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Meson exchanges in the haritionic-oscillator quark model
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Meson exchanges are introduced into the harmonic oscillator quark model along with a lower
quark wave function. The mechanism is based on quark correlations that derive from quark ex-

change scattering via gluon exchange at short distances. This method allows avoiding spurious van
der Faals forces at long range. Meson-baryon coupling constants and vertex form factors are calcu-
lated. They are found to be in agreement with those obtained from other quark models, phenomeno-
logical potentials, and the broken SU(3) flavor symmetry. The resulting S-wave NN phase shifts are
compared with those from quark-molecular models.

NUCLEAR REACTIONS Meson exchanges, Ebb(300 MeV. Coupling con- '

stants, vertex form factors calculated from harmonic-oscillator quark interchange
model. Comparison of NN S-wave phase shifts with those of potential models.

I. INTRODUCTION

Quantum chromodynamics' (QCD) is now widely ac-
cepted as a non-Abelian gauge theory of the strong in-
teractions. Through asymptotic freedom the effective
quark-gluon coupling of color dynamics becomes weaker
at short distances. This novel property is expected to
make the nucleon-nucleon (NN) interaction accessible to a
perturbative treatment at short range. At larger distances,
when the nucleons no longer overlap much, the NN in-
teraction still remains one of the most challenging prob-
lems in nuclear physics. Here the quark-gluon degrees of
freedom are effectively frozen in by color confinement,
and meson exchanges give a good parametrization of the
low and medium energy phenomenology. But convention-
al meson-field theoretic models take the hadrons to be
pointlike, whereas they are now known to have a finite
size of the order of —.1 fm and to consist of valence
quarks predominantly.

The MIT bag model realizes color confinement by
means of boundary conditions. This allows for the in-
dependent, shell-model-like, movement of relativistic
valence quarks inside hadrons that is consistent with
high-energy deep inelastic electron scattering. It has
proved remarkably successful for the single-hadron spec-
troscopy in the low mass region. The color magnetic in-
teraction, which at short range derives from gluon ex-
change and is treated perturbatively, provides the spin
dependent two-body force.

An alternative, equally successful model involving non-
relativistic massive (constituent) quarks in a harmonic os-
cillator confinement potential with a two-body color hy-
perfine interaction has been developed by Isgur and Karl.
The validity of this constituent quark model (CQM) is
limited at long range by unphysical van der %'aals forces
and at short distances by the nonrelativistic wave func-
tions of massive quarks. In order to circumvent these dif-
ficulties, we make explicit use of a lower quark wave func-
tion which already occurs implicitly in the {assumed
Dirac) magnetic moments and in the two-body pair
current through electromagnetic gauge invariance.

Futhermore, at long range we eliminate the spurious
van der Waals forces, replacing them. by meson exchanges

(obtained from transforming the color singlet u-channel
gluon exchange between quarks instead of the t-channel
gluon exchange in second order perturbation theory). This
treatment parallels our use of a quark interchange or pair-
ing mechanism (QPM) to generate effective meson ex-
changes between nonoverlapping MIT bags. ' Both addi-
tions should extend the validity of the CQM.

In the subsequent comparison of meson theoretic calcu-
lations we use an updated version of Ref. 8. This includes
a ~NN vertex form factor with a dipole regulator A dif-
ferent from that of a11 other exchanged mesons in order to
reproduce the measured asymptotic D/S ratio of the
deuteron ground state. This parameter is now known to
depend almost exclusively on the one-pion exchange po-
tential (OPEP). Such a modification of A alone was sug-
gested recently' and appears to be consistent with QCD
ideas according to which the spontaneous breakdown of
chiral symmetry, the transition of the "current" (or La-
grangian mass) into "constituent" quarks, and the forma-
tion of the pion as a Nambu-Cxoldstone boson may occur
at shorter distances than the color confinement process-
es 11

II. CONSTITUENT QUARK MODEL

The (CQM) incorporates massive colored quarks in the
confining potential

V= —,'J Q(r; —rj) =—', &(p +X ),

where the harmonic oscillator constant E contains the
color matrix element (A,; Ai ) with the SU(3) color genera-
tors A.', a =1,2, . . ., 8. The relative quark coordinates in
Eq. (I) are defined as

p = (rt —r2), 1, = (rt+ r~ —2r3),v'2 6

and the center of mass (c.m. ) coordinate is

(3)

Hence

gr; =A~+p +3R
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and

1 1
ri ——R+~p+~A, ,

2 6

1 1r~=R —~ p+ ~ A, ,

r 3
——R—v'2/3 A. .

The nonrelativistic S-wave harmonic oscillator wave func-
tion is given by

o.'s
z g —,

' o. ; o J5( r; —rj )+tensor part,
3m

(10)

which contains the same color factor as Eq. (1}, implies
spurious van der Waals forces at long range.

Since the photon couples directly only to the quarks
rather than the hadrons, gauge invariance requires the
presence of the two-body pair current in hadrons. %ith
the Dirac notation for the quark wave function

g(p, A, ) =
,
3/2

CX

exp ——(p +A, )
2

g(r)= X, f(r)=, r =—,dg „r
if(r)o—r '

2m& dr ' r

where

a'r~=(3%m )'r =0.32 GeV .

The one-body Hamiltonian is (with the units A= 1=c)

Eq. (11) contains the lower radial quark wave function f
(7)

that is implicit in (assumed Dirac) magnetic moments and
the pair current. With m~=a', the upper and lower ra-
dial wave functions are comparable,

H, = p, + pi+ —,K(p +A, ) .z z

2plq 2plq

The constituent quark mass

m„=m~ ——m& —0.33 CseV/c

is expected to arise in the spontaneous breakdown of chiral
symmetry. Using a Bardeen-Cooper-Schrieffer (8CS)
model for the QCD vacuum it has been suggested' that a
pairing instability develops for sufficiently strong quark-
gluon coupling, n, =g /4m. & —, , which leads to the forma-
tion of qq condensates. The small current (or Lagrangian)
quark mass grows into the constituent quark mass as the
quark moves through and interacts with this physical vac-
uum. Thereby a 0 bound qq state forms with the proper-
ties of a Goldstone boson of which the pion is the realiza-
tion in a perturbed state. Thus, except for the presence of
valence quarks with their polarization of the vacuum (im-

plying the presence of virtual mesons) there is no differ-
ence between the hadronic interior and the surrounding
QCD vacuum in the CQM. This situation is in contrast to
a widely assumed normal vacuum in the hadronic interior
of an MIT bag, where pions, let alone vector mesons, may
not exist, while quarks and gluons interact perturbative-

13

Although successful in the single-hadron spectroscopy,
the CQM as a nonrelativistic quark model without the
pion exchange is severely restricted at long and short dis-
tances. Moreover, in second-order perturbation theory, a
two-body potential, e.g. , the confining potential of Eq. (1)
or the color hyperfine interaction,

]

—f(r„)=-,'g(r, ),
at the proton mean square radius rz ——o.' ' . Thus includ-
ing f may well extend the qualitative validity of the CQM
to shorter distances.

Moreover, meson exchanges arise from correlated
quarks at turning points to replace the perturbative van
der Waals forces at longer range. For this to happen
meson exchanges are required to have some inherently
nonperturbative features. This is the case for the correlat-
ed quark reflections in nonoverlapping hadronic MIT
bags.

To illustrate how this comes about consider six valence
quarks in Fig. 1(a) that are far from each other,

I »&qcD
except for one pair with the quantum labels c and d.
These quarks c and d at the location x=y could exchange
a gluon and thus interact via the S-wave 6 piece of the
color hyperfine interaction (10), were they not constrained
by color confinement. As the two quark triplets move
apart in Fig. 1(b), t-channel gluon exchange can no longer
occur between quarks c and d because of color confine-
ment. This eliminates the van der %'aals mechanism. In-
stead, the color singlet u-channel gluon exchange in Fig.
1(c) that mediates quark exchange scattering at short
range (

~

x —y ~
=0) may be sustained at medium and

longer distances if mesonic (qq) modes dominate. The u-
channel gluon exchange involves the color transitions
c ~df and d; ~cf. If it is expressed in terms of the
direct t-channel transitions c;—+cf and d; ~df as follows,

2Nd (x}7p i ~aQg, .(x}0e (x}l'~ i ~afd, (x}=(—,
' }'[p. (x'}O . 4., (x}l[A (x}O.ga,.(x}]+col«oc««erm

with i)'j of Eq. (11) and Dirac's y& of the quark-gluon cou-
pling, and where summations over repeated indices are im-
plied as usual, then the colors in the quark labels c; and cf
(and similarly d; and dI) are the same but the flavors, heli-
cities, or momenta are not necessarily. The relevant color
singlet transition operators 0 defined by Eq. (12),

0 =(l,iy„y, y5y }X(l,r, U+, V~, l, ), (13)v 2 v'2

are in one-to-one correspondence with the four meson no-
nets of spin-parity 0+, 0, 1,and 1+. As the quarks c at
x and d at y move farther apart, each held within its quark
triplet, they continue to interact directly, i.e.,

0
Cg ~cf

and
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FIG. 1. Colliding nucleons with one quark of each triplet at

the location x =y representing (a) correlated quark reflections
c;~cy and d; ~dy, (b) mediated by mesonic qq exchange when x
is far fram y, and (c) initiated by u-channel gluon exchange when
x is close to y or x =y.

0
dj ~df

via effective quark interchange. The color octet term in
Eq. (12) drops out. The gauge dependent term aq"q /q
of the current-current coupling does not enter in Eq. (12)
because qo ——0 and

(15)

QI(x)O g;(x)P (x),
are taken to be local and the meson fields p pointhke in
the long wavelength limit (and mean field approximation).
At this stage the OBE mechanism involves one sing1e-
quark matrix element in each of the colliding hadrons,
which is consistent with the independent motion of the

I

f d x e'~'" V g(x)yg(x) ~ q (cr Xq)=0 (14)

Through the transformation to the direct transitions the
gluon degrees of freedom are frozen in. The color matrix
element ( —', ) becomes an overall factor. If the t-channel
poles are saturated by (Yukawa) mesons with the physical
mass spectrum m, this leads naturally to the effective
one-boson exchange (OBE) quark interaction

+2
V~ =(-', g)' go. (T(y.y.') ),O. .

Thus the spin structure of the OBE interactions results
from the vector nature of the exchanged gluon which then
implies chiral invariance, while the mixed singlet-octet
SU(3) flavor content of the OBE's comes from the flavor
independence of the quark-gluon vertex in Eq. (12). The
mesonic quark transitions,

(17)
would simply give momentum conservation provided the
lower quark components were neglected.

The corresponding matrix elements in the relative quark
coordinates,

I =(0 ) =fd pd kg(p, A)O g(p, k, )
r

1 1
+exp i q p+

2 6
(18)

are calculated in the following.
The scalar effective meson-quark vertex with 0 =1 or

r, . . . in Eq. (18) takes the form [upon using r = r i of Eq.
(5) and setting R=0 in Eq. (11)]

quarks despite the OBEs deeper origin in correlations
with coherence length m ' in each channel a. The close
contact situation depicted in Fig. 1(a) corresponds to high
momentum transfer q =p' —p between the active quarks of
the pair which, in the QPM, is that between the nucleons.
If this happens in the hadronic surface regions, where it is
more likely, the hadronic c.m. distance will remain fairly
large so that the colliding hadrons are by no means highly
overlapping. (Nonetheless, high momentum transfer q is
often translated into short c.m. distances of extended com-
posite nucleons using the uncertainty principle. ) In fact, if
such quark reflections are restricted to the hadronic sur-
face of colliding MIT bags, then the pion couplings of
chiral bags result from this quark pairing mechanism. ' '
Thus the effective meson-quark vertices,

—',g fd re'~''i7(r)O 1((r),
2

(16)

that follow from Eq. (12) and correspond to the bag model
formulas, contain an unrestricted spatial integration. The
effective quark-gluon coupling constant a, =g /4m=1. 6
at low q is adjusted to the spin splitting in the hadron
masses. The normalization factor N is independent of the
meson channel a. For MIT bags X (=2) occurs because
the overlap of the perturbative bag interior and the QCD
vacuum differs from 1. Here X =5.7 follows from the
value g~NN/4rr=13. 4 (i.e., N /Xb, s

——2.84, m~/m» b,s=0.33/0. 108).
When the lower quark component is included, transla-

tion invariance is violated. For a more satisfactory treat-
ment of the c.m. motion, recoil and c.m. corrections are
required. Since they are small at low q compared with
the quark-model dependence of coupling constants and
vertex form factors, and are straightforward but tedious to
calculate, ' they will not be pursued further here. For
nonrelativistic baryons in the initial and final states with
plane c.m. motion, the c.m. part of the 0 -transition am-
plitude,

I,=(1)= 1+
4m'

1+ a
4m'

3

fd A, exp(iq A, /v 6—aA, )

&& fd pexp(iq p/~2 ap ) 1 ——
—1 2 -2

—q /6a
a 9a

a & 2 ~ 2 1

4m ~32p +6k, + ~p A,

(19)
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Applying the %signer-Eckart theorem for symmetric S-
wave functions, the spin-isospin matrix elements translate
the quark one-body spin-isospin operators into those of
nucleons according to the standard rules

g5NN Tg ~2
a CX

4mq
1+

4mq
(22)

a
4mq

1+-
4mq

3

g (I)=3,
Q=l

g(o(2) =o~,
Q

g ( og~1- ) =7 o+~7
Q

As a consequence, the coupling constants

NN ——3—,g 1—
v 2

(20)

(21)

are obtained, setting q =0 in Eq. (19). Their numerical
values are listed in Table I together with those of other
quark confinement models for comparison. Since the
S'NN coupling vanishes, the scalar-meson-octet
F/(F+D) ratio a, =1 is found as in Ref. 7, i.e., pure F
type coupling which determines the remaining scalar-
nonet couplings. The m.NN vertex is obtained similarly
from the single-quark transition operator iyz~ and, more
generally, the pseudoscalar meson nonet vertex. The in-
tegrals involved in I 5 can again be solved analytically.
Hence

3

15—:(y5)= — — J d Aexp(, iq A, /t/6 aA, —) 1+
3 mq 7T 4mq

r

2m~ ~2~~ a
e u(p')iY5~ru(p) 1+

3 3mq 4mq

' —1

fd pexp(iq p/t 2. ap )—o~ +
2 6

(23)

2m~ +
4mq m

(24')

For their numerical values we refer to Table I.
The vertex form factor exp(q /6a) is common to all

meson-baryon vertices. If this Gaussian is approximated-2 2
by the dipole shape [A /(A + q )] up to q =1 GeV/c, the
cutoff A=0.89 GeV/c is found which agrees with the
value obtained with the MIT bag model by Bakker et ah.

As in Ref. 7, one obtains the F/(F+D) ratio as ———,

from g&NN=O and g~NN, g&NN given in Eqs. (24) and
(24').

For the vector mesons co and p, the quark matrix ele-

ments of yo and y are evaluated first. They are given by
the expressions

to lowest order in p and p' using plane-wave nucleon spi-
nors, and

2m~ a
gmNN T( Tg ) ~ 1+~2 3mq 4mq

(y(r) ) =I T(~~) io~)&q

for T=0 or 1, and

aI gT —— 1+
4mq

2

X3~ T 1+, 1 —q
4mq

—q /6a~2
e 7 (26)

I g —— 1+
4mq

(5)T —q /6a

3mq
(26')

Hence the Sachs's form factors are

(26")
2m~G,=I.„G,= r,

because, to lowest order in p and p ', with q = —q, and
Eqs. (19)—(23) of Ref. 6, the vector-meson-nucleon cou-
pling for T=0, 1 takes the form

TABLE I. NN-meson coupling strengths g (q =0)/4m and coupling ratios f/g for the constituent
quark model (CQM), the constituent quark model with meson coupling to quark 3 (CQMq), the MIT
bag model (Ref. 8), and a linear confinement potential (Ref. 8).

Meson
(&,T)

e(0+,0)
g(0+ 1)
g(0 ,0)
m(0 , 1)
m(l ,0)
p(1 , 1}
D(1+,0)

(1+ 1)

Mass
{CieV/c )

1.2
0.96
0.5485
0.1385
0.7823
0.763
1.285
1.1

7.07
0.79
4.82

13.4
9.22( —0.49)
1.02{1.56)
0.57( —0.97)
1.58( —0.97)

g '/4rr( f/g)
CQMp

1.07
0.12
4.82

13.4
6.4{—0.40)
0.7(2.04)
0.2( —1.46)
0.55(—1.46)

MIT bag

3.89
0.44
4.87

13.4
6.0( —0.37)
0.67(2. 16)
0.57( —1.45 )

0.97( —1.45 )

Linear
confinement

potential

4.53
0.50
5.32

14.8
3.78(—0.49)
0.42(3. 18)
0.22
0.6
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—1

rP, —= &7 (.)'&= 1
4m~

u(p) r„+ ~ I, r — r„—
2m~

2m~
I r io""q /2m~ (rz)Tu(p) .

Consequently, the co and p vector (g) and tensor (f) cou-
pling constants become

u(p')ysyu(p)= —X o~X,

3 2 N 1 2
gmNN ~2 3 g s/2 ~ gPNN s/2 3

g ~2
2m~ CX

fruNN/gruNN 1+ 1+ 2
9mq 4mq

10m~
fPNN/gPNN —1+ —— I+ Z

9mq 4mq
(28')

g
u(p')ysu(p)= —X X,

2m~

the axial-vector matrix element is obtained in the usua1
form

&rsr, (r) & =u( p ')(g~, Trsr~~+gp, rrse„~~/me»( p),
(29)

where q = —q, and T=0,1. Hence

g =0,—if a.r
while

fy ytP= —(g —,
' f )o 2f (ro"r ——,' o) .— —

Using plane-wave nucleon spinors, to lowest order in
P9P 9

The numerical values are given in Table I.
It is worth emphasizing that these vector meson cou-

plings are consistent with the vector meson dominance
model and, as single-quark operators, they are also con-
sistent with the SU(6) symmetry of the constituent quark
model. Thus they give the standard value ——, for the
proton-neutron magnetic moment ratio. And just as these
magnetic moments are renormalized by pionic effects'
(and recoil corrections ' ), the OBE is renormalized by
the two-boson exchange (TBE) plus higher order itera-
tions. As shown for the bag model in Ref. 8, the two-pion
exchange significantly increases the tensor coupling of the

p exchange and the low-mass strength of the scalar-
isoscalar (effective oc) exchange. Both effects are well
known from the dispersion theoretic treatment of the NN
interaction.

The axial-vector single-quark transition matrix elements
& ysyp & are calculated similarly,

&ysro& =o
because

0 1

PrsrA= (g ~f~.r)
1
—

O

5 CX cz

12m q 4m2 I+ 2

1 3
gA lNN 3 g gA 19 gDNN 5 gA

1
NN 9

gP, O=—
T

CX'+
9mq 4mq

5
gP, 1 3gP, O ' (3o)

Thus gA1
——gA ——1.244. The resulting A1NN and DNN

coupling constants are given in Table I. Overall there is a
remarkable resemblance between the values of the meson-
nucleon coupling constants given in Table I for the Isgur-
Karl harmonic oscillator model and those of the bag
model or a linear confinement potential. This is so despite
the confinement potential being expressed in the relative
quark coordinates in the harmonic oscillator model, com-
pared to the distance between the quark and hadron center
of the others.

III. DISCUSSION

At short distances where nucleons overlap, the core of
the NN interaction is expected to be accessible to a pertur-
bative treatment of gluon and quark exchanges. Such cal-
culations will be abbreviated as quark molecular in the fol-
lowing. It is an open question to what extent, if at all, the
heavier vector-meson exchanges, viz. , p, m, . . . , which in
phenomenological meson field theories are crucial for the

TABLE II. 'So and S~ NN phase shifts, scattering lengths a, and effective ranges r from Amdt
(Ref. 25), QPM (Ref. 8) (strong p tensor case with A = 1.083 GeV/c to reproduce the measured deute-
ron D/S ratio s)=0.0274, g /4n'=5. 384, g /4m=0. 097), the constituent quark model (CQM with

m~ =0.495 GeV/e, g~ /4m =5.897, g ~ /4m=0. 179), and a Bonn potential (EHM) (Ref. 26).

Partial
wave Ref. 50

~Estab (MeV)
100 200 300

a
(fm)

'So
'So
1S
1S

Amdt
QPM
CQM
Bonn

35
31
35'
38'

23
16'
21'
26'

30

—2'
60

70

—10
—12'
—3'
—6

—23.7
—23.7
—22. 8
—15.46

2.73
3.21
3.08
2.80

3S)
'S,
3Sg

Si

Amdt
QPM
CQM
Bonn

53'
55
57
57

38'
35'
39
38

15
14'
21
14'

00

20

11'
—3

5.42
5.56
5.90
5 ~ 50

1.75
2.03
1.97
1.86
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TABLE III. '$0 and S, NN phase shifts from the bag model (QPM) and the constituent quark
model (CQM) without the OPE+ TPE, a quark-molecular CQM calculation (FFLS) (Ref. 19) and a
two-center bag model (FF) (Ref. 21).

Partial
wave Ref. 50

E),b (MeV)
200 300

lg

so
'So
'So
S
Si
Si

3g

QPM-n-o
CQM-m-o

FFLS
FF

QPM-vr-cr

CQM rr cr--
FFLS
FF

—29
—34'
—10'
+19'
—14
—28'
—10
+21

—40'
—46'
—17
+ 19'
—21'
—37'
—13'
+21'

—52'
—58
—25'
+15
—31'
—46
—20
+19

—59'
—64'
—30'
+13
—40'
—51'
—23'
+16

short range repulsion, and spin-orbit splittings of the NN
interaction, are included in such a "quark-molecular"
description. The long range tails of the p, co, . . . ex-
changes, though, are essential for the correct values of low
energy parameters such as scattering lengths, effective
ranges, and the deuteron bound state properties, which are
quite sensitive to small changes of these couplings.

Since nonoverlapping MIT bags do not exert any force
on one another, two-center quark-molecular calculations
with this model are not valid at medium to long ranges,
unless the OPE and the TPE interactions are included.
This leads to chiral bag models (CBM), ' where the point-
like (Goldstone) pion continues the axial-vector current
across the bag surface. The QPM contains the CBM as a
special case where the correlated quark reflections that
cause mesonic interactions are restricted to the hadronic
surface. ' In contrast to the CBM where only the pion is
introduced for the continuity of the axial current, the
QPM requires all four meson nonets for chiral invariance
to hold.

In the harmonic oscillator model the color hyperfine in-
teraction induces van der Waals forces which disagree
with the data at long range. However, when the lower
quark wave functions are included, and meson exchanges
are invoked at longer range to replace perturbative contri-
butions from QCD, quark-molecular calculations with the
CQM may extend the NN force to shorter ranges.

Such calculations have been carried out by several
groups in recent years. I.iberman' was among the first to
deal with the six-quark system using a harmonic oscillator
confinement potential and a two-body quark interaction.
These calculations were extended more recently. ' ' In
the framework of a two-center MIT bag model, DeTar
extracted a three-quark cluster deformation energy as a
crude approximation for the NN potential at short range.
These calculations were improved by including the [4,2]
quark configuration in addition to the totally symmetric
[6] 21

There appears to be agreement that a repulsive core ex-
ists when equivalent local potentials are constructed, and

the nearly linear energy dependence and the magnitude of
the repulsion agree qualitatively with the short range
parametrization of the Paris potential. Such a compar-
ison suggests that at short range the NN interaction is
indeed of quark-molecular origin and that meson ex-
changes replace them at longer distances. This is antici-
pated in the QPM, and other hybrid models. ~3 Others~4
believe that meson exchanges will be explained by quark-
molecular mechanisms except for the pion exchange be-
cause, at short distances, the gluon exchange is attractive
only in (qq)O states. If valid, 5-wave phase shifts (cf.
Table II) should then become comparable to the quark-
molecular ones when the OPE and TPE are deleted from
them. This is not the case. The NN S-wave phase shifts
from the resonati. ng group method within the harmonic
oscillator model are small and repulsive {cf. Table III).
The comparison in Table III indicates that a good deal or
all of the repulsion supplied by the vector and axial-vector
mesons is needed in addition to the CQM quark-molecular
contribution to reproduce the measured S-wave phase
shifts.

Two-center bag model calculations ' do not give similar
results except for the soft repulsion at short range. These
S-wave phase shifts are small and attractive (cf. Table
III). Only if the OPE and a significant portion of the
dominant and attractive TPE (effective ere exchange) are
added can these 5-wave phase shifts be made to agree with
the data at low energy. For laboratory energies above 100
MeV there is not enough repulsion at short range, even if
all heavy meson exchanges are included.

The inconsistency of these quark-molecular results may
be due to violations of local color-gauge invariance when
gluons are treated only via effective quark interactions.
This point was emphasized recently by Lipkin. Before
this problem is resolved it is difficult to extend meson ex-
changes to shorter distances.
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