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Two-body form factors at high Q~
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The charge form factor of a scalar deuteron at high momentum transfer is examined in a model
employing scalar nucleons and mesons. With an eye towards establishing consistency criteria for
more realistic calculations, several aspects of the model are examined in detail: the role of nucleon
and meson singularities in the one-loop impulse diagram, the role of positive- and negative-energy
nucleons, and the relationship to time-ordered perturbation theory. It is found that at large Q (I)
the form factor is dominated by a term in which the spectator nucleon is on the mass shell, and (2)
the meson singularity structure of the d-n-p vertex function is unimportant in determining the
overall high-Q~ behavior of the form factor.

NUCLEAR REACTIONS Elastic electron scattering at high momentum
transfer. Relativistic impulse approximation. Role of negative-energy nucleons.

Role of meson singularities.

I. INTRODUCTION

The deuteron is usually the first testing ground for a
microscopic theory of short-distance phenomena in the
nucleus. In particular, it is now very desirable to under-
stand the role of nucleon substructure in nuclei, by means
of such processes as electron-deuteron scattering at high
Q2. If nucleon substructure is controlled by quarks in-
teracting via quantum chromodynamics, can these effects
be described simply by including hadronic form factors in
a conventional calculation with nucleons and mesons, or
are there additional effects such as those of hidden color
states which must be added to describe the data?

Indirect evidence for explicit substructure effects exists
when a conventional theory involving nucleons and
mesons fails to describe the data. Of course, such a theory
must be internally consistent before any meaningful con-
clusions can be made by comparing it to experiment. It is
our view that any conventional calculation involving nu-
cleons and mesons for Q & I GeV should be consistent
with the asymptotic Q behavior implied by the theory
upon which it is based.

The purpose of this paper is to understand how to ex-
tract the asymptotic Q behavior of electron scattering
from a deuteron composed of scalar nucleons exchanging
scalar mesons, with an eye toward understanding what ap-
proximations can or cannot be made which are consistent
with this asymptotic behavior. We believe that even this
simple model supplies most of the criteria needed for
evaluating more realistic calculations.

The question of theoretical consistency is already an im-
portant one. Recent calculations by Zuilhof and Tjon, ' us-
ing solutions to a Bethe-Salpeter equation, as well as re-
sults of Arnold, Carlson, and Gross, using a covariant
three-dimensional wave equation, agree approximately
with each other, but fall substantially below recent SLAC
elastic e-D data.

However, in another approach, Gurvitz achieves a fit
to data up to Q =6 GeV, in which he claims to have in-
cluded important Lorentz boost effects, as well as relevant
meson singularities associated with the Bethe-Salpeter
equation. The implied asymptotic behavior of each of
these three calculations is also quite different: Gurvitz's
approach, for example, gives a much sldwer asymptotic
falloff than those of the other authors. Since all of these
calculations involve similar physics, the discrepancy is a
matter of theoretical self-consistency which must be
resolved. This problem is addressed below, where we ex-
amine the asymptotic behavior implied by these different
approaches.

The outline of this paper is as follows. First, the in-
tegral for the charge form factor in impulse approxima-
tion is written using the scalar model of nucleons and
mesons. Then, the roles of all positive- and negative-
energy nucleon poles are examined. If pointlike deuteron
vertices are assumed, the loop integral can be done exactly
using light-front perturbation theory. In this case, we find
that the leading large-Q~ behavior is also reproduced by a
three-dimensional loop integral in which the spectator nu-
cleon is placed on the mass shell. Following this, the
structure of the deuteron vertex function is examined,
with particular regard to the role of meson singularities.
We find that the kinematic region in the vicinity of these
singularities does not contribute to the leading large-Q
behavior. Finally, we discuss several realistic calculations
of the deuteron charge form factor in terms of these
model results.

II. ANALYSIS OF THE FORM FACTOR
INTEGRAL

A. Description of the model

We consider a model deuteron of mass MD composed of
scalar nucleons of mass M, which exchange neutral scalar
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mesons of mass p. We believe the neglect of spin to be
reasonable here since we concentrate on the kinematic
rather than structural aspects of the constituents. The ef-
fect of charge meson exchange currents can be added if
one desires (see, however, Sec. IIC): this effect, together

I

with a full treatment with spin, would almost certainly be
necessary before data could be fit.

The charge form factor for this model deuteron is taken
to be

d k& I (k],k2)(k2+k3) I (k/pk3)

(2') (M —k ) )(M —k p )(Mp —k 3 )

(The integrals correspond to the triangle diagram of Fig.
1, but without the mass-shell restriction on the momentum
k~.) Unless otherwise stated, we work in the Breit frame,
where

D =(Dp, ——,
'
Q), D'=(Dp, —,Q),

q=(o, q), D, =(M,'+ —,
' g')'". (2.2)

I (p~,p2) is an invariant d-n-p vertex function which de-2 2

pends upon the virtual nucleon masses p ~
and pz. In prin-

ciple, it is a solution to a Bethe-Salpeter equation involv-
ing the mesons in the theory. Its actual form will be
specified below.

In Eq. (2.1) and henceforth we ignore the dependence of
the nucleon form factor FN upon the rnvanants k2, k3.
An argument can be given for this step in a theory in
which the deuteron is very weakly bound, and in which
the exchange meson mass p is much smaller than the nu-
clear mass M. The argument depends upon the observa-
tion that I (m, k&) has an anomalous threshold at

k2 —m =2p(p+2a)

(where a is related to the binding energy e by a =Me),
which leads one to expect, on the basis of dispersion
theory, that the dependence of I on k2 is considerably
more rapid than that of FN, which has only the norma1
threshold at

2
—Pal =2P7Zp+p

Hence, if p and a are both much smaller than M, then the
thresholds in FN are comparatively distant, and we may
approximate

FN(g, k2, k3)=FN(Q, M,M )=FN(Q ) .

Note that the same argument does nor imply that the Q2
dependence of FN is negligible; the Q structure of FN is
dictated by the two-meson cut starting at 4p, which sug-
gests that this dependence will be comparable to that ex-
pected from the I singularity. The above arguments may
well break down at very large Q, where the momentum
dependence of I and EN is presumably controlled, not by
thresholds, but by other mass scales which may be com-
parable to each other. We do not address this question in
this paper, and instead concentrate upon the composite na-
ture of the deuteron rather than that of the nucleon.

In this particular subsection we will emphasize the role
of the singularities which come from the three nucleon
propagators in Eq. (2.1). These singularities yield the
most rapidly varying behavior of the integrand, and give
rise to properties of the deuteron form factor which are
approximately independent of the details of meson ex-

I

change. The latter are contained in the singularities of I,
which are more distant (i.e., p »a), and are discussed in
the next subsection.

If the ko integration is performed by the method of resi-
dues, and the contour is closed in the lower half plane,
then as it was observed over 15 years ago, the positive en-
ergy pole of the spectator dominates the form factor at
low Q; the approximation in which only this pole is re-
tained shall be referred to as the relativistic impulse ap-
proximation (RIA). It is a major purpose of this paper to
show that this pole a1so dominates the expression (2.1) at
large Q .

The six poles in the ko complex plane are located at

kp ——+(Eg —ie) (1+—),

kp Dp+E+ +i——e (2—+),

k =D +E +&'~ (3—+),

where

(2.3)

E+ —[M'+(C+-,' g)']'";
E =(M'+k')' ' (2.4)

~~=(Ej, k)
l

FIG. l. The relativistic impulse approximation to elastic
electron-deuteron scattering, illustrating the kinematics used in
the text. An "x"on a line denotes a particle on the mass shell.

and 1+ (1 ) is the positive (negative) energy pole associat-
ed with particle 1 as labeled in Fig. 1, with similar nota-
tion for 2—+ and 3—+.

The location of the poles in the ko plane depends upon

Q and the component of k parallel to Q. It is convenient
for later discussion to take Q along the y axis. First, we
consider the case when k„and k, are small. If Q «M,
the poles are as shown in Fig. 2(a). In this case, the pole
at 1+ nearly pinches the poles at 2+ and 3+ when k~ is
small, and as k~ increases the poles in the lower half plane
migrate towards the right, while those in the upper half
plane migrate towards the left. If the ko integral is c1osed
in the lower half plane, the singularity arising from the
spectator being on its positive energy mass shell (1+) will
dominate, and the integrand of this term will be further
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d'k Do —EI
Fd(Q')=FN(Q )I (2~)3

I (k2)I (k3)
(M —kg)(M —k3)

(2.5)

where we introduce the vertex function with one particle
on shell,

1(k2)=1(M,k2) . (2.6)

it will be dominated by the spectator pole (1+) as before.
(If k» is positive, the role of the 2+—vs 3+-poles is reversed,
but otherwise the analysis is the same. ) If either k„or k,
is not small, then the overall effect is to decrease the mag-
nitude of the integral; specifically regarding the near-
pinch singularity of Fig. 2(b), the 2+ pole is moved to the
left and the 1+ pole to the right, thus reducing the
strength of the near pinch. %e conclude, therefore, that if
the ko contour is closed in the lower half plane, then the
integral for both loto and high Q2 is dominated by the pos-
itive energy spectator pole, whose residue is greatest where
the nucleon momenta are colinear.

The result of retaining the spectator pole in Eq. (2.1) is,
for the p =0 component,

(c) Q»M; Q/2 & —
ky

FIG. 2. Location of the poles of the ko integrated for
electron-deuteron scattering in the Breit frame. Configurations
are shown for three different ranges of k~. The arrows indicate
the motion of the five poles for increasing k~.

dominated by small kz values. These results lead to the
conclusion that the RIA dominates at low Q2, as discussed
in Ref. 5.

If Q »M, the poles change their position radically.
Now we distinguish between two cases, according to
whether the magnitude of k» is larger or smaller than Q/2
(!k»! »M in both cases). If k» is negative, these cases
are shown in Figs. 2(b) and 2(c). When —k» is less than
Q/2, the poles 1+ and 2+ pinch; as —k» becomes greater
than Q/2, the 2+ and 2 poles are "reflected" at the Q/2
"boundary" and 1+ and 2 move as a double pole (they
are on the same side of the complex plane}. As a double
pole, 1+ and 2 will nearly cancel, and hence the in-
tegrand will be large only when —k» & Q/2, in which case

d'k Do —E~+k.
Fd(Q )=FN(Q )I »oE.

r(k,')r(k', )

(M —k2)(M —k3}
(2.7)

[This expression is actually identical to Eq. (2.5) because
the integrand of the new term linear in k, is odd, so the
extra term is zero. ] Then introduce the transformation

EI, —k,
Do

(2.8)

to eliminate the variable k, . Introducing kq ——(k„,k»), the
transformed form factor is then

Equation (2.5) can be shown to be nearly identical to the
result one would obtain from light front perturbation
theory (LFPT). To make the comparison, first add a
term linear in k, to the numerator of (2.5):

d k d I (k )1(k
Fd( ') =FN( ') (1 —x)

2(2') x (M —k )(M —k )
(2.9)

where k2, k3 are expressed in terms of kz, x by
2 2

k2 3 ——[(x—1 )M +x( 1 —x)Md —(k3+xg/2) ]x

(2.lO)

emerge, with the only difference being that the range of x
integration is from zero to one. For LFPT, the variable x
is related to the momenta k,D via the transformation

ko+k,
Do+D,

If one were to evaluate a corresponding triangle dia- in place of Eq. (2.8).
gram in LFPT, an integrand identical to Eq. (2.9) would If the vertex function I is constant, then the LFPT re-



826 FRANZ GROSS AND B. D. KEISTER 28

suit is the same as the exact evaluation of Eq. (2.1), as was
shown by Weinberg in Ref. 6. Hence, the RIA errs by in-
cluding the region x & 1. From the viewpoint of the loca-
tion of nucleon singularities discussed in Fig. 2, the large x
region presumably corresponds to places where the 1+
pole overlaps with either the 3 or 2 poles (and would be
cancelled in an exact calculation), as discussed above, so
we can understand why this region should not be counted.
However, as we show in detail in the Appendix, the results
at low Q and high Q are not greatly affected by this er-
ror. This is because, for weakly bound systems, the form
factor is dominated both at high and at low Q by the re-

gion near x = —,
' (k small). Hence the region for x & i does

not make significant contributions in either case, and the
leading contributions at both low and high Q are identi
cal for the two models (see the Appendix).

In addition to the dominant power law dependence,
there is also a lnQ contribution which comes from the re-
gion near x =0. These "end-point singularities" have been
previously discussed by Brodsky and Farrar, and by
Brodsky and Lepage. In our example, a spinless
theory, they give a negligible contribution for all large (but
finite) Q . (This is demonstrated in the Appendix for the
special case where I is a triple pole. ) Hence, we will ig-
nore such contributions from the end points in this paper,
and consider the integral to be dominated by contributions
from the region where the relative momentum of either
the initial or final state is small.

The fact that the LFPT gives the exact result when the
vertex function is a constant could be regarded as a strong
reason for preferring it. However, when applying a rela-
tivistic formalism to a meson theory in nuclear physics,
the vertex function will never be constant. Furthermore,
the vertex function is in turn the solution of a bound state
integral equation. For LFPT, this is usually the Weinberg
equation, in which a field theory is truncated to a fixed
number of particles viewed from the light front. Neither
this approach nor the RIA will give exact results for the
vertex function or the charge form factor. Hence, it may
be more important to choose a formalism which retains
spherical symmetry and an easily interpreted nonrelativis-
tic limit. In this regard, the RIA is clearly superior to the
Weinberg equation, and we regard the fact that they give
the same results at high Q to be an important, and some-

what unexpected, additional advantage of the RIA.
Frankfurt and Strikman' have also compared these two
approaches. They argue that there are substantial differ-
ences, but they never make a direct comparison, such as
that based upon Eq. (2.9), which shows that the leading
large-Q results are the same.

It is useful to develop the RIA formahsm further. We
introduce positive and negative energy wave functions in a
manner similar to that previously done for spin —, constit-
uents,

I (ko)
3/2 I /2(2m') (2Md ) 2Ek (2Ek —Md )

7

r(k,')
g (k)=

(2')3/2(2M )~/22EkM

(2.1 1)

Then the form factor (2.5) at Q =0, which is equivalent
to the relativistic normalization condition, becomes simply

I= fd'k[lf+(k) I' —lg (k) l'], (2.12)

which is a result familiar from the two-component form
of the Klein-Gordon theory. The fact that the norm is not
positive definite is to be expected for a Klein-Gordon
theory.

The general result (2.5) can also be written in terms of
the wave functions (2.11). We follow the techniques in
Ref. 2, and boost the relativistic wave functions
/=/++A to their rest system (which is trivial here be-
cause k23 are invariants. ) The rest system three-vector
momenta p' ' and p' 'become

(2, 3)
px, z = kx, z ~

p( ' I= — (kyDo+ 2 QEk) .
d

(2.13)

[See Eq. (2.52) of the second paper of Ref. 2.] In terms of
these variables, and the energies

(M2+ (i)2) 1/2

we can write

Md
Fd(Q')=+N(Q') f d'k[~+(42+43 02 03 )+()—(42 t('3 42 f3 )]

Dp
(2.14)

where

DQ —Ek Md(e2 +e3 ) —2e2e3 DQ —Ek
L9

Ek 2(Md —e2 )(Md —e3 ) Ek

Md(e2 —e3)

e3)
(2.15)

Equation (2.14) reduces immediately to (2.12) when Q~0.
At high Q, the leading contribution comes when either
p or p

' are near zero, so that g+ peaks sharply. It is
sufficient to study either one of these points and multiply
by 2. When p

' '=0,

k„,=0,
ky ————,

' Q,
2

(3) M Q
Py = + =e3

(2.16)
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and (2.14) reduces to

2

Fd(Q ) ~ FN(Q ) f fd'kg+(p~),
g2 Q 8M

(2.17)
(2)

where p has been set to zero everywhere except in g2+,
the rapidly varying part. Equation (2.17) can be further
reduced by noting that

D ki k

I I
D —k

I

dky

dpPy

Q
e2 (~) p 4M

Q~ oo

(2.18)

and defining the position space wave function by

d k
(2.19)

k D

This gives finally

2

Fd(Q ) ~ FN(Q )2(2') ~ f (0)$
Q~ oo 8M

(2.20)

FIG. 3. The Feynman diagram for electron-deuteron scatter-
ing with a single meson exchange exposed by iterating the
bound-state equation for (a) the final deuteron and (b) the initial
deuteron.

We see that the asymptotic behavior of the body form
factor depends on the product of the relativistic wave
function at high momentum and the positive energy wave
function at the origin. Since the wave function at large
momentum depends entirely on the dynamics, Eq. (2.20) is
not very helpful, and we will obtain a more useful relation
in the next subsection.

B. The role of meson singularities

In the previous subsection it was shown that the asymp-
totic form factor is dominated by contributions in which
one wave function has low relative momentum and the
other has high relative momentum. This result was sum-
rnarized in Eq. (2.20). In this subsection we will complete
the derivation of the asymptotic form factor by expressing
the wave function at large momentum in terms of known
quantities. In the process we will also examine the effect

of the structure of the vertex function, neglected in the
last subsection. The line of reasoning will be quite similar
to that of Brodsky and Farrar.

We begin by assuming that the bound state is held to-
gether by an infinite (ladder) sum of exchanges of a meson
with mass p. In this case, the form factor integrand in the
region where k= ——,Q (low relative momentum for the
initial wave function} is better described by the diagram in
Fig. 3(a) which can be regarded as equivalent to Fig. 1, but
with the structure of the final vertex function revealed so
that its high momentum behavior can be studied. [If we
wished to study the form factor in the region where

+ ]k= —,Q, we would use Fig. 3(b). The contributions from
these diagrams are equal and the total result is twice ei-
ther. ] Figure 3 gives

F (Q ) I d k, d k', I (k, ,k')2(D —k )g I (k', , k', )

2Do (2~) (M —k f )(M —
k 2)(M —k 3 )[p —(k (

—k ', }2](M —k 3 )(M~ —k ', )
(2.21)

1

2co

We first wish to examine the role of the explicit singularities which come from the meson propagator p~ —(k~ —k ~ } .
For this purpose, the k

&
integration contour is closed in the lower half plane, where we know that it is safe to neglect the

negative energy nucleon poles. Also, we will assume that the important singularities in I have been included by keeping
the meson pole; the additional singularities will also be neglected. This gives

FN(Q ) d kid4ki I 2g (Do —ko) 1F(Q') =— +
2ao (2m ) 32FkEk E+E E' co —kp+ kp —l E' co+ kp —kp —l E'

1

(Ek —kp —l' F)(E+ —Dp +k p
—l'E)(E —Dp +k p

—l'6')(Ek —k p
—l 6')(E' —Dp +k o

—l 6)

(2.22)

where the meson propagator is factored into two terms, and

ro = [p +(k —k') ]' (2.23)

The reader can easily convince himself that the k ~ integral can be closed in either half plane without overlapping any
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negative energy poles, and in both cases peaks at k '= —,Q. To simplify the algebra, the ko contour will always be closed
so as to avoid the meson poles —in the lower half plane for the first term and in the upper half plane for the second.
However, the k

&
integral must always be closed in the lower half plane —and hence the first meson pole gives an explicit

contribution. Introducing the notation

(2.24)
FN(Q ) (' d kd k' I 2g 1

2Do (2ir) 6 32Ek Ek E+E E' 2'
there are three terms:

Do —Ek
Fd(Q )=g

(E++Ek Dp)(E —+Ek Dp—)(E' +Ek Do)(—oi+Ek Ek)—
Do —~—Ek+

(Ek —co —Ek )(E+ +co+Ek —Dp )(E +oi+Ek —Dp )(E' +Ek' —Dp )

Do —Ek+
(E+ +Ek —Do)(E +Ek —Dp )(Ek +E' Dp )(co—+Ek +E' —D0 )

(2.25)

Evaluating the three terms in square brackets at the peak
k = ——,Q and k'= —,Q, and letting Q~ ao, gives

4 2 4
Q 1 Q (2.26)

g ~ 16a 4a Q 16a

where a =Me. We see that the meson pole terms are
suppressed by a factor of 2a /Q, which guarantees that
they are completely negligible. (A similar result at low
momentum transfer was obtained in the first paper of Ref.
5.)

We have thus established that the structure of the vertex
functions does not alter the validity of the basic result
(2.20). The remainder of this section will be devoted to an
improved evaluation of the asymptotic form factor using
(2.21). Closing both the k

~ and k &, contours in the lower
half plane, and neglecting the meson poles, gives

FN(Q ) d kd k'
Fd( )=

2Do (2m. ) 2Ek (M k)—
I(kg )

X 2 2 I,
2Ek(M —k3 )

(2.27)

p =(Eo —
4 Q»

p'=«o 4Q»
(M2+ & Q2)i/2

(2.28)

where I is the Feynman diagram shown in Fig. 4(a).
Equation (2.27) has a form ideal for further approxima-
tion. We view I as a slowly varying function of k and k',
and evaluate it at the peak, k = ——,

'
Q and k'= —,

'
Q, which

is equivalent to the diagram factorization illustrated in
Fig. 4, where

Then, using Eqs. (2.18) and (2.19), and multiplying by 2 to
include both Figs. 3(a) and 3(b),

F(g) = 2F (Q) I (2.29)
g ~ Md Do

where I is the value of I at the peaks, corresponding to
Figs. 4(a) and 4(b). Specifically,

g'2(Do Eo)F„'NN ( ——Q'/4)I=
I/2Q (p +1/4Q')

2Dog m o —P
(2.30)

Q (Iu, +Q /4) mp+Q /4

Q+(0 )

P

I
I

I

I I
I ~ P

I

I

I

I

P ~ I
I

P

Q(O) where F„NN(p ) is the meson-nucleon form factor. Com-
bining (2.29) and (2.30) yields the final result for spinless
particles:

(o)

FIG. 4. Factorization of the invariant electron-deuteron am-
plitude into mass-shell Feynman diagrams.

FN(Q'»g'[0+(0) 1'
d

Q ~ MQ (p+Q /4)

21k
mo —P

mo+Q /4

(2.3 j.)



28 TWO-BODY FORM FACTORS AT HIGH Q 829

The body form factor falls as Q
' + "' at large Q .

If n =0, this result is consistent with the work of Brod-
sky and Lepage, who obtain Q for two pointlike con-
stituents with a scale invariant interaction. Our interac-
tion is not scale invariant; g has dimensions of mass, so
the extra Q

2 is required to cancel the dimensions of g2.
This point was also addressed by Brodsky and Farrar.

Comparison of Eqs. (2.20) and (2.31) suggests that

g' 4g2@+(0) 4(m 0 —p')
SM

I
a-- (2~}'/2MQ' g' (2.32)

This result can also be obtained directly from the relativis-
tic wave equation for 1', which can be written

1 d k' g Fl NN[(Ek Ek)——(k —k') ] f(k')
1l(k) =

Mg(2Ek —Mg) (2n ) p, +(k k') ——(Ek Ek ) —2Ek

g /FINN(2M 2ME—k)

SM (Ek M)[p—+k2 (El, ——M) ](2m. )
/ (2.33)

Substituting k =Q /SM into (2.33) gives (2.32) if terms in-
volving p /Q are dropped.

The appearance of the wave function at the origin in
these equations is a natural outcome of factorizing the
momentum loop integral into a soft component [contain-
ing P(0)] and a hard component (containing the explicit
meson propagation) which carries the high momentum
transfer. For QCD calculations of hadron form factors,
P(0) is treated as a phenomenological normalization con-
stant. For a deuteron composed of nucleons and mesons,
one could imagine doing the same thing, but there is a
serious problem because g(0) is intertwined with the
short-range repulsion of the nucleon-nucleon force. Strict-
ly speaking, our results always apply to a region of Q
which exceeds the mass of the heaviest meson exchanged,
wherein P(r) is slowly varying over the region r &1/Q.
Whether a real deuteron can ever be described by meson
exchanges with a maximum mass (a possibility that is cer-
tainly not obvious from the standpoint of QCD) is a
dynamical question which is not addressed in this paper.
Instead, our purpose is to examine the large-Q behavior
which is implied by current theories of the deuteron with a
fixed number of meson-exchange potentials. Whether this
large-Q behavior agrees with experiment is a completely
separate matter.

C. Other contributions

So far, we have considered the deuteron to be a bound-
state solution to a ladder integral equation. Since the
spectator is on its mass shell in our analysis, this condition
can also be retained in the integral equation for the vertex
function. In this case, the fourth-order kernel of the equa-
tion includes both the crossed-box diagram and that part
of the full box not included when the second-order ladder
kernel is iterated once (see Fig. 5).

It is useful to estimate the magnitude of these nonladder
contributions. We assume that the singularity analysis of
Sec. IIA allows us again to factor out the deuteron wave
function, leaving only the fourth-order kernel. We further
assume that there are form factors at the meson-nucleon
vertices to provide convergence. At the peak of the in-
coming wave function, when p = —Q/4, we see that three
out of four denominators in the integrand of each diagram
are small in the vicinity of l"=0. Indeed, if 1 =0 and

p+ 8+q!2
p

q/2-l& +4
p+ q/2

p+g
p+ q/2

(b)

q p+8+q/2
I I

p+ q/2
l

q/2 —l P
I

I ~ p+q/2
p-8+q/2

FIG. 5. The contribution of the fourth-order kernel to the
factorized electron-deuteron amplitude: (a) crossed box, (b) sub-
tracted box (the circle on the line means that everything except
the on-shell pole is retained).

p = —Q/4, then both nucleon poles in each diagram lie at
lo ——0. However, in this case there is a double pole, and
not a pinch singularity. (The pinch singularity originally
in the box diagram has already been included in the ladder
sum; the part of the box with no pinch singularity is the
only part remaining in the fourth-order kernel. An easy
way to compute this piece is to move the singularity from
the positive-energy spectator pole from the lower half
plane to the upper half plane, where it combines with the
singularity of the struck nucleon to form a double pole. )
Because there is no pinch singularity, these diagrams are
suppressed by a propagator derivative, leading to an extra
power of I/g . Furthermore, a detailed estimate of the
two diagrams in Fig. 5 shows that their leading terms can-
cel for very high Q, suppressing their contribution by still
another power of 1/Q . In higher-order kernels, diagrams
with more crossed lines will have further pinch singulari-
ties of their uncrossed counterparts replaced by double
po1es, leading to further suppression. Thus, the meson
ladder terms with on-shell spectators give the leading-Q
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(a)

(b)

p+ q/2

p+ q/2

q

p+ q/2
q/2-4+

r

p+g
—p+ q/2

q

p p+ q/2

ing factorization, some lower-order diagrams are shown in
Fig. 6. For the charged MEC, Fig. 6(a), the momentum
transfer is shared by the meson propagators with Q/2
apiece, as compared to Fig. 4, in which a nucleon carries
momentum q and a meson momentum q/2. However, in
this case, the energy carried by the mesons is zero. Be-
cause the energy factor is in the numerator, this diagram
is zero at the peak, suppressing its contribution, which
would otherwise compete with the leading terms in the
ladder sum. The contributions from the two-meson MEC
diagrams shown in Figs. 6(b) and 6(c) are suppressed in a
way similar to their counterparts shown in Fig. 5. They
also cancel each other at the peak.

We conclude that, for a spinless theory, the ladder sum
with on-shell spectators dominates at high Q over
higher-order kernels and MEC.

I

q/2-4 'Y
l I

p
~ I

p -$+ q/2

FIG. 6. Meson exchange current contributions to the factor-
ized electron-deuteron amplitude: (a) charged meson, (b) crossed
box, (c) subtracted box, the latter two comprising part of the
two-meson-exchange contributions.

behavior. This result is similar to one obtained for the
relativistic eikonal expansion of nucleon-nucleon scatter-
ing, in which the leading contribution to the eikonal phase
is correctly summed by including only the ladder terms
with on-shell spectator nucleons. '

Without going into detail, we can also estimate the con-
tribution from meson exchange currents (MEC). Follow-

D. The role of time-ordered diagrams

If the factorization of the deuteron form factor integral
is correct, then it is quite simple to analyze the contribu-
tions from various time-ordered diagrams. The factorized
charge form factor has two identical contributions, as
shown in Figs. 4(a) and 4(b), where all four external lines
are on the mass shell. The amplitide for this diagram is
FN(Q )g 4/Q, as Q ~ao in the Breit frame. [The extra
factor of q comes from the factor of 2ao—recall Eq.
(2.11).]

We now examine the first of these two Feynman dia-
grams in terms of time-ordered perturbation theory in the
Breit frame, by decomposing the nucleon and meson prop-
agators. In this subsection, the meson-nucleon form fac-
tors are set to unity. The invariant amplitude is

M(Q )=FN(Q )[I'+'(Q )+I' '(Q )]

where the positive-energy part is

g~(Ep+E')
I(+)(Q2) 1 1 1

—~'(Eo E') (Eo —E')(E—o E' co') —co'(Eo E—' co')——— (2.34)

where

Eo ——(Q /16+M )', E'=(4Q /16+M )', co'=(Q /4+@ )'

1

—co'{—Eo —E' —co')

1 1

—co ( —Eo —E ) ( —Ep —E )( —Ep —E —co }

The three terms follow the order of (+) diagrams (i), (ii), and (iii) of Fig. 7. The negative-energy part is

g'(Ep —E')
I(—)(Q2) (2.35)

where the three terms follow the ( —) diagrams of Fig. 7.
As Q ~ co, we find that

I'+'(i) —+Sg /3Q, I'+'(ii), I'+'(iii)~4g /3Q;
I' '(i)~2g~/3Q3, I' '(ii)~2g /9Q, I' '(iii)~4g /9Q

(2.36)

The positive-energy terms overestimate the full result, ac-
counting for —, of the total. This is not surprising, be-
cause the struck nucleon is very far off shell. It is also in-
teresting to note that the so-called recoil term, I'+'(iii),
which is suppressed at low Q~, is comparable to the other

terms at high Q, and that the recoil term cancels the sum
of the negative-energy terms.

Of course, the relative strengths of different time-
ordered diagrams are frame dependent. For example, in
the infinite-momentum frame {equivalently, quantization
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This formula is a good approximation to (2.14) at low Q,
and also has the same power law dependence at high Q
(although the normalization differs somewhat). Gurvitz
and Bhalerao (GB) argue that each wave function in (3.2)
should be replaced with one-half the sum of two terms,
one in which the spectator is on shell, plus one in which
the struck nucleon is on shell:

(3.3)

where X+ is obtained by transforming P as if the struck
nucleon were on shell:

FIG. 7. Decomposition of the one-pion-exchange Feynman
diagram into positive- and negative-energy time-ordered dia-
grams.

Ek —(Do E+)—=My(2E, ' Mg)—,

where

(2, 3)t„,' = —k„, ,

(3.4)

on the light plane), the negative-energy terms vanish.
Nevertheless, there remain three time-ordered terms in
place of a single Feynman graph. Our view is that it is
simplest in practice to retain the Feynman picture and
perform any necessary loop integral directly, keeping the
positive-energy spectator pole, rather than decomposing
into a time-ordered or x+-ordered framework.

III. COMPARISON WITH OTHER APPROACHES

« g+, & «()+ =1
which gives

(3.1)

Ea(Q')=EN(Q') fd'k 6+6+ .
Do

(3.2)

On the basis of the analysis of the previous section, we
are now in a position to understand some of the similari-
ties and the differences between the various charge form
factor calculations discussed in the Introduction.

In Sec. IIA and in the Appendix, we found that the
four-dimensional loop integral for the charge form factor
is dominated at large Q by the positive-energy spectator
pole, thus leaving a three-dimensional integral to evaluate.
Since the vertex functions I in the integrand are to be
evaluated for various three-dimensional arguments, one
can also compare the results of using a four-dimensional
(Bethe-Salpeter) solution to those where I is a solution to
a three-dimensional equation where each intermediate
spectator nucleon is on the mass shell. The difference be-
tween using the three- or the four-dimensional solution in
the form factor integral involves diagrams of the sort
shown in Fig. 5(b). However, as shown in Sec. IIC, these
differences are suppressed at large Q2. Thus, we can see
in a simple way why the calculated charge form factor is
so similar between Arnold, Carlson, and Gross, who use
three-dimensional equations, and Zuilhof and Tjon, who
use the Bethe-Salpeter equation directly.

We now turn to the calculations of Gurvitz and
Bhalerao, who obtained substantially different results
from both Refs. 1 and 2, yet claim to have similar, if not
improved, physical content in their theory. To understand
their approach in terms of our notation, it is useful to
write Eq. (2.14) in the approximation

ry""= — k, Do+ (D—o E+—)M 2
(3.5)

and E~ is defined in Eq. (2.4). Hence X; is identical to
(2.11) with k replaced by (3.5) instead of (2.13).

We believe that the GB prescription (3.3) cannot be de-
rived from meson field theory in the way claimed by the
authors, and must be regarded as ad hoc. To prove this, it
is sufficient to look at the integrand of Eq. (3.2) near the
peak of the initial bound state wave function, as was done
in Sec. IIA following Eq. (2.16). Both p' ' and t' ' are
small when k„,=0 and kz ———~Q, and the large Q
behavior of the form factor will depend, as before, on the
behavior of the outgoing wave function. While p' ' is
large as Q~co, as given in Eq. (2.16), t' ' approaches a
constant

This behavior means that the GB body form factor ap-
proaches a constant asymptotically, regardless of the high
momentum behavior of f.

As the preceding example shows, the dominant part of
the GB form factor comes from a region where both the
relative momentum of the incoming (outgoing) wave func-
tion is small, and the struck nucleon of the outgoing (in-
coming) wave function is on shell. However, such a
kinematic region does not exist. In qualitative terms, it
corresponds to a configuration of nucleons in which there
is no way for the large momentum transfer Q to be distri-
buted between them. A quantitative understanding of this
result and the reason it is incorrect relies upon the singu-
larity analysis of Sec. IIA, which we now develop in more
detail.

First, we examine Fig. 2(b), which shows the singulari-
ties of the integrand when k„=—

4 Q, Q »M . In order
that the initial wave function have low relative momen-
tum, the relative energy must also be zero, which is possi-
ble if and only if we close the contour in the lower half
plane and retain the 1+ pole, or close the contour in the
upper half plane and retain the 2+ pole. Both procedures
give essentially the same result, and in both cases the
struck nucleon is far off shell. If we insisted on placing
the outgoing struck nucleon on its positive energy mass
shell, we would need to retain the 3+ pole, which would
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E(3) 2E(3)

Ip 1

[2 '4(72M„)]'
(3.6)

~e are able to obtain the result (3.6) only by ignoring the
1 pole. Furthermore, the fact that t' ' approaches a con-
stant at large Q follows also from the proximity of the 1

pole. Specifically,

1 1

Md(2E, ' '
Md ) Ek (D—p E)— —

1

«k+E —Do)«k —E +Do)

1

k, = —(~r4)g (Q/2)(16M'/3Q)
Q~ oo

(3.7)

The second term in the denominator of (3.7) is the dis-
tance between the 3+ and 1 poles, and approaches zero
when kz ————,

'
Q and Q~ap, forcing the overall result to

a constant.
The correction calculation requires that we keep both

poles, which gives an extra term that cancels the bulk of
(3.6). The correct evaluation gives

mean that the relative energy of the initial wave function
was no longer small. Even if we ignore this last point, re-
taining the 3+ pole only is guaranteed to give an error, be-
cause in this kinematic situation Fig. 2(b) shows that the
3+ and 1 poles are very close, and a completely wrong
answer is obtained by keeping one and ignoring the other.

This last point will be illustrated quantitatively. Sup-
pose we consider the propagators of particles 1 and 3 only,
ignoring particle 2. Then retaining the 3+ pole only is
equivalent to the following calculation:

dkprpJ=——2m.i
(Ek —k p

—ie)(E (Dp
——k p ) —i e)

Ip
2E Mg(2E, ' ' —Mg)

r, 1 1J= +
4EkE Ek+E —Dp E +Ek+Dp

Ip
ky ( 1 /4 )g 2E

Q~ oo

4 4
Q2 3Q2

(3.9)

When the propagator of particle 2 is included, the contri-
bution from the near double (3+, 1 ) pole is further
suppressed and need not be considered at all.

The above discussion shows that the form (3.3) fails at
high momentum transfer. It enhances the form factor in a
completely artificial way. At lower momentum transfer,
when Q «M, the 3+ pole does not overlap the 1 pole
[see Fig. 2(a)]. Here a new problem arises due to the over-
lap of the 3+ and 2+ poles. For this reason it is also
wrong to keep only the 2+ pole. The uniform manner in
which the 3+ pole moves from the 2+ pole to the 1 pole
as Q increases (for negative k~) shows that it is inefficient
to close the kp contour in the upper half plane. Closing
the contour in the lower half plane and retaining the 1+
pole only gives a reliable approximation everywhere except
at both high Q and high

~ kz ~
& Q/2, where the 1+ and

3 (or 2 ) poles overlap [Fig. 2(c)]. Fortunately, the re-
gion of high Q and high

~
k,

~

makes a negligible contri-
bution to the form factor, so that this error is unimpor-
tant.

To summarize, we have shown that the dominant con-
tribution to the deuteron charge form factor at high Q is
given by a three-momentum loop integral with the specta-
tor nucleon on the mass shell. The leading behavior is the
same as would be obtained in light-front perturbation
theory or in a calculation using the Bethe-Salpeter equa-
tion. In particular, we find that contributions from meson
singularities, as well as charged meson currents, are not of
leading order. Three-dimensional approaches in which
nonspectator nucleons are placed on the mass shell must
be handled carefully to avoid giving spurious results at
high Q .
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r, r,J=
2E [Ek —(Do —E—) ] 2Ek[E —(Do+EI ) ]2 + 2

rp 1 1+-
4EkE Ek+E —Dp Ek —E +Dp

In this Appendix we estimate the high-Q behavior of
the form factor for a model in which the vertex function
is approximated by a triple pole,

r(uj P2~=rp22= 2

1+ +E +Ek+Dp E —EI, —Dp
2

2A2+M, —2P, —2P2

3

(A 1)

(3.8)

The offending term (Ek —E +Dp) ' cancels, giving the
asymptotic behavior

In a realistic theory with nucleon structure, the vertex
function is generated by a meson propagator and two
meson-nucleon form factors. While the relevant masses
are in general different, the use of a triple pole with a sin-
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gle mass is sufficient for studying the high-Q behavior.
If one particle is on shell, then

r,I'( )=
(MA — )

where

cleon. In terms of p and

this means that

a «M, P «M (A4)

M~ ———,'(A +Md) —M:—p +M (A3)

If A is some effective meson mass of the order of the pion
mass, then P &0.

In what follows we wi11 assume that the deuteron is
loosely bound, and also that its significant structure is
considerably larger than the Compton wavelength of a nu-

(In realistic cases, a =0.002M and p =m =0.02M~, so
these conditions are reasonably well satisfied. ) For simpli-
city, we will also assume a «p, although this assump-
tion is not essential.

Using the vertex function (A2), the wave function
4=4++0

where

r, r~4
(27T) (2Md ) Md(2Ek Md )[p +Md(2Ek Md )] (277) (2Md ) D (Oyk j )D (p /k J )

D(P,ki)=xP +4x(1—x)a +(1—2x) M +kz . (A6}

Note that this wave function falls as k as k~ao, the triple pole in (A2) ensures that the quantity f(0) is finite. It is
sometimes convenient to write the wave function in the following form:

o x d 1 &d 1

(2~) (2M )' dy y D (z, kz) 2

In this notation, the form factor becomes

F (g~) o d~k d x (1 —x)lo 7

2(2m')3 I D(O, k~)D(O, k~+xg)D (p, k~)D (p, kg+xg)

(A7)

(AS)

where A, =1 for LFPT and k= ~ for the RIA. The constant I 0 can be determined from the normalization condition,
which for LFPT is

x (1—x)
2(2m)' o D (O, kj)D (P,ki)

This integral can be rewritten

5.'dy 2(2'} o D (O, k~)D (y, k~) p2

1 1

D(O, ki) D(y, ki)

2 I

(A9)

(A10)

If a «p, the integral is dominated by the D (O, kz) term, which can readily be integrated to give

ro1=
S(16)vrMaP'

Hence, to W(a /P ),

r,= S&2~MuP' .

(A11)

(A12)

=I 06 1

M]4.
(A13)

While this estimate, (A12), may not be very accurate if u=p, the conditions (A4) are sufficient to ensure that the differ-
ence between I 0 obtained from LFPT and from the RIA is very small. This difference can be estimated from the differ-
ence in the normalization conditions, which is the region of integration x & 1. Specifically,

r'0 d2k d
x (1—x) p12

2(27r) ' D (0 k~)D (p k ) M 13

where the estimate (A12) is sufficiently accurate to show that this difference term is very small. It is completely negligi-
ble for the typical values of a and p given above.
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We now examine the asymptotic behavior of the form factor {A8). There are two objectives. One is to obtain the ex-
plicit asymptotic form and to investigate the size of the leading lng term; the other is to compare the results obtained
from the RIA and from the jLFPT.

In order to isolate the logarithmic term, we write the form factor as the sum of two quantities:

Fd(g )=F0(g')+F1.(g ),
where, for LFPT,

2 7

Fi(g }=,Jd kg f dx
(M'+k')'[M'+(k +xQ)']'

(A14)

(A15}

Fo(g') —=Fd(Q') —FL(Q') . (A16)

The contribution FI will be shown to fall as Q Ing at large Q, while the Fo term is regular as x~O and consequently
falls as Q . The Fo term is easy to estimate; because its integrand is regular at x =0 the integral is dominated by contri-
butions near the two regions x = —, and k~ =0, and x = —,

' and k~ = ——,
' g. The contributions from both of these regions

are equal, so that

Fo(g ) ~ 2Cp/Q
Q ~oo

where Co can be estimated from the region near x = —,', k~ =0:

(A17)

2(2m)' " "0 x D(O, ki)D'(pki) (M'+k')

Io 1 d 4 ' 1
3 2

dZ d kg dx
22(2~)' 2 dy' y o 0 D (z, k} )

where the first term in the square brackets dominates at x = —,
' .

Before evaluating (A18), we note that

(A18)

dx md(1 —x)I Ox
3

(0)= d ki
o (2n) (2Md)'i D(O, k )DI(p, kg)

~Mf'o 1 d' 1 ~, 'x(1 x)
dz d kg

(2 )3 2 dykey o OD'(z, k ) p2

(A19)

8I'o
Co-- g(0) .

M

Then, from (A5) we have

(A20)

Using the fact that (A19) peaks at x = —, , and comparing
with (A18) gives

I

introducing a small error which will be discussed below.
Performing the x integration by the method of residues,
and taking a «P for simplicity gives

1 o 3~2
4vrM 8p~

Q2 16I p

SM g~m (2m) (2M )' Q

Combining (A17), (A20), and (A21) gives

2

Fo(g) ~ 2(2~)'~ lt 1t(0)
g ~ SM

(A21)

(A22}

While this estimate is not very accurate if a=P, it is suffi-
cient to draw the important conclusion that the contribu-
tion to Co from the region of x outside the interval
0(x &1, which is of order M, is completely negligible
compared to that from within the interval 0 (x & 1.
Hence the leading Q behavior of the form factor ob-
tained from the RIA agrees with that obtained from
LFPT to W(P~M ), a negligible error for typical values of

in agreement with Eq. (2.20).
We now return to Eq. (A18) in order to obtain an esti-

mate of the size of Co. First we perform the kz integra-
tion, and then extend the x integration from —oo to + (x),

Our last task is to evaluate the leading logarithmic
behavior which comes from the region near x =0 and is
contained in I'I . To evaluate (A15), we use the fact that

1 5w
) 1+@(A /C )

(2 +k~)[A +(k~+C) ] c SA (C +42 )4
l.

(C'+4W')' (A24}

Neither of the two correction terms in (A24) contribute to leading order, which is Q lng-, and are thus ignored. Set-
ting a=0, we find that
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5+0 ~ 1 dx
2

1
F~(Q ) ~ dk„

g 128m — " o x (M +k )
& [Q +[16(M +k )Q ]/x

ln Q = ln(g /16M )
(16~)2gs —~ (M~+/; )7~ 16(M2+k„) 48m M Q

Q2 16M&&9m~2M l~ M2IO3 lx10. (A27)

which is a ridiculously large value of Q . Hence, for prac-

The ratio of the logarithmic term to the leading Q
term is roughly

p5 g2
ln

Fo 9vr~2 M 16M

For the typical numbers we have been using, note that FL
does not become comparable to I'o until

tical purposes the lnQ term is negligible, and the form
factor may be regarded as decreasing as a power of Q
(Q in this case). As in the above cases, the coefficients
of the lng term obtained from the RIA and LFPT are
equal to a high accuracy.

We conclude that both the low and high Q limits of
the form factor are dominated by contributions of x near
—,, and hence the RIA and I,FPT give the same results to
high accuracy. Furthermore, the lnQ behavior is also
negligible for all values of Q likely to be reached in any
experiment.
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