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The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is inves-

tigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction
as a statistically fluctuating function of energy. The positron production rate is then dependent on
the autocorrelation function of this S matrix, and on the ratio of the "direct" versus the "fluctuat-
ing" part of the nuclear cross section. Numerical calculations show that in this way, current experi-
mental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative
fashion.

NUCLEAR REACTIONS Positron emission, nuclear correlation width, heavy-
ion collisions.

I. INTRODUCTION

With the advent of heavy-ion accelerators, atomic ioni-
zation and rearrangement processes caused by the collision
of two heavy atoms have become a focal point of experi-
mental and theoretical investigations. Particular attention
has been devoted to the production of positrons in such
collisions. In most theoretical calculations, the motion of
the two atomic nuclei was described in terms of a
Coulomb trajectory. The possibility of a nucIear collision,
and its influence upon the atomic excitation process, was
considered in Ref. 1. It was argued that a nuclear col-
lision causes a time delay ~ and an associated phase differ-
ence between the amplitude for atomic excitation prior to
the nuclear collision on the one hand, and the amplitude
for atomic excitation subsequent to the nuclear collision,
on the other. Numerical calculations' showed that this
phase difference may markedly affect the spectrum of
atomic positrons. Recent experimental studies of such
heavy systems as U + U have indicated that the atomic
positron spectrum is indeed different from the one calcu-
lated under neglect of nuclear collision processes, and
qualitatively similar to the one calculated in Ref. 1, al-
though the value of the nuclear delay time

~—{3 - - 10)y10 ' sec

used there seems unexpectedly large from the point of
view of nuclear reaction theory. This situation calls for a
more detailed investigation of the influence of nuclear re-
actions on atomic positron production, and the present pa-
per addresses this question.

Our starting point is an expression for the total (atomic
and nuclear) transition amplitude derived in the accom-
panying paper by one of us. This expression is valid if
the spatial regions in which atomic and nuclear excitation
processes, respectively, take place are clearly separated,
and if in the spatial domain of atomic excitation a semi-
classical approximation for the motion of the atomic nu-
clei is justified. The first of these conditions is met if
R »R& where R& is the typical internuclear distance at

which nuclear reaction processes set in, while R is the typ-
ical radius of the relevant ato~ic orbits. Because of the
relativistic contraction of the innermost atomic orbits, the
inequality R »Rz is not really well fulfilled in the cases
to which we apply the theory, and a generalization of our
starting-point formula is called for. This is an open prob-
lem. A further approximation used in the derivation of
the starting-point formula is the neglect of transfer of an-
gular momentum from relative nuclear motion into nu-
clear excitation. This approximation is probably justified
since, experimentally, all scattering events are counted in
which the loss of kinetic energy of the two heavy ions does
not exceed a few tens of MeV, and since at 10 or 20 MeV
intrinsic excitation energy the relevant nuclear spin values
are very small in comparison with typical angular momen-
tum values of relative motion.

Our expression for the total transition amplitude con-
tains as factors the elements of the nuclear scattering ma-
trix. To evaluate further the resulting expression for the
cross section, we use concepts of nuclear fluctuation
theory and write the nuclear S matrix as a sum of' two
terms, an average matrix (averaged over energy) and a
fluctuating part with a well-defined autocorrelation func-
tion. In this way we succeed in expressing the energy-
averaged cross section in terms of the nuclear autocorrela-
tion function and the associated mean width I,. So far,
there does not appear to exist a theoretical analysis that
would yield an expression for I, in the case of heavy-ion
induced reactions. Therefore, I, appears as a free param-
eter in our theory, comparable to the quantity R/~ of Ref.
1.

In Sec. II, the arguments sketched above are presented
in detail. Section III contains some simplifications, Sec.
IV the atomic theory, Sec. V the results of our numerical
calculations, and Sec. VI a brief summary.

II. THEORETICAL DEVELOPMENT

If the interaction between the two atomic nuclei is given
by the Coulomb potential of two point charges, the proba-
bility per unit energy interval of observing a positron of
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energy E is given by

dP +

dE X Ict E.E ( —~, +~)l'.
E &EF

(2.1)

This formula was derived in Ref. 4 (hereafter referred to
as I); the transition amplitude cl EE . (t;, t) is given as a
solution of the coupled differential Eqs. (6.2) of I with the
initial condition

Cl EE(t««, t) =5E E att='t« (2.2)

The index l, not used in I, denotes the orbital angular
momentum of relative motion of the two nuclei and thus

specifies the Coulomb trajectory as well as the distance of
closest approach .The syinbol g implies both a summa-
tion over discrete states and an integration over continuum
states throughout this paper, and the sum in Eq. (2.1)
must be taken over all single-electron states which are ini-
tially unoccupied. A generalization of these formulae to
the case of nuclear interactions was given in Ref. 3 (here-
after referred to as II). Under assumptions summarized in
the Introduction, the total transition amplitude T from an
initial atomic state E; to a final state E, and from an ini-
tial nuclear state 0 to a final nuclear state N, induced by
the collision of two nuclei with relative orbital angular
momentum l and c.m. kinetic energy E, is given by [cf.
Eqs. (3.13) in II]

TON(l «E «E««E ) = g cl 0 EE ( . oo, 0)SON(E —E««)ct N. E E (0«oo )

tt

(2.3)

Here, SQN(E) is the nuclear S-matrix element, and the coefficients cl N. E E are defined as before except that the additional
index N takes account of the reduction of the kinetic energy of relative motion of the two nuclei due to excitation of the
nuclear state X. The argument of the nuclear 5 matrix takes account of the loss of energy due to atomic excitation and
should more correctly be written as E —(E„—E; ). We suppress the term E; in the sequel in order to simplify the nota-
tion, and because it does not appear anyway in the final expressions. Similarly, kzz and g&E in Eqs. (2.4) below and
thereafter should read k~[~ z. ] and gz[z z ], respectively. This is again suppressed.

The total scattering amplitude can then be written as [cf. Eq. (3.14) in II]
oo

fNE (())= 2(kookNE )
'"y (2l+I)pl(co»)[&QN(iE, .E —TON(l;E;El, E )exp[ttri(i)00)+1171(i)NE )]J,

1=0
(2.4)

where k00(kNE ) and i)00(ONE ) are the modulus of the

wave vector of relative motion and the Sommerfeld pa-
rameter prior to (after) the scattering, respectively. The
symbol 0 denotes the nuclear scattering angle, and o.I is
the Coulomb phase shift for angular momentum l. The
coincidence cross section for inelastic nuclear scattering
into the angle 0 and for production of positrons with ener-

gy E is given by

d2

dndE
= & If"-"'I' (2.5)

E, REF

Collisions between heavy ions have been described in
terms of statistical theories. This description has the at-
tractive feature that it leads automatically to transport

equations for energy, angular momentum, and mass under
inclusion of the diffusive terms. Transport equations of
this type have proved to be very successful in the
phenomenological analysis of the data. Although it is not
certain that an approach along these lines is suitable for
the transfer of the first 10 or 20 MeV from relative
motion into intrinsic excitation (the problem with which
we are here concerned), we adopt it as a working hy-
pothesis and are thus naturally led to view each element of
the nuclear S matrix as a stochastic process, i.e., as a ran-
domly fluctuating function of energy. In keeping with
such ideas we decompose the nuclear S matrix into an
average part (SQN(E) ) and a fluctuating part SOD(E), the
latter being characterized by its autocorrelation function,

(Sofv(El )SQN (E2) ) 5ll'(SQN(E1 )SQN ( 1) ) I (E E )I,+i(E2 E1)— (2.6)

The form (2.6) is taken directly from standard compound-nuclear theory. We emphasize that a statistical analysis of the
nuclear S matrix in the frame of stochastic theories of heavy-ion reactions has not yet been given, and that Eq. (2.6) must
be considered as being ad hoc. We obviously also have no estimate of the correlation width I,. One might speculate that
A/I", is related to the diabatic-adiabatic relaxatio~ time introduced recently. In the present context, we consider I", as a
free parameter, and the entire stochastic approach embodied in Eq. (2.6) as a hypothesis of which we explore the conse-
quences.

The decomposition of S into (S) and Sf results in a similar decomposition of fNE (0),

fNE (~)=&fNE (~)&t+fS'E (0» (2.7)

with
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OO

f}vz (8)= — (k—poke )
' g (21 + 1 )Pl(cos8)exp[i crt(pop)+ioI(glitz )]

1=0

X Q cl P z z ( —oo ~0)SPg(E —En )cl Iv. z z (0, + oo )

and

QO

&f le (8) &
= —(kppklvz ) g (21+1)PI(cos8}I5p~5zz ex—p[lat(rlpp)+Iol(qlvz )]

1=0

X & Sp IV( E) &CI p Z Z ( oo r + oo ) I (2.9)

Equation (2.9) is obtained under the assumption that &S &

does not vary appreciably over a range of roughly l MeV
corresponding to atomic excitation energies, so that

&S(E —E. ) & =- &S(E)&,

cl N z z (Oi )o=oCI O. z z (0~ oo ) ~

i.e., the atomic amplitudes depend only weakly on the to-
tal kinetic energy, for energy differences of a few tens of
MeV.

Experimental conditions are such that any heavy-ion ex-
periment always involves an average over an interval of in-
cident energies. Taking this average in Eq. (2.5) and using
Eq. (2.7), we obtain

(
2

E
E; &EF

(2.10)

III. SIMPI.IFYINCi ASSUMPTIONS

A complete evaluation of Eq. (2.10) obviously requires a
detailed dynamical theory for the nuclear reaction. In this
exploratory paper we wish to avoid such complications.
To evaluate the average scattering amplitude of Eq. (2.9),
we use the fact that the collision of two heavy nuclei can
often well be approximated in classical terms. We assume
accordingly that, for given N, the l summation can be
evaluated with the help of the usual semiclassical approxi-
mation, and that for fixed X and given scattering angle 0
only a single point of stationary phase lo(8, N) contributes
to the saddle-point evaluation of the resulting integral over
dl. We assume further that the I dependence of

E; &EF
(3.1)

The evaluation of Eq. (2.8) is more complicated as Spg
fluctuates with energy, and probably also with angular
momentum. In the classical approximation. , such fluctua-
tions give rise to a diffusionlike process. If the relative
contribution of the last term in Eq. (2.10) is small —and
this is probably the case in the quasielastic regime —we ex-
pect to be able to approximate this diffusion process in
terms of the mean trajectory. This implies that scattering
into a given angle 0 is again dominated by some fixed an-
gular momentum lp(8, N). We assume again that the 1

dePendence of cl p zz (t, t') near . 1 = lp is sufficiently

smooth, and we use Eq. (2.6). Defining f~f (8) as the nut

clear fluctuating scattering amplitude, i.e., as in Eq. (2.8)
but without any atomic excitation, we find

where

(3.2)

cl p zz (t, t'.) is smooth compared to that of the other fac-
tors, and accordingly replace cl p zz (t, .t') everywhere by
cl zz (.t, t'} where at the same time we have simplified the
notation. This assumption is physically plausible but
deserves further investigation. Using these assumptions,
introducing the average nuclear scattering amplitude
&flv(8) & (defined as in Eq. (2.9) but without any atomic
excitation, i.e., for cz z (t, t )=5z z ), and assuming that
the scattering angle is different from zero, we find

I &flvz (8)& I'-=I &flv(8)& I'
E &EF

I,
H(lo~E }= g g . clo zZ ( — ,oo)c0l .

, oz, z(0, + oo)clo z z ( —oo,0)clo.z z (0, + oo) .
z, &zFz. ,e„c m

— n~
0' ™

(3.3)

Experimentally, positron production is measured in coincidence with heavy ions scattered into a particular solid angle;
the loss of kinetic energy (and, therefore, the intrinsic excitation energy) is limited to a few tens of MeV. To calculate the
coincidence rate, we must sum Eq. (2.10) over all final states N within the experimentally admitted interval (this sum is
denoted by g&), and divide by the singles count rate. In summing Eq. (2.10), we use Eqs. (3.1) and (3.2). We assume,
moreover, that for the comparatively small excitation energies considered here, l0 and l0 depend little on X and can be re-
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placed by the angular momentum l, (8) of a Coulomb trajectory leading to the same scattering angle. The singles count
rate is obtained by a similar summation, all atomic amplitudes being put unity. The probability per unit energy interval
to observe a positron of energy E coincident with nuclear scattering into the angle 0 is then given by

=~(8) X I cl, ;E;,E ( ~ + oo)
I

+[1 ~(8)]H(i E—),
E; REF

where 0&et(8) & 1 and

(3.4)

«8)= X'
I &f@8)& I' X'1&&(8)& I'+ X'& I&+(8) I'&

Obviously, a(8)=1 if f"/ =0, in which case our expres-
sion (3.4) reduces to Eq (2. 1. ). The novel feature is the oc-
currence of the expression (3.3) in the coincidence rate
(3.4). It is similar in form to terms discussed in Ref 9. .
By virtue of the autocorrelation function

I, I, el+I,+i(E E„)
I

—I, +i(E E„)I—
y=arctan[(E„E—)/I, ] .

For 1,» I
E„E I, the p—hase factor is

exp Ii (E„E)/I,—J

(3.6)

the coherent summation over the energies E and E„ is
restricted. For I,~ac, the function H(l„E ) obviously
becomes equal to the first sum on the right-hand side of
Eq. (3.4), as it must, and then Eqs. (3.4) and (2.1) coincide.
The function (3.3) has a similarity also with the time-delay
phase factors introduced in Ref. 1. This is seen by writing

I I I I [ I I I I [ I

)Q 2 —I ~=0.03

which, with ~=A/I „is just the form used in Refs. 1.
The steps leading to Eq. (3.4) are clearly rough approxi-

mations to a more complete theory. We use them in order
to obtain a first orientation over the kind of results which
are to be expected in the present framework. In the termi-
nology of compound-nucleus theory, the quantity a(8) is
the fraction of reaction processes corresponding to
"direct" nuclear scattering. One might speculate that this
is the fraction of processes in which the sudden (diabatic)
nuclear potential is relevant, while

I
1 —a(8)

I
is the other

fraction, i.e., processes in which the nuclear potential
changes during the collision, so that the process takes a
circuitous path through the potential landscape before it

0'

I
( I

g I
y I

I
I
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I
II

y 1
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E~a b=5.9 MeV/nucleon

ec.m. = 9P'
s&&2 cont.
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g I
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E) o b=7.7 MeV/nucleon

ec.m.=gQ'

Sy2 COAt.

I I I I f I I I I ) I I

]p-S

Oi

I I
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FIG. 1. The function H[l, (8),E ] defined in Eq. (3.3) [in
units of (m, c') ', with m, the mass of the electron) is plotted
versus E {in units of m, c ) for the reaction U+ U at 5.9
MeV/nucleon, a scattering angle 0, =90 and various values of
I, as indicated {in units rn, c ) at each curve. Only the s I/q con-
tribution {as defined in the text) is shown. The arrow indicates
the position of the resonance Eo———1.36 at the distance of
closest approach, 8;„=21fm.

)Q-4

I I I I I I

FICi. 2. The same as Fig. 1, for the same reaction, but at 7.7
MeV/nucleon, with Eo ———1.60 and 8;„=16.1 fm.
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10-5 I I I I I I I I I
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FIG. 3. The same as Fig. 1 for the reaction U+ Cm at 5.8

MeV/nucleon and 8, m =120', with Eo ———1.66 and A;„=19.5
fm.

I

-3 E

FIG. 4. The same as Fig. 1 but for the p ~~2 contribution.

re urns ot to the elastic or near-elastic channels X. e make
these comments here in order to demonstrate t a e
physical picture used above, although speculative, is not
totally without possible significance. From a practica
point of view, it is clear that our theory contains two pa-
rameters, o.(8) and I,. It is obvious that I, may depend
both on 0 through I, and on the experimentally admissib e

Itenergy interval entering into the summation
should be expected that I, increases very rapidly with ex-
citation energy. This suggests that an observation of ef-
fects associated with I, is possible only for experiments
which filter out scattering events with small energy losses,
and that the results of such observations may depend sens-
itively upon the size of the experimental energy interva .
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p)g2 Cont.
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p&&2 cont.
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f
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o 103
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f

fc=0,3
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FIG. 5. The same as Fig. 2 but for the p~~2 contribution.

I I I I I I I I I I

-1 -2 -3 E
FIG. 6. The same as Fig. 3 but for the p~~2 contribution.
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I L & 1
J

& I I I [
I l IV. THE SUPERCRITICAL CASE

I I

' l0LLI

)O-5

Pb+ Pb
EI~ b=7 MeV/nucleon
0 =90'
s&&2 cont.

~c= ~
r, =&
I-c =0
I =003

Given n(8) and I „the evaluation of Eq. (3.4) for un-
dercritical atoms is straightforward. For supercritical
atoms (with total charge so large that the ls bound state
"dives" into the positron continuum) we use the formal-
ism developed in I. We have to pay attention to the fact
that the modified basis introduced in I does not consist of
eigenstates of the Hamiltonian at a fixed internuclear dis-
tance, whereas the energies E,E„ in Eq. (3.3) are by defi-
nition eigenenergies. We must therefore transform back
from the modified basis to the unmodified one. We use
the notation and definitions of I and consider by way of
example the sum (we omit the index l, )

Cpcs s ( —oo, O)cs s (0, oo)i' m m' — ' f' +i(E E )
m

-2 -3 F

FIQ. 7. &he same as Fig. 1 for the reaction pp+ pp at 7.O which we write in the form

MeV/nucleon and 0, =90' with R;„=16.1 fm.

(4.1)

I,
cs s ( —oo, O)cs s (O, oo)

+ g c~ s ( —oo, 0)cs ~ (O, oo) ~az, ~
+ g cz z„(—oo, O)cz„, z (O, oo)bz„z, bz„,z,o 0' t t

E It E II/

+ Qc „(—oo, O)cE, g (O, oo)b „,a', + gc~ s, ( —oo, O)c „(O,oo)a, b'„
E II II

I,
I,+i (E' E„)—

(4.2)

Here, the coefficients cz z, etc. are solutions of the system (6.2) in I while the coefficients a and b are given by

0, if E' &E, ,
—1

[I (E',E )/2tr]' E E' ——I (E',E )—, if E, &E' & —1,
(4.3)

b~ ~, = (ip~,
~
X@ ) =5(E E' )+(E E' i r—i) 'a~, .[I—(E—,EO)/2tr]'~

They are the overlap matrix elements between the modified (gr„,+E ) and unmodified (itic~ ) basis functions. As in Refs.
4 and 10, we neglect the unimportant coupling among the continuum positron states gE and end up with integrals an

example of which is

E +hE I,
lim f dE' f de f de'~a,

~
bs, b*, ,

C

Such integrals can be approximately evaluated analytically under the condition that I (E,EO) is a slowly varying func-
tion of E [cf. (4.4) and (5.8) in I]. We thus obtain

E +hE I,
lim f dE' f dE" f d~ f de'b~ P*, ,b~, b*„, ,

—-=1,
C

E +BE I, I,
(4.4a)

(4 4b)



28 INFLUENCE OF THE NUCLEAR AUTOCORRELATION FUNCTION. . . 745

(4.4c)

E +SZ
»m f «' f « f «'b, ~*,b. ,b'. , ', -=[r(E,E,)r2~]'&' E E —— NE—,E ) i—l,

bE~p E —bE E-' 1 +i (E—e') 2

(4.4d)

T

-=[DE,EO)/2ir][(E E) +— I (Ep—,E )] ' +1—2 Re1,+1 (EO,EO) + i f'(Eo Ep)+I'(Eo —E )

(4.4e)

f dc f de'bE, a', ~a~~', —= [ l(E, E, )/2Ir]'" ' E E, —z-(E„E,) (4.4fl

I i I
]

I i I I [ I I

I I

I )O-4
UJ

Oi

0
I

Pb+ Pb
E~~ b=7 MeV/nucleon
8~.~.=90
p&&2 cont.

f" =ao
tc=~

= 0.3
I"c = 0.03

The numerical calculation of the amplitudes c@E which
appear in Eqs. (4.2) has shown' that the typical energy
range over which these amplitudes change significantly is
of order m, c . This together with the analytical expres-
sions given in Eqs. (3.3), (4.2), (4.4b), and (4.4d) —(4.4f)
shows that a resonancelike peak with width
& I (Eo Eo ) +2I', is expected to show up at the energy Eo
of the 1s resonance in the positron spectrum. It is caused
by the fact that the only amplitude with a sharp energy
dependence in the entire positron production process is the
amplitude aE for this resonance. The energy Ez is the

energy of this resonance at the point of nuclear contact or,
in the present approximation in terms of Coulomb trajec-
tories, at the distance of closest approach. Clearly, Ep is a
function of the nuclear scattering angle 8.

V. NUMERICAL RESULTS

We have calculated numerically the function H(l„E )

defined in Eq. (3.3} for various systems and scattering an-
gles, and several choices of I,. We recall that for I,= oo,
this function gives the positron spectrum in the absence of
any nuclear reaction. The method of calculation of the
amplitudes cI.EE(t,t') is described in Ref. 10. Since the
monopole approximation for the electrostatic potential
produced by two heavy ions is used, electronic states of
different angular momenta become decoupled. The posi-
tron spectrum is therefore given as an incoherent sum of
the contributions from different channels specified by the
electronic angular momentum. Only the most important
channels, s»2 and pi~2, are considered in the present cal-
culation, and the Fermi energy Ez is chosen such that all
the levels up to the 3s&&2 or 4pi~2 state, respectively, are
filled initially. Figures 1 to 3 display the results obtained
for the systems indicated in the captions. In each case, we
have evaluated only the s

& ~2 contribution. The calculation
yields the probability of positron production per unit ener-

gy interval and for a given scattering angle. Two trends in
the figures are remarkable. First, with decreasing values
of I „asharp peak appears at the energy Ep which gives
the resonance energy at the distance of closest approach.
This is to be expected in view of the analytical results
given in Sec. IV. Second, with decreasing values of I „
the function H strongly increases —we recall that the plot
in Figs. 1—3 is a semilogarithmic one. This means that
even if only a small fraction of all nuclear scattering
events are affected by the nuclear autocorrelation func-
tion, i.e., if

~

1 —a(8)
~

&&1, a noticeable change of the
positron spectrum is to be expected. Quantitatively, and
for a fixed choice I 0 of I', and of a(8), the spectrum is,
according to Eq. (3.4},given by

a(8)H(lI, E ) i r +[1—a(8)]H(l„E )
i r

FIG. 8. The same as Fig. I but for the p ~~2 contribution.
This formula and the graphs in Figs. 1—3 show that for
I p 50 to 100 keV, patterns of the type observed experi-
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mentally can be produced. We emphasize that in the con-
text of the semiclassica1 formula (2.3), the positron spec-
trum is expected to have only a single peak at or near
E =Eo. This is the most distinct difference between our
results and those of Ref. 1. We also remark that a fairly
large value of I,=500 keV leads to an overall enhance-
ment of the spectrum by roughly a factor of 2, which sug-
gests that nuclear effects might also be identified by pre-
cise measurements of the absolute rate of positron produc-
tion.

For the sake of comparison, we show in Figs. 4—6 the
positron spectra calculated under the same kinematical
conditions as in Figs. 1—3, respectively, but for the p»2
contribution. The strong peaks are absent, in contrast to
the s»2 contribution, but the results are still weakly
dependent on I, . In Figs. 7 and 8 we show the s&~2 and
the p&~2 contributions, respectively, for the undercritical
case of the reaction Pb+ Pb. These figures also show no

peak, which confirms the statement that the peak is
caused by the s»2 resonance in the positron continuum.

VI. SUMMARY

%'e have shown that the inclusion of a nuclear reaction,
described in terms of a Auctuating nuclear S matrix with
an autocorrelation function of the Ericson type, is capable
of modifying considerably the form of the atomic positron
spectrum observed in heavy-ion reactions. Our calcula-
tions are based on severe assumptions and drastic approxi-
mations. These deserve further exploration. It appears,
however, that the observation of positrons produced in
coincidence with quasielastically scattered nuclei may pro-
vide the long-missing tool for understanding better the
mechanism of these nuclear reactions. The tool is provid-
ed by the sharp s»2 resonance in supercritical quasiatoms.
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