f
spherical Bessel function jt z (pf r ). The reducedf f
matrix element in Eq. (10) has to be evaluated only
for the values (a) n =0 and %=0, (b) n =1 and
X =0, and (c) n =0 and X = 1. The evaluation of J
involves the calculation of the following radial in-
tegrals which include the derivatives of the bound
state wave function:

F= gI*J pfr ji qr u„IJ rr r

F =—gt z (pfr)jt (qr)D u„IJ—(r)r d, r,f f

S(p,E)= gX i
N (p)

i
5(E E—), (19)

where 4 (p) is the Fourier transform of the single
particle wave function in coordinate space with the
eigenvalue E of the state a. N is the occupation
number. The final state proton-nucleus interaction
modifies the form of @~(p ) as

)&e'~ 'P ('r)d r .

torizable yielding the spectral function. ' In a pure
independent particle model the spectral distribution
is given by

where

gi J pf jI q + +IJ r r r

dr r

(13)

(20)

P~(r) describes the initial bound state and gz
' (r)Pf

the distorted outgoing proton wave function. Ex-
cegt for the constant factor, the form of
N (pf, q~, E) in DWIA is similar to Q in Eq. (6).
Using the value of QQ* for

„E)
d I. +1+
dr r

(14)

For angular momentum coefficients and reduced
matrix elements, we follow the notations and con-
ventions of Rose. ' Throughout, the symbol [I]
denotes (2l +1)'/ . The advantage of this method is
that the various terms in Eq. (4) are easily calculated
once the value of J is obtained in terms of its spher-
ical components. The evaluation of one such term is

(k; J)(kf. J *)=
m, M, p, p'

kf'J" kf" J" .

sinoq„

p1/2
(16)

(kf )) =
~ kf

~

cosOqi(.

(k;), =(q))+(kf )),

(17)

where 0~k and 0~k are the angles made by the vec-q; q f
tors k; and kf with the direction of q, respectively.

» Eq. (4), if only the QQ* term is retained omit-
ting all other terms, the cross section becomes fac-

Since the momentum transfer q is chosen along the
Z direction, the electron momentum vectors k; and

kf in terms of the spherical components become

(k;))' ——(k;)) ' ——(kf)I' ——(kf)(

we have calculated the momentum distributions for
the p3/p state both in the perpendicular and parallel
kinematics and compared them with recent experi-
mental data. '

IV. NUCLEAR DEFORMATION

The deformation of the nucleus has influence on
the coincidence cross section of the quasifree
scattering process in the upper shell. ' There is
strong theoretical and experimental evidence for the
deformation of ' C, which has an oblate deformed
intrinsic state, contrary to the conclusion arrived at
by Friar and Negele. The deformed structure is
supported by a self-consistent Hartree-Fock calcula-
tion ' using a density dependent effective interaction
with a realistic spin-orbit component. The earlier
works on ' C also reveal that the ground state is the
0+ state of a rotational band based on a deformed
intrinsic state. There is considerable configuration
mixing, as indicated by the work of Cohen and
Kurath. ~ The explicit wave function given by
Saayman et al. for the ground state of ' C has a
large admixture of configurations (p3/z) (p»z) and
(p3/p) (p&/z), each of weight 40%. The recent cal-
culation of longitudinal and transverse response
functions for quasifree electron scattering from
' C also indicates similar results. The elastic and in-
elastic form factors have been calculated ' for ' C
in the framework of the Nilsson model, and the re-
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H =Ho+Hs+H
where

(21)

Ho —— ( —V+r ),
2

1/2

oIo5r Y2o,2

(22)

(23)

HI=C1. s+Dl (24)

The equipotential surfaces have a constant volume if

suits affirm other theoretical conclusions on the de-
formation of ' C.

In the Nilsson model, the nuclear single particle
wave functions X" are the eigenstates of the Hamil-
tonian

filled Nilsson level of ' C is obtained using the
values coo ——413 '/ MeV, M=0.08, and @=0.

XI/2 o 766
l
lp3/2)+o 642

l
lpl/2) ~ (32)

The term r Y2o in H& mixes states with different N
and l, whereas the spin-orbit term 1 s in HI mixes
states with different A and X with the condition
fl =A+ X. If the coupling between X and X +2
states is taken into account, the Nilsson coefficients
also include higher major shell contributions.

Essentially, the effect of the nuclear deforInation
is to modify the spherical bound state proton wave
function into a linear combination of other possible
spherical wave functions with corresponding Nilsson
coefficients. We have calculated the matrix element
in Eq. (4) using the Nilsson wave functions for the
bound proton, and the effect of the deformed struc-
ture of the nucleus on the coincidence cross section
is studied in the PWIA.

co~ m&co, =constant,

and therefore,

(25)

V. RESULTS AND DISCUSSION

coo(5) =coo(1 ——,5 ——„5 ) (26)

The value coo(5) becomes coo at 5=0. The deforma-
tion parameter 5 is related to a new deformation
parameter

1652 53 )
—I /6 (27)

In terms of I),

IIs+II, =~o-o 4
1/2

r'Y2o —21.s —pl2

(28)

with

C 2D
o and p=

203o

2 &&I&&
I

&lA&) .
Nl AX

(30)

The states
l
XlAX) are written in configuration

space

wAr) =R»(r)YIA(r)XEI/2, &, (31)

where R&I(r) Y&/, (r ) is the spherical part of the solu-
tion. The Nilsson coefficients a„'IJ' for a particular
deformation I) are obtained in the

l
nljA) basis with

n = —,(N —l)+1 and j=l+s. The present calcula-
tion is done for the deformation parameter II= —6
and the single particle wave function for the last

The single particle wave function for the ith state
X" is expanded as

Detailed numerical calculations have been per-
formed for the reaction ' C(e, e'p) "B for sI/2 and
p3/2 states with incident electron energies of 635 and
500 MeV, respectively. The recoil momentum is
varied by changing the outgoing proton angle and
fixing the electron angle at 48. 1' and 58' for the sI/2
and p3/2 states. The negative and positive values of
qz correspond to 6)& &8& and Oz &9&, respectively.
The proton angle Oz and the angle of momentum
transfer 8~ are measured from the direction of the
incident electron. The calculation is carried out in
the perpendicular kinematics' for various choices of
bound and scattering state potentials. The local po-
tentials of Elton and Swift (ES) and Giannini and
Ricco' (GR) are used to calculate the bound state
wave functions. The use of the GR potential is
valid for both bound and scattering states and it
takes care of the hole state effect and the final state
interaction in a consistent way. One can Introduce
the effect of the decaying hole state in this process
by using the complex hole wave functions obtained
with a suitable complex potential for the bound
state. However, such calculations ' do not pro-
duce any significant effect on the cross section. For
the scattering state, the optical potentials of
Glassgold and Kellogg" (GK) and Jackson and
Abdul-Jalil' (JA) are used. Although the GK po-
tential reproduces the elastic scattering data suffi-
ciently, it does not contain any spin-orbit part in it.
The use of the complex optical potential for the fi-
nal state interaction is justified for an exclusive reac-
tion in which only one final state of the target nu-
cleus is specified, i.e., the one-hole state reached by
DWIA. Then the complex optical potential
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FIG. 3. Coincidence cross section for the positive side
of the recoil momentum compared with experimental data
of Ref. 34. The dashed curve is obtained using the ap-
proxiation of Epp and Griffy and the dotted-dashed using
the V operator. Curves A and B correspond to ES-GK
and GR-GR potentials, respectively.

qR (MeV/c)

FIG. 2. Coincidence cross section versus the recoil
momentum for the s&/2 state. The continuous curve cor-
responds to the PWIA and the dashed and dotted-dashed
curves correspond to DWIA calculations. The dashed
curve is obtained using the approximation of Epp and
Griffy and the dotted-dashed using the V operator.
Curves A and B are obtained with ES-GK and GR-GR
potentials, respectively.

correctly takes into account the loss of flux from
this final channel (the one-hole state) by further in-
elastic scattering of the outgoing struck nucleon.
But the experimental cross section is inclusive since
only the energy of excitation of the residual target is
specified instead of a single final state. This may
not affect the least-bound particles, namely, lp-shell
particles in ' C, but the DWIA knockout of the ls
particle will have to be treated as an inclusive (e,e'p)
reaction which might include the lp hole followed
by p-h excitation with the same kinematics.

In Fig. 2 the coincidence cross section for the s»2
state is plotted as a function of the recoil momen-
tum in PWIA and DWIA for the potentials ES-GK
and GR-GR. As evident from the figure, the effect
of the gradient operator V is to decrease the cross
section over a wide range of momentum values and
to shift the peak towards the positive side of the
recoil momentum. The calculation with the V
operator correctly takes into account the changes in
proton momentum inside the nuclear medium,
whereas in the approximation of Epp and Griffy
these are neglected and the proton operator is re-

0,8
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CQ
CL

04—
C)

LLJ

~ 0.2—
V)
C&

B

A
1'

«g
t

. T

, T . . 7
I

I I I

40 160 200
I I

80 &20

Q+ ( MeV/c)

FIG. 4. Same as in Fig. 3 for the negative side of the
recoil momentum.

placed by the asymptotic momentum. The effect of
the gradient operator on the cross section for both
the positive and negative sides of qz is shown in

Figs. 3 and 4, respectively, and compared with the
experimental data. While the V operator decreases
the cross section throughout the momentum region
on the negative side, the cross section shows an in-
crease for higher values of q~ on the positive side
for both the potentials. When compared with the
negative side of qz, the results obtained with the
operator for the positive side show a better agree-
ment with the experimental data. The same data
are used for both the sides of qz and the curve cor-
responding to the GK potential with the V operator
normalized to the experimental peak.
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FIG. 7. Momentum distributions for the p3/2 state ob-
tained from the QQ* term of the matrix element in the
perpendicular kinematics. Experimental data are taken
from Ref. 19.
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FIG. 6. Coincidence cross section for the p3/2 state.
The continuous, the dashed, and the dotted-dashed curves
represent the DULIA calculations with ES-GK, ES-JA,
and GR-GR potentials. The symmetric curves are ob-
tained only with the Coulomb term while the asymmetric
curves include all the terms in the matrix element.

FIG. 5. Coincidence cross section for the p3/2 state.
The continuous and the dashed curves represent the
PWIA and DWIA (Es-JA potentials) calculations, respec-
tively. Curves 1 and 2 include all the terms in the matrix
element while 3 and 4 include only the Coulomb term.

In Figs. 5 and 6 the coincidence cross section for
the p3/2 state is plotted as a function of the recoil
momentum in the perpendicular kinematics. The
cross section shows a symmetric distribution on
both sides when the predominant Coulomb term of
the matrix element alone is used in the calculation.
The inclusion of the other terms produces an asym-
metry in the cross section which is exhibited in Fig.
5. The peaks of the DWIA curves are shifted to-
wards the higher momentum values and this is a
specific effect of the distortion. The influence of the
choice of bound and scattering state potentials is
shown in Fig. 6, wherein the cross sections for three
different types of potentials ES-GK, GR-GR, and
ES-JA are plotted. The effect of the imaginary
component of the spin-orbit term ( 8;= —2.57
MeV) in the energy dependent potentials of Jackson
and Abdul-Jalil' is displayed in the figure. Besides
the deviation at the peaks, the ES-JA potential gives
a lower minimum when compared with other poten-
tials.

We have also calculated the DWIA spectral func-
tion distribution using the QQ* term in the matrix
element. The results in Figs. 7 and 8 correspond to
the calculations in perpendicular and parallel
kinematics, respectively, and they are compared
with the recent experimental data from the Saclay
group. ' It is evident from the figures that there is
close agreement between our results and the experi-
mental values over a wide range of the recoil
momentum qz.

The effect of the nuclear deformation on the cross
section is shown for the p3/2 state in Figs. 9 and 10.
The calculation has been done for the following in-
put values: E; =605 MeV, Ef 475 MeV, ——
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FIG. 8. Same as Fig. 7 but for the parallel kinematics.

-6
10

8, =50.2', and the oscillator parameter b =1.67 fm.
The bound state proton wave function is obtained
from the Nilsson model for ' C with oblate defor-
mation parameter g= —6. The cross section has
been calculated from the matrix element using the
Nilsson wave function with and without the cou-
pling between N and N+2 states. The magnitude
of the cross section and the position of the peak are
affected by the nuclear deformation, as evident from
Fig. 9. The effect of the N and N+2 coupling on
the cross section is displayed in Fig. 10. When com-

0 I I I

60 120 240

qf ( M eV/c )

FIG. 10. Coincidence cross section for the p3/2 state
compared with experimental data of Ref. 34. The con-
tinuous curve corresponds to the zero deformation, the
dashed curve to the oblate deformation (g= —6) with X
and PE+2 coupling, and the dotted-dashed curve to the
oblate deformation without the coupling.

1QO

pared with zero deformation, the cross sections ob-
tained with the coupling is greater in the low
momentum region up to the peak and smaller in the
high momentum region, whereas the cross section
without the coupling is greater throughout the
momentum region considered. It is found that there
is better agreement between the results with N+2
coupling and the experimental data B.ut the la-
teral shift of the theoretical curves from the experi-
mental data still remains unexplained, although
Radhakant obtains a closer agreement with the ex-
perimental curve by changing the bound state wave
function from the harmonic oscillator to that of
Woods-Saxon with the ES parameters. However, we
did not get this large lateral shift when we repeated
the calculations with the same wave functions and
our results are similar to those of Epp and Griffy.

Z:
CO

lJ)
CO

o ~p

0 30 60

PROTON ANGLE

90

FIC». 9. Coincidence cross section versus the proton an-
gle for the @3&2 state. The continuous and the dashed
curves correspond to the zero deformation and oblate de-
formation (q = —6), respectively.

VI. CONCLUSION

The present study of the quasifree scattering pro-
cess brings out the importance of the off-shell ef-
fects and the nuclear deformation on the coincidence
cross section. The results establish that the gradient
operator V' for the proton momentum reduces the
cross section over a wide range, whereas in the case
of photoproduction of pions, it has been found3
that the V' operator for the pion momentum in-
creases the photopion cross section. It has also been
found that the effect of the gradient operator in the
quasifree process is to shift the peak of the coin-
cidence cross section towards the positive side of
qz. Further, the cross section is considerably af-
fected by the deformed bound state wave function
and there is an improvement of the results towards
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the experimental data. The deformed intrinsic state
for the ' C ground state is consistent with many
theoretical calculations. ' As far as the
phenomenological potentials are concerned, the ef-
fect of the different optical potentials used is found
to be well pronounced at the peaks of the cross sec-
tion. The imaginary component of the spin-orbit
teinI in the optical potential of JA gives a lower
minimum for the cross section at the center
( qz ——0), besides the deviation at the peaks.

Hitherto the experimental study of the quasifree
scattering of electrons has been mainly aimed at the
confirmation of the shell model picture of the nu-
cleus by estimating the separation energies and
determining the momentum distribution of the pro-
tons from the various shells. Henceforth it is hoped

that the study of the off-shell effects and other finer
details in the quasifree scattering process will as-
sume greater importance and the experimentalists
will pay more attention to these aspects in the years
to come.
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