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Alpha particle photoeffect
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(Received 30 September 1982)

Using sum rules we calculate four energy weighted moments for the He electric dipole
photoeffect for a Volkov spin-independent potential with Serber exchange. Our results are

, =2.83 mb, o.o——119 MeVmb, o.
~
——5430 MeV mb, and o~ ——2.76&&10' MeV mb. We

use only the first term in the hyperspherical expansions of the potential and wave function.
We invert either two, three, or four of these moments to determine the photoeffect cross sec-
tion. Results with different numbers of moments agree with each other to about 15%%uo. We
find reasonable agreement with measurements of the total photoeffect cross section.

NUCLEAR REACTIONS Photodisintegration of He, moments of
photoeffect, hyperspherical harmonics.

I. INTRODUCTION

Many workers have calculated the photoeffect
cross section for He, using ground state and contin-
uum wave functions. Earlier work is reviewed by
Cxari and Hebach, ' who also present their shell
model calculation, for photon energies above 40
MeV. In Fig. 52 of their paper they show that their
calculation agrees with experiment, within the ex-
perimental uncertainties, up to an energy of 140
MeV.

In a preliminary calculation, Levinger used
hyperspherical harmonics (h.h. ) with grand orbital
L =0 for the initial state and L =1 for the continu-
um final state to calculate the electric dipole photo-
effect. The cross section has a peak value of 4.0 mb
at 27 MeV. At high energy the cross section has a
long tail but is only about —, of that calculated by
Gari and Hebach.

In our model calculation for the nuclear photoef-
fect we found the cross section near threshold
-E ~ and asymptotically -exp[ (E/D)' j, —
where E is the energy above threshold. Motivated
with that we introduced a new orthonormalized set
S„(x) with weighting function x '~ exp( —x '~

) to
use them for inversion of the moments. We give
S„(x)and the coefficients of inversion in the Appen-
dix. We found the inverted cross section within 5%
of the exact one and the agreement was better the
more moments we used. We assumed that the pho-
toeffect for few nucleon systems follows the same
asymptotic behavior, and applied this technique to
invert triton moments; we found reasonable agree-
ment with the experimental data.

In Sec. II we use the formalism introduced by Fa-
bre and used by Levinger for He to calculate the
ground state wave function along with the binding
energy (we found —28.705 MeV). The potential used
is Volkov spin independent with a fraction of Ma-
jorana exchange called x.

Then we use sum rules to calculate the energy-
weighted moments o

&
to o.2 as functions of x. We

1

emphasize the Serber exchange (x = —, ). Our results
for cr

&
and oo agree within 15% with other calcula-

tions. We agree with experiments ' within 25%.
As far as we know o

&
and cr2 were not reported be-

fore. We use calculational methods similar to those
used by Clare and Lally, ' '" for the triton.

In Sec. III we invert two moments, three mo-
ments, and four moments using "S inversion" to get
the cross sections. Our inversions agree with each
other and are in fair agreement with experimental
data. ' The two moment inversion agrees better
with experiment than the others. Three and four
moments cross sections have shifted peaks and go
slightly negative at high energy. We discuss that
and future work in Sec. IV.

II. CALCULATION OF MOMENTS

where

T= —(R /2M)(Vg +Vg +V'g ) (2)

The Hamiltonian of the a particle in its initial
(ground) state is
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V=2(k1'+0 '+4')
~

V= g V(rj )(1—x +xPJ )
7 (1

(4)

where (1—x) is the fraction of Wigner exchange
force, and x is the fraction of Majorana exchange.

For the Volkov potential, the lowest hypermul-
tipole is

Vo(g) =11410f(x1)—6570f (x2) (5)

Note that the factor —, is missing in the work of
Levinger, but this does not effect other calculations
in that paper. M is the nucleon mass. The Lapla-
cian operators are for Jacobi coordinates g'1, gz, and

g3 used by Levinger. The hyper-radius g' is defined
SS

where D is the dipole operator =eg'1, . We integrate
over angles and find

&i ID li &=&uo
I
e g' /18luo&

Thus

0.
1
——(2m a/9)&uo

I g I
uo&=2. 83 mb

which is in good agreement with many other calcu-
lations. For example, Goldhammer found
cr 1

——2.73 mb for a potential with a soft core and a
tensor component. Experimentally cr 1 can be ob-
tained from elastic scattering of electrons. Frosch
found that the r.m. s. radius of the proton distribu-
tion is 1.66 fm, giving o 1

——2.7 mb.
The integrated cross section is

where

f(x)=(1/4x —15/8x ) exp( —x )

+ —,m'~ (1/2x —3/2x +15/8x ) erf(x)

(6)

0.
1&

——(2ir /Pic)&i
I
[D, [H,D]] li &

=(2ir /Pic)&i
I
[D,[T,D]] li &

+(2~'/«)&i
I
[D, [v,D]] I

1 & .

We define

(10)

and x1 ——g/0. 82 and x2 ——g'/1. 6.
The hyperspherical wave function %L for a given

grand orbital L is conveniently written in terms of
the hyper-radial function uL (g) as follows:

'PL(g') =pl (g)H(L)(Q)

=uL(g)g H(L)(Q)

and

a = [T,D] = —(eA' /M)B/c}$1,

]=—( O /)( 12 12+ 13 13

Z24P24 Z 3—4P 34 )

(12)
g is a vector in nine-dimensional space, with length

g given by (3), and direction given by the eight
angles A.

We have a completely spatially symmetric ground
state i (I. =0), i.e.,

i &= Ii &; &i
I
v(r,, ) li &=( —, )&i

I
vo

I

i &

(8)

Solving the hyperspherical Schrodinger equation we
get F. = —28.705 MeV and find uo(g) which peaks
around /=4 fm and decreases exponentially for
large g'. We confirm Ballot's' calculation.

Then we proceed to calculate the moments using
only the term with the grand orbital zero in the h.h.
expansion of

I
i &. We use the notation, for f(g, &),

(i
l
f

l

i &
=f 4„~fi"didA

Here Z,J is the z component of the relative coordi-
nates between particles i and particle j, i.e.,
Z7J Z7 Z ~

The first term on the right hand side of Eq. (10) is
given by the Thomas-Reiche-Kuhn (TRK) sum rule:

2' afi /M =59.7 MeVmb

Z12 + 13 Z24 34 4klz

Thus Eq. (10) gives

(13)

In the second term of Eq. (10), and in all subsequent
calculations, we got rid of the operator PJ either by
pushing it to the right or to the left through dif-
ferent quantities, according to convenience, until it
disappeared as in Eq. (8). Also, by definition of the
coordinates,

After integrating over the eight angles, we obtain
g(g) with

&&i" llii l». &= f„&i.dk dk', '

&~nli; l~. &= f
cr 1 (4ir /«)&i

I
D

I

—i—&

ao=59 7 —(8~'x/3«)e'&i
I Vok1, 'I i &

After angular integration in (14) we find

o.o ——9.7 —(4x~ a/ 7)&uo I Vog I
uo &

Then

o.o ——59.7+ 119.4x MeV mb

(14)

(15)
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1For x = —,, o.
p ——119.4 MeVmb. This agrees well

with Levinger's value op ——120 MeVmb for a Vol-
kov potential. Davey and Valk calculated crp ——107
MeVmb for a super soft-core tensor potential with
the Serber mixture. Gari got 127 MeVmb for o.

p

using the Reid potential. All three agree well with
our present result. Gorbunov measured

170j a(F~)dE~

as 103 MeV mb.

Then Eq. (18) becomes

—(2ir airi x /3M) & i
~
Vp+2$„Vp /g j

i &

—(2~'a~'x/3M) I & u,
~

V,
~
u, &

+( —,')&..~gv, ~, &I .

Vp ——d Vp/dg (20)

, = —(4H/r )&; ~[H, D] ~;&

=( 4rr —/Pic)&i a i &

(4~ —/Pic)&i
f

ah+ha fi &

—(4m /Pic ) & i
[

b
f

i &

The first term on the right of (16) is

(4ir a—A /M )&i
i
8 /&pi, ii &

=(—', )( ' e'/M)& H —V,

=1289. MeV mb

The second term in (16) is evaluated as

(4rr /fi—c)&i
~

ah+ha ~i &

= —(2~ ah' x/3M)&i
~
a/c)g„(Vpg„) i &

(18)
Here the operator 8/Bg„works only on Vpg„.

Thus,

=(16ir ax /81)&i
~

Vp g ~i &

=5959x MeV mb . (21)

o.i
——(1289+5295x +5959x ) MeV mb, (22)

and this gives o.
i ——5427. MeV mb for the case

1X= 2.
The next moment is

o2 (2vr /Pic)&i ——
~
[[H,[H,D]],[H,D]]

~

i &

(23)

We use Eq. (12) for [H,D]. Since a commutes with
T,

The second term in (16)=5295. x MeVmb. The
third term in (16) is

(4—ir'a/9)x '& i
~

—V '(z, —z, —z, +z, )'
~

cr, =(2~'/Ac)&i
~
[([T,b]+[V,a]+[V,b]),(a+b)]

~

i &

which could be reduced to

oz (4~ /Ac)&i
~

——baVp+ Vpa —aVa bVa+Epb —brb+ Vpab —aVb bVb—i &-
After considerable work we find

(25)

a2=(2~'a&'/M) I
—(4&'/9M) & @p I

V'
I @o &+(Sx/27)«p& up

I
Vp

I
uo &+ &uo

I

Vp'
I

uo &

+(A /M)&l/ip Vp
~ qp& —&up

~
gvpvp up&)

+(Sx /81)( —( —, )&up
~

VpVp'g up& —3&up
~

VpVpg up& —&Qp i g VpVp
~

Qp'&

—&~. I
V.'~

I ~'&+9&~.
i
V.'i ~.»

—(Sx /243)(M/A' )&u
~

Vp g ~
up& I

We integrate by parts terms with the ket
~

it p & =dip/dg to get

a, =(2~'aA'/M) I( —,
'

)(A'/M) & 7'V, &+(Sx/27)(E, & V, &+ & V, '& ——,
' (f'/M) & V'V, &

—
& g V, V,

'
& )

+(Sx /81)(&(Vp) g' &/2+3& Vp Vpg'&+( —, )& Vp &) —(Sx /243)(M/fi )& Vp g'
& I (27)
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where

V'V'p-== (g'/ag'+ (8/g )a/ag') Vp

and the expectation value

LpHA PARTIC J E PHOTO

qs (

D(MeV) A,p(mb) A, i(mb) A, (mb) A, 3(mb)

ter and coefficients. T
eter D and coefficients A, „are use in

(32). Also see E . A2) an

(F) —= f «„'F(t)dt

zero to 15n's rule to integrate from z
li

needed for the moments are t e o

two moments
three moments
four moments

0.746
1.037
1.269

1.895 —2.321
1.363 —0.890 —0.886
1.114 —0.428 —0.581 —0.529

( Vp) = —77.3 MeV

2( V ) =6707 MeV
—2( V,'/g) =5.49 MeV fm-

—2( Vp ) = 10.4 MeV fm

V2(gVp VI) ) = —7203 MeV

(g'(VI)) ) =12200 Me V2

(g'v, , = —.p ) = —7.03X10 MeV fm

Then,

(28)

and 2. We alsore shown in Figs. an
ental values compt e yshow experimen a

50 MeV we showE (50 MeV. For E )
Gorbunov's measureme

IV. DISCUS SIGN

owGi sonse's estimates of the experi-
h fllFi . 1, forte o og.

There are largee disagreements e we
e the uoted experimd imental errors,q

for te y,h ( n) cross section, so we
3ir ah /M)(501+ 3131x +7411x +5581x )crz ——(2 a

(29

mb. It is obvious«x = —,, o,=2.76X10' MeV mb.
be the inequality:that ur moments o ey0

o. for 0&x &1o2/cri ) cri /crp ) crp/cr (30)

ems from the requirement oof the(That inequality stems rom e
s &0. )cross sec

'
ction being alway

3.2 "l

2 e.-

2.4--

MENTSIII. INVERSION OF THE MOM
OF THE ALPPHA PHOTOEFFECT

18

—x '~ x '~ ~ A,„S„(x) . (31)o(Er)/Er exp( —x x——

e ex ress the quantity cr(E&)/Er»
o orthonormalized poly-terms o af truncated sum o ort ono

nom s
'

1 5 (x) as follows:

E 2.0--

O

I.6--
hJ

V)

K
O

Here

x =(Er B)/D =E/D— (32)
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FIG. 2. Photoeffect cross section versus photon energy. The curves marked "2," "3," and "4" show our results for 5
inversion using two, three, and four moments, respectively. The asterisks show Gorbunov s measurements.

standard statistical methods to find the statistical er-
ror of the measurement. The disagreement between
our inversions in Fig. 1 and Gibson's compilation is
the same order of magnitude as his quoted "errors. "

We also do not show Gorbunov's quoted statisti-
cal errors in our Fig. 2; they are 10 percent at 50
MeV, increasing to SO percent at 140 MeV. Our
disagreements with Gorbunov in Fig. 2 are some-
what larger than his quoted errors. Our two-
moment inversion is in fair agreement with Gari's
Fig. 52 for the calculated cross section from 40 to
140 MeV.

How well does S inversion converge as we in-
crease the number of moments used? How accurate
are our moment calculations in this paper for our
assumed Volkov potential? How sensitive are the
moments to the assumed potential? Is it significant

in Fig. 1 that the more moments we use the further
are our calculations from Gibson's compilation of
experimental data'?

An answer to one question depends on answers to
others: e.g., the rate of convergence depends on the
numerical values of the moments. Our preliminary
answers are as follows. First, convergence appears
satisfactory though not excellent. Table I shows
that A,„~, the absolute value of the coefficients,
tends to decrease with n. But the convergence is
clearly less rapid than for our model, 3 where for
four-moment S inversion, the coefficients

~
kz

~

and
A 3 ~

are each less than 1 O%%uo of A,o. The behavior of
the coefficients is of course reflected in the conver-
gence of the cross sections with N: Figs. 1 and 2
show a spread of 15' as we increase N from 2 to 4,
for photon energies between 25 and 100 MeV, while
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we found a spread of less than 5% in our model.
In this paper we severely truncated the h.h. expan-

sions of potential energy and of the ground state
wave function. Calculations by Clare and Lally' "
on moments for the triton showed that correspond-
ing truncation led to errors of order 10%.

We must calculate moments with other potentials
to determine the sensitivity of moments to the as-
sumed potential. As noted above, our value of the
integrated cross section agreed with that of other
workers ' within 10%; but the higher moments
may be more sensitive to assumptions made con-
cerning the potential.

In view of the inconclusive answers to the first
three questions, we cannot assess the significance of
the disagreement with Cxibson's compilation. As
noted above, the experimental error is not well
known, and there are several approximations in our
present results. In future work we should be able to
give more definitive answers to these questions.

A, p ——o. i/(2D)

A, i ——6 '~ (o. i+yf i /12)/D

A, 2 ——0.359(o. i+0. 141yf i

(A2)

+0.00192y f2)/D

A, 3
——0.327(o i+0.186yf i+0.00456y f2

+0.204y f3/10 )/D

The dimensionless number is

The first four coefficients A,„ for S inversion are
found from Eq. (31):

We thank Henry Valk for useful discussions of
this problem.

APPENDIX

The S inversion uses orthonormal polynomials
S„(x),

where B is the binding energy and D is an arbitrary
parameter. The functions fi, f2, f3, are found from
the moments o i, op, cri, and o2 as follows:

Si ——6 '~ (1—x/12)

S2 =0.359(1.0—0. 141x +0.00192x )

S3 —0.327(1—0. 186x +0.00456x

—0.204x /10 )

(Al)

f3 =cr i
—3op/B +3o i /B crt/B—

(A3)
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