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Dynamical thresholds for compound-nucleus formation in symmetric heavy-ion reactions
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We study the effect of the nuclear macroscopic energy, nuclear dissipation, and shape parametri-
zation on dynamical thresholds for compound-nucleus formation in symmetric heavy-ion reactions.
This is done by solving numerically classical equations of motion for head-on collisions to determine
whether the dynamical trajectory in a multidimensional deformation space passes inside the fission
saddle point and forms a compound nucleus, or whether it passes outside the fission saddle point and
reseparates. Specifying the nuclear shape in terms of smoothly joined portions of three quadratic
surfaces of revolution, we take into account three symmetric deformation coordinates. However, in
some cases we reduce the number of coordinates to two by requiring the ends of the fusing system to
be spherical in shape. The nuclear potential energy of deformation is determined in terms of a
Coulomb energy and a nuclear macroscopic energy that is usually taken to be a double volume ener-

gy of a Yukawa-plus-exponential folding function, although a double volume integral of a single-
Yukawa folding function and ordinary surface energy are also considered. The collective kinetic en-

ergy is calculated for incompressible, nearly irrotational flow by means of the Werner-Wheeler ap-
proximation. Four possibilities are studied for the transfer of collective kinetic energy into internal
single-particle excitation energy: (1) zero dissipation, (2) ordinary two-body viscosity, (3) one-body
wall-formula dissipation, and (4) one-body wall-and-window dissipation. For systems with Z /A
larger than a threshold value (Z /A), h, which depends somewhat upon dissipation, the center-of-
mass bombarding energy must exceed the maximum in the one-dimensional interaction barrier by an
amount AE in order to form a compound nucleus. For all four possibilities considered, we find that
the dependence of' hE on Z /A —(Z /A), h, is more complicated than the lowest-order quadratic
dependence found in some previous approximate solutions. For both types of one-body dissipation,
our calculated values of AE are an order of magnitude larger than those for zero dissipation and or-
dinary two-body viscosity. We compare our results calculated for symmetric systems with experi-

I

mental values for asymmetric systems by use of a tentative scaling involving (Z /A) „,defined as
the geometric mean of Z /A for the combined system and an effective value (Z'/A), ff for the pro-
jectile and target. When compared in this way, the experimental values of hE agree better with re-
sults calculated for two-body viscosity. than with results calculated for either type of one-body dissi-
pation.

NUCLEAR REACTIONS "OPd + "OPd~2' U, symmetric nuclear systems
leading to compound nuclei with 37.0&Z /A &41.5. Calculated dynamical
thresh olds for compound-nucleus formation. Macroscopic nuclear model,
Yukawa-plus-exponential model, single-Yukawa model, liquid-drop model, nu-

clear inertia, nuclear dissipation, ordinary two-body viscosity, one-body dissipa-
tion, classical equations of motion, dynamical trajectory, compound-nucleus for-
mation, heavy-ion fusion, fast fission, deep-inelastic reactions, time-dependent

Hartree-Fock approximation.

I. INTRODUCTION

A necessary condition for forming a compound nucleus
in a heavy-ion reaction is that the dynamical trajectory of
the fusing system pass inside the fission saddle point in a
multidimensional deformation space. For nuclear systems
lighter than a critical size and for relatively low angular
momentum, the fission saddle point lies outside the point

of hard contact in heavy-ion reactions, and this require-
ment is automatically satisfied once a one-dimensional in-
teraction barrier is overcome. However, for heavier nu-
clear systems and/or for high angular momentum, the fis-
sion saddle point lies inside the contact point, and the
center-of-mass bombarding energy must exceed the max-
imum in the one-dimensional interaction barrier by an
amount AE in order to form a compound nucleus. This
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was recognized' early, and more recently dynamical tra-
jectories 'for fusing systems have been calculated by use of
several approaches.

In one approach, ' the classical equations of motion
were solved numerically for a system whose shape is speci-
fied in terms of smoothly joined portions of three quadrat-
ic surfaces of revolution. The nuclear potential energy of
deformation was determined in terms of a Coulomb ener-

gy and a nuclear macroscopic energy usually given by a
double volume integral of a Yukawa folding function but
sometimes given by the surface energy of the liquid-drop
model. The collective inertia tensor was calculated for nu-
clear Aow that is a superposition of incompressible, nearly
irrotational collective-shape motion and rigid-body rota-
tion. Although some calculations were performed for
asymmetric systems' ' ' and some included various
types of dissipation, ' ' ' most calculations with this ap-
proach were performed for symmetric systems with zero
dissipation. These calculations illustrated that, even in the
absence of dissipation, an additional bombarding energy
AE relative to the maximum in the one-dimensional in-
teraction barrier is required to form a compound nucleus
for sufficiently heavy nuclear systems and/or sufficiently
high angular momentum.

In another approach, pioneered by Swiatecki, ' the
classical equations of motion were solved approximately in
closed form for a system whose shape is specified in terms
of two spheres connected by a cylindrical neck in the orig-
inal version' and by a conical neck in subsequent
work. The nuclear potential energy of deformation
was parametrized by expanding the surface and Coulomb
energies of the liquid-drop model to third order in the
neck radius. For head-on collisions, all elements of the
collective inertia tensor were neglected except the diagonal
element corresponding to center-of-mass motion, which
was taken equal to the reduced mass when the neck radius
was less than a critical value and zero otherwise. Rota-
tional kinetic energy was included approximately by
mocking up the centrifugal force by an increase in the
Coulomb repulsion. Nuclear dissipation was calculated by
expanding the one-body wall-and-window formula to third
order in the neck radius. The resulting approximate alge-
braic solution yielded a specific prediction for the addi-
tional bombarding energy 6E relative to the maximum in
the one-dimensional barrier required to form a compound
nucleus. For nuclear systems with (Z' /A'), fr larger than a
threshold value (Z /A), h„ this additional energy 6E,
termed by Swiatecki the extra push, or under certain con-
ditions the extra-extra push, was predicted to depend qua-
dratically upon

(Z /A), fr —(Z /A), h„.

The quantity (Z /3), ff is defined in terms of the individu-
al projectile and target atomic numbers and mass numbers
in such a way that for symmetric systems it reduces to
Z /3 for the combined system.

The solution of the above schematic model is character-
ized by five constants, some of whose values have been es-
timated both theoretically ' ' ' and from comparisons
with experimental data. The original schematic
model itself yielded values for three of the constants that
are significantly different from empirical values obtained

from adjustments to experimental data, but improved
models yielded values in somewhat closer agreement
with the empirical values. In these improved models, the
nuclear shape was specified in terms of two spheres con-
nected smoothly by a hyperboloidal neck, the collective
potential and kinetic energies and one-body wall-and-
window dissipation were calculated more accurately, and
the equations of motion were integrated numerically.

In still another approach, the time-dependent
Hartree-Fock (TDHF) equations of motion were integrat-
ed numerically for a two- or three-dimensional grid. For
moderately heavy systems, the onset of fusion is at an en-
ergy considerably above the maximum in the interaction
barrier, and this phenomenon is at least qualitatively relat-
ed to the energy thresholds found in the macroscopic stud-
ies. Whereas in macroscopic calculations one of the
main uncertainties affecting the fusion behavior is the
choice of an appropriate dissipation model, in the TDHF
approximation the dissipation is caused only by one-body
collisions with the mean-field potential. However, in the
TDHF calculations there can be very large threshold-
energy discrepancies arising from the choice of the two-
body interaction used. For example, it has been demon-
strated in studies of Kr + ' La that the laboratory-
energy fusion threshold for the Skyrme III potential is
more than 150 MeV lower than that for the Skyrme II po-
tential. Also, the TDHF results for the Skyrme II po-
tential exhibit a very pronounced fusion behavior at an en-
ergy just above the maximum in the interaction barrier,
which is reminiscent of the adiabatic slither or cold fusion
predicted in Ref. 22. In addition to the above type of en-
ergy threshold, a completely different type occurs in ihe
TDHF approximation for all nuclear systems at a relative-
ly high energy, where it is found that fusion abruptly
disappears for head-on collisions. ' For energies above
this threshold, there exists a low-angular-momentum cut-
off below which there is no fusion. This behavior is inti-
mately connected with the transparency inherent in the
mean-field approximation and has not been verified exper-
imentally.

The various theoretical approaches discussed above all
predict that for sufficiently heavy nuclear systems and/or
high angular momentum, the center-of-mass bombarding
energy must exceed the maximum in the one-dimensional
interaction barrier by an amount AE in order to form a
compound nucleus. The necessity for such an additional
energy has been suggested experimentally in several recent
studies, ' ' although an alternate interpretation in
terms of large surface friction has been proposed. (The
opposite conclusion obtained in an earlier study was
based on comparisons with a schematic model whose es-
timated constants are now known to be unreliable. ) Al-
though the comparisons with experimental data have
sometimes been interpreted as evidence for one-body wall-
and-window dissipation, it must be borne in mind that the
additional energy arises from the need to overcome both
repulsive Coulomb and/or centrifugal forces on one hand
and dissipative forces on the other hand. In the compar-
isons made to date, no attempt has been made to distin-
guish between conservative and dissipative forces.

Although the effect of various types of dissipation on
the dynamical motion has been calculated for a few spe-
cial cases, ' ' ' there is a strong need for a systematic
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study of this question. It is our major purpose here to cal-
culate within a single unified model the dependence of the
additional energy AE upon Z /A for various types of dis-
sipation, in an effort to ultimately determine the magni-
tude and mechanism of nuclear dissipation from compar-
isons with experimental data. Since both our predictions
and those of other groups depend somewhat upon the de-
tails of the model, we also study the effect of the nuclear
macroscopic energy and the shape parametrization on the
dynamical thresholds. Our dynamical model is described
in Sec. II, and our calculated results are presented. in Sec.
III. In Sec. IV we compare our results calculated for sym-
metric systems with experimental data for asymmetric
systems by use of a tentative scaling, and in Sec. V we
summarize and conclude our paper. Appendix A
discusses the method that we use to integrate the equa-
tions of motion during the approach and contact stages
until an appreciable neck has developed, and Appendix 8
discusses the functional dependence of 6E on
Z /A —(Z /A), h„.

II. DYNAMICAL MODEL

Detailed discussions exist elsewhere' ' *" for both
the dynamical model and numerical methods that we use
in our present studies. Therefore, we discuss only briefly
those aspects relevant to our present calculations. The
main results of this paper are obtained from dynamical
calculations for head-on collisions of two symmetric heavy
ions, together with static calculations of the fission saddle
points for the combined systems.

The nuclear shape is described by means of the three-
quadratic-surface parametrization, ' in which an axially
symmetric shape consists of smoothly joined portions of
three quadratic surfaces of revolution. For this paper we
also assume reflection symmetry about a plane through
the geometrical center of the middle body and perpendicu-
lar to the symmetry axis, which restricts our studies to
mass-symmetric collisions. In this parametrization sym-
metric shapes are described by three independent collective
coordinates, but it is convenient to project out of this
three-dimensional space two moments of the distribution
that have special physical significance. These are defined
b 13,49—51

where z is measured along the symmetry axis and the an-
gular brackets denote an average over the half volume to
the right of the midplane of the reflection-symmetric
shape. The moment r gives the distance between the mass
centers of the two colliding ions, while o. measures the
fragment elongation or the necking in the combined sys-
tern.

For both the static and dynamical calculations, we
determine the potential energy of deformation from the
sum of the Coulomb electrostatic energy and a nuclear
macroscopic energy, namely,

&(q1,q2, . . . , q~)—:V(q) = VC,„1(q)+V„„,1(q),

where p; is the momentum conjugate to q; and
M J (q) is a

shape-dependent inertia tensor obtained by use of the
%erner-%heeler approximation to incompressible, irrota-
tional flow.

%'e consider the case of zero dissipation, as well as three
different types of dissipative forces: ordinary two-body
viscosity with a viscosity coefficient p =0.02TP,
one-body wall-formula dissipation, 9' and one-body
wall-and-window dissipation. ' * The viscosity coeffi-
cient @=0.02TP is chosen because this value optimally
reproduces average fission-fragment kinetic energies for
the fission of nuclei at high excitation energies throughout
the Periodic Table, when the most recent constants of the
Yukawa-plus-exponential potential ' are used. The two
types of one-body dissipation differ from each other in the
following way: In the wall formula all velocities normal
to the nuclear surface are measured relative to the station-
ary center of mass of the combined system and no window
term is included, whereas in the wall-and-window formula
surface normal velocities for a given half of the system are
measured relative to the moving center of mass of that
half, and an additional term is included to describe dissi-
pation arising from the Aux of particles through the win-
dow separating the two halves. ' The dissipative forces
are included by Ineans of the Rayleigh dissipation func-
tion49, 61

Ã
F= —,

' g g~j(q)q;qj, (5)

where g,j. is the shape-dependent viscosity tensor appropri-
ate to a particular type of dissipation.

The dynamica1 evo1ution of the nuclear shape is ob-
tained by solving the generalized Hamilton equations of
motion

where q; denotes one of the % collective coordinates used
to describe the shape. Most of our results are obtained
with the Yukawa-plus-exponential (YPE) nuclear macro-
scopic energy, ' with values of the constants determined
in Refs. 54 and 55. This energy takes into account the
nonzero range of the nuclear force, saturation at the con-
tact point for two semi-infinite slabs of nuclear matter,
and the curvature of the nuclear surfaces for finite nuclei.
Also, the constants that enter this energy have values that
are determined systematically from diverse physica1 con-
siderations, namely the nuclear-radius constant rp from
elastic-electron scattering, the surface-energy constant a,
and surface-asymmetry constant ~, from fission-barrier
heights, and the range a from heavy-ion elastic scattering.
The resulting heavy-ion interaction potential correctly de-
scribes experimental fusion barriers for light nuclei au-
tomatically, even though such data were not used in the
determination of the constants. ' In addition to using
the Yukawa-plus-exponential nuclear macroscopic energy,
for a few cases we show the effects of using either the
single-Yukawa (SY) energy~'56 or the surface energy of
the liquid-drop model (LDM).

For the dynamical calculations for head-on collisions,
the collective kinetic energy is given by

X
T= —,

' g M;~(q)q;q~= —,
' g (M '),)p;pj,
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X~ (~-'1 pqc-
j=1

av
p,. = — —l XBq;;,k=i

Q(M 1 I
PjPk

(6)

III. CALCULATED RESULTS
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TABLE I. Calculated additional energy AE relative to the maximum in the one-dimensional interaction barrier required to form a
compound nucleus in a head-on collision for "Pd+" Pd~~~ U. The transition neck radius r„ is 3.0 fm unless indicated otherwise.

aE (MeV)
Nuclear

macroscopic
energy

Liquid-drop model
Single Yukawa
Single Yukawa
Yukawa plus exponential
Yukawa plus exponential
Yukawa plus exponential
Yukawa plus exponential
Yukawa plus exponential

Dissipation

No dissipation
No dissipation
No dissipation, r„=1.0
No dissipation
Two-body viscosity, @=0.02TP
Wall formula
Wall and window
Wall and window, r„=3.5 fm

Full
three-quadratic-surface

parametrization

0
0

3.80+0.05
1.5 +0.2

5 +0.5
90+2

39+0.5

Spherical
ends

4.5+0.1

0.5 +0.5
60+2
36+0.5
32 +0.5

by a double volume integral of a single-Yukawa folding
function. ' In this reaction, the two separated spherical" Pd nuclei move up the binary valley near the bottom of
the figure from right to left, and come into solid contact
at the point indicated by the two adjacent solid circles.
This point is slightly inside the maximum in the one-
dimensional interaction barrier calculated as a function of
r alone, but is on the side of a steep hill with respect to
fragment elongation (increasing cr) In o.rder for a com-
pound nucleus to be formed, the dynamical trajectory
must pass inside the fission saddle point, located at the in-
tersection of the dashed 6.3-MeV contours, and become
trapped in the potential-energy hollow surrounding the
sphere, whose location is indicated by the solid circle.

For this reaction typical results are shown in Figs. 2—8,
and the threshold energies are summarized in Table I. In
the figures and table, the additional energy hE is defined
as the difference between the bombarding energy in the
center-of-mass system and the maximum in the one-
dimensional interaction barrier. However, in the figures
hE denotes an arbitrary energy over the barrier top,
whereas in the table AE denotes the minimum energy re-
quired for compound-nucleus formation, determined by
finding the trajectory which passes through the saddle
point.

In the figures the bold, horizontal arrow from the
right-hand border to the solid circle denoting tangent
spheres represents the last part of the trajectory from in-
finite separation to just touching. During this stage and
continuing along the short, bold arrow from the solid cir-
cle denoting the tangent spheres to the open circle, the
dynamical evolution is described by use of the simple
model discussed in Appendix A. For all cases except
wall-and-window dissipation, the three-quadratic-surface
parametrization is used starting at the open circle, where
the neck radius r„ is 3.0 fm. At this point the values of
the moments are r /RO ——1.458 and o./R 0 ——0.709 for this
system. Because of numerical difficulties, for wall-and-
window dissipation the simple model discussed in Appen-
dix A is used until the neck radius is 3.5 frn, where the
corresponding values of the moments are r/R0 ——1.408
and o /RO ——0.707.

For the case of zero dissipation and additional energy
6 E=20 MeV, we display in Fig. 2 the calculated saddle-
point configurations and dynamical trajectories for three

different nuclear macroscopic energies. These energies
correspond to the single-Yukawa model, ' which has
been used in previous dynamical calculations' ' and
whose potential-energy contours are shown in Fig. 1; the
liquid-drop model, which has also been used in previous
dynamical calculations '; and the Yukawa-plus-
exponential model ' with constants determined in Refs.
54 and 55, which is used for the remaining calculations
presented in this paper. We see in Fig. 2 that the dynami-
cal trajectories for all three nuclear macroscopic energies
lie fairly close together. However, as seen in Table I, there
are some dynamical differences since the additional
threshold energy hE is 1.5, 0, and 0 MeV for the YPE,
LDM, and SY nuclear macroscopic energies, respectively.

Comparing the two finite-range nuclear macroscopic
energies, we see in Fig. 2 that the SY saddle-point shape is
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CENTER-OF-MASS SEPARATION r (units of Ro)

FIG. 2. Effect of the nuclear macroscopic energy on saddle-
point configurations and dynamical trajectories in the r-o. plane
for the reaction "Pd+" Pd —+ U at DE=20 MeV, calculated
for zero dissipation. The interval hE is defined as the difference
between the bombarding energy in the center-of-mass system
and the maximum in the one-dimensional interaction barrier.
Solid circles indicate the single-sphere and tangent-spheres con-
figurations, and the open circle indicates where the three-
quadratic-surface numerical integration begins. For each type of
nuclear macroscopic energy the saddle-point configuration for
the combined system is indicated by a cross ( & ).
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FIG. 3. Effect of dissipation on dynamical trajectories in the
r-o. plane for the reaction "Pd+ "Pd~ U at AE= 20 MeV in
the full three-quadratic-surface parametrization.

considerably more elongated than the YPE saddle-point
shape. Because of this, the SY nuclear macroscopic ener-

gy permits fusion at a lower bombarding energy than does
the YPE nuclear macroscopic energy. Although the YPE
and I DM saddle points lie very close together, the corre-
sponding energy thresholds differ slightly. Table I also
lists the result from Ref. 13 for the SY nuclear macro-
scopic energy and zero dissipation, but calculated using
the smaller transition neck radius r„=1.0 fm. Comparing
the two SY cases, we see that increasing r„by 2.0 fm de-
creases the nondissipative threshold energy by at least 3.8
MeV.

For the remaining calculations in this paper we use ex-
clusively the YPE nuclear macroscopic energy. In Fig. 3
we compare dynamical trajectories for five different types
of dissipation. In addition to the four types previously
mentioned, we include an example of pure window dissi-
pation, obtained by omitting the wall contribution in
wall-and-window dissipation. We note that the dynamical
paths for no dissipation and two-body viscosity prefer
changes in separation r rather than neck formation o.. The
curves for no dissipation and two-body viscosity are not
very different since the viscosity coefficient p=0.02TP is
relatively small. Qn the other hand, the one-body-
dissipation models all generate trajectories in which o.

changes much more rapidly than r. Such behavior has
previously been observed in calculations of fission.

By comparing Figs. 3 and 4, we see the effect of con-
straining the end bodies to be spherical. In this widely
used approximation, ' both the first and third surfaces
in the three-quadratic-surface parametrization are forced
to be spheres. The most dramatic change is for two-body
viscosity, whose trajectory in Fig. 4 leads to much more
compressed shapes than the corresponding trajectory in
Fig. 3. For the energy thresholds, we observe from Table
I that there can be substantial discrepancies arising from
the approximation of using spherical end bodies. In par-
ticular, for the wal1 formula the additional threshold ener-

gy AE is about 30 MeV larger when the spherical con-
straint is not imposed. For wall-and-window dissipation
with spherical end bodies it is possible to use a transition
neck radius of r„=3.0 fm without encountering numerical

0.9
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I
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hE = 20 MeV
0.8 —SPHE R I CA L ENDS
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c 05—
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I l I I I I I y I I I I

0.8 1.0 1.2 1.4 1.6 1.8
CENTER-OF-MASS SEPARATION r (units of Rp)

FIG. 4. Effect of dissipation on dynamical trajectories in the
r-o. plane for the reaction "Pd+" Pd~ U at DE=20 MeV
when the end bodies are constrained to be spherical. (In this fig-
ure the transition neck radius r„ is 3.0 fm also for wall-and-

window dissipation. )

TANGENT
SPHERES

0.9

110pd + 110pd -+ 220U

NO DISSIPATION
0.8

C hE
X

O 1.5 MeV

O
0.7 20 MeV

0.6

0.5
SING LE SPHE RE

I I I I I

08 10 12 14 'I 6 18
CENTER-OF-MASS SEPARATION r (units of Rp)

= 0.0 MeV

TANG ENT
SPHERFS

FIG. 5. Effect of bombarding energy on dynamical trajec-
tories in the r-o. plane for the reaction " Pd+" Pd~ U, cal-
culated for zero dissipation.

difficulties. As seen in Table I, increasing r„ from 3.0 to
3.5 fm in this case decreases 4 E by about 4 MeV.

In Figs. 5—8 we show, for each type of dissipation con-
sidered, the behavior of the dynamical trajectories as the
center-of-mass bombarding energy is changed. For each
case except the nondissipative one we display curves for
DE=0.5 and 20 MeV, as well as the threshold value, for
which the trajectory passes through the saddle point. For
the nonviscous case, the lowest energy trajectory is for 0
MeV. In wall-formula dissipation (Fig. 7) we also plot the
very high-energy trajectory corresponding to DE=150
MeV. These figures all illustrate that with increasing
bombarding energy, the two ions interpenetrate more, giv-

ing rise to more compressed shapes. However, for both
types of one-body dissipation, the system strongly resists
compound-nucleus formation. This feature is especially
pronounced for the wall formula because the velocities
normal to the nuclear surface are measured relative to the
stationary center of mass of the combined system and are
larger than those measured relative to the moving centers
of mass of each half of the system.
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FIG. 6. Effect of bombarding energy on dynamical trajec-
tories in the r-a plane for the reaction "Pd+" Pd~ U, cal-
culated for two-body viscosity with coefficient p =0.02TP.

FIG. 8. Effect of bombarding energy on dynamical trajec-
tories in the r-0 plane for the reaction "Pd+" Pd~2 U, cal-
culated for wall-and-window dissipation. (In this figure the
open circle denotes a transition neck radius of 3.S fm. )

B. Dynamical thresholds for different systems

(Z /A) „„=[(Z/A)(Z /A), rr]'~

Since

Z)/A) ——Zp/Ap ———,Z /A,

(9)

(10)

we can easily determine the individual atomic and mass
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FIG. 7. Effect of bombarding energy on dynamical trajec-
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culated for wall-formula dissipation.

We now study the fusion behavior for different heavy-
ion reactions, which we designate by the value of Z /A
for the combined system. The total atomic number is
Z=Z&+Z2 and the total mass number is A=A&+A2,
with the subscripts 1 and 2 referring to the projectile and
target, respectively. Because we assume reflection symme-
try, Z) ——Z2 and A )

——A2, so that Z /A is identically equal
to both the effective value (Refs. 19—26, 34—41, 43, 44,
and 47)

(Z'/A ).«=4Z, Z, /[A ,'"A,'"(A,'"+A,'" ) ]
and the geometric mean (Refs. 23, 24, 36—39, and 41)

numbers from the requirement that the projectile and tar-
get each lie along the valley of P stability according to
Green's approximation

A; —2Z; =0.4A; /(200+A;), i =1,2 . (11)
This is in contrast to some earlier dynamical thresho1d
studies, ' where the combined system was taken to lie
along Green's approximation to the valley of P stability.
As shown by Feldmeier, this leads to significant differ-
ences in the calculated results.

In Figs. 9 and 10 typical r-o. graphs are displayed for
two types of dissipation, with DE=0.5 MeV. In each fig-
ure we plot the saddle-point configurations and dynamical
trajectories for three different values of Z /A, including
that value for which the trajectory passes through the sad-
dle point. These two figures clearly show that, as we
change Z /A, the saddle-point configurations are dis-
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value of Z /A for the combined system, with the symmetric tar-
get and projectile chosen to lie along Green's approximation to
the valley of P stability (Ref. 63).
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39.5x
Z2/A =

1.8

placed much more than the trajectories. As the charge on
the system increases, the saddle point moves to a more
compact configuration, while the trajectory is deflected in
the opposite direction. In passing, we remark that the ef-
fect of angular momentum is qualitatively similar to that
of charge regarding the behavior of saddle points and tra-
jectories. ' '

Additional calculations have been carried out for a wide
range of reactions using all four types of dissipation. The
final threshold values are summarized in Table II and
plotted in Fig. 11. For b E=o (no dissipation} or 0.5 MeV
(nonzero dissipation), we use graphs like Figs. 9 and 10 to
find the value of Z /3 for which the trajectory passes
through the corresponding saddle point. This value of
Z /3 is determined to within +0.01. For all other cases,
Z /3 is fixed and a search is made for 6E, which is usu-
ally determined to within +0. 1 MeV. However, for a few
cases, the trajectories terminate before reaching the saddle
point because of a breakdown in the three-quadratic-
surface parametrization, and the threshold energy must be
determined by subjective extrapolation, which gives rise to
an estimated error in

~

b E
~

that is larger than 0.1 MeV.
We also list in Table II the threshold value (Z /A), h, cor-
responding to d E=O, which for nonzera dissipation is
determined by graphical extrapolation in Fig. I I.

When comparing the results for the different types of
dissipation in Table II and Fig. 11, we must remember
that for the transition neck radius we have used r„=3.5
fm for wall-and-window dissipation and r„=3.0 fm for
the other cases. From our study of "Pd+ " Pd in the
previous subsection, we saw that whereas the dynamical
behavior is not drastically sensitive to the choice of r„, a
larger value of r„reduces the threshold energy somewhat.

o NO

40 —z WA

& WA

K
LU
C)
0- 30
(3
LK
LLI

LLI

200
Ci

10

50

40

30

4

z 20

z
O
I-
Cl
O

10

I
I

I I

r

I'

I I

I
I

I
I

I I
y

I
I

I I

I
/

I I

I

NO DISSIPATION

TWO- BODY V I SCOS I TY,
p = 0.02 TP

WALL FORMULA

WALL AND WINDOW

I
I'

I

l
I
I
I
I
I
I
I
I
I
III

I

li ]
I
I

Is

/
I

I
il (
I

0 l I I

37.5 38.0 38.5
Z2)r'A

39.0 39.5
-10

34

l

36
I

3S
(Z /A)ines

I

40
I

42

FIG. 11. Effect of dissipation on the additional center-of-
mass bombarding energy AE relative to the maximum in the
one-dimensional interaction barrier required to form a com-
pound nucleus in a head-on collision. The smooth curves are
drawn by hand through the calculated points taken from Table
II. The value of Z /3 refers to the combined system, with the
symmetric target and projectile chosen to lie along Green's ap-
proximation to the valley of P stability (Ref. 63).

FIG. 12. Comparison of additional energy AE required for
compound-nucleus formation calculated for symmetric systems
with experimental values for asymmetric systems characterized
by (Z /A ) „, defined by Eq. (9). Values extracted from
evaporation-residue measurements are represented by solid sym-
bols {, Ref. 42; IW, Ref. 47; and 4, Ref. 41), whereas values ex-
tracted from measurements of nearly symmetric fissionlike frag-
ments are represented by open symbols (o, Ref. 23; 0, Ref. 4S;
and 4, Ref. 43).
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TABLE II. Additional center-of-mass bombarding energy AE relative to the maximum in the one-

dimensional interaction barrier required to form a compound nucleus in a head-on collision, calculated

with the Yukawa-plus-exponential nuclear macroscopic energy. The transition neck radius r„ is 3.0 fm

except for wall-and-window dissipation, where it is 3.5 fm. The value of Z /A in each case refers to the

combined system, with the symmetric target and the projectile chosen to lie along Green s approxima-

tion to the valley of P stability (Ref. 63).

Dissipation

No dissipation

Z /A

38.87+0.01"
39.0
39.25
39,5
40.0

AE
(MeV)

0
0.8+0.1

2.0+0.2
3.5 +0.5
6.5+0.5

Two-body viscosity

p =0.02TP
38.65'
38.70+0.01"
38.85
39.0
39.25
39.5
40.0
40.5
41.0
41.5

0
0.5

1.9+0.1

3.5 +0.1

6.0+0.1

9.0+0.1

16.9+0.1

26.0+0.5
40.0+0.2
59 +1

Wall formula 37.87'
37.88+0.01
37.9
37.95
38.0
38.25
38.S
38.7S
39.0
39.5

0
0.5

1.5+0.1

2.8+0.1

5.4+0. 1

16.8+0.1

31.0+0.1

48.5+0.1

67.5+0.1

130.2+/. 1

Wall and window 38 22'
38.23+0.01"
38.3
38.4
38.5
38.6
38.7
38.8
38.9
39.0
39.1

39.25
39.5

0
0.5

2.8+0.1

6.2+0.1

9.5+0.1

13.4+0.1

17.5+0.1

21.6+0.1

26.2+0.1

31.8+0.1

36.5 +0.1

45.9+0.1
63.0+0.1

'Obtained by graphical extrapolation in Fig. 11.
Search is made for Z~/A at fixed AE.

In addition, as discussed in Appendix B, use of a
nonzero value of r„ introduces a linear component in the
dependence of hE on Z /2 —(Z /A), q, . To lowest order
5E depends quadratically on Z /A —(Z /A ),q, when
the initial conditions correspond to starting with spheres
at the top of the one-dimensional interaction barrier mov-
ing radially inward with kinetic energy hE. However,
this lowest-order quadratic dependence is destroyed when
dynamical effects that occur during the approach and con-
tact stages are taken into account. Also, quantal sub-
barrier tunneling destroys the quadratic dependence.

Therefore, little physical significance should be attached
to the lowest-order functional dependence of 6E on
Z /A —(Z /2 ),q, and consequently to the precise value of
(Z /A), q, . Instead, attention should be focused on the rate
of increase of AE with increasing Z /A somewhat above
the threshold.

As seen in Fig. 11, for both types of one-body dissipa-
tion our calculated values of 6E are in general an order of
magnitude larger than those for zero dissipation and ordi-
nary two-body viscosity. The values of AE for wall-
formula dissipation are larger than those for wall-and-
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window dissipation primarily because the surface normal
velocities measured relative to the stationary center of
mass of the entire system in the former case are larger
than the normal velocities measured relative to the moving
centers of mass of each half of the system in the latter
case.

IV. COMPARISON WITH EXPERIMENTAL DATA

In order to compare the additional energy AE required
for compound-nucleus formation that we have calculated
for symmetric systems with experimental values, it is
necessary to scale the asymmetric nuclear systems that are
studied experimentally into symmetric ones. Although the
effective value (Z' /A), rr defined by Eq. (8) has been fre-
quently used for this purpose (Refs. 19—26, 34—41, 43, 44,
and 47) the dynamical calculations performed for asym-
metric systems by Feldmeier and more recently by
Bfocki and Swiatecki indicate that this simple scaling
based on the projectile and target at contact does not hold.
Because the dynamical trajectory of a fusing system moves
from the contact region, where (Z' /A ),ff is appropriate, to
the saddle-point region, where Z /A for the combined sys-
tem is appropriate, scaling in terms of the geometric mean
(Z /A) ~„defined ' ' ' ' by Eq. (9) should be more
accurate. This expectation can be verified by replotting
the results presented in Fig. 4 of Ref. 25 versus
(Z /3) „ instead of (Z /A), rr, which largely reconciles
Feldmeier's calculations for asymmetric systems with
those for symmetric systems presented in Table 1 of Ref.
25. The more recent calculations for asymmetric systems
by Qkocki and Swiatecki also support the choice of
(Z /& )mean for a scaling variable.

Although remaining uncertainties associated with scal-
ing preclude a definitive comparison at this stage, we
nevertheless compare in Fig. 12 calculated and experimen-
tal ' ' ' ' values of the additional center-of-mass
bombarding energy AE required for compound-nucleus
formation. The experimental values indicated by solid
symbols are extracted from measurements of evaporation
residues, ' ' which require the formation of true com-
pound nuclei. The experimental values indicated by open
symbols are extracted from measurements of nearly sym-
metric fissionlike fragments, ' ' ' where fast-fission
processes involving significant mass transfer but not true-
compound-nucleus formation also contribute. For both
the solid and open symbols, the experimental values of the
additional energy AE are determined by subtracting from
the experimental barrier heights extrapolated values that
correctly reproduce the smooth trends for somewhat
lighter nuclei. For consistency with recent prac-
tice, ' ' ' these extrapolated values are taken to be 96%
of the barrier heights calculated"' with the proximity po-
tential for all cases except the open triangle, where the
procedure of Ref. 43 is followed. Had we used instead the
full barrier heights calculated with the Yukawa-plus-
exponential potential, the major effect would have been to
systematically shift the experimental points in Fig. 12
downward by about 10 MeV, although the amount of the
shift would have been somewhat larger for nearly sym-
metric systems than for asymmetric systems. The former
procedure is used here because it better reproduces the bar-
rier heights of those nuclei with (Z /3 ) „„slightly below

the critical value where an additional energy 6E is
predicted to be required. However, had the latter pro-
cedure been used, our final conclusion concerning the
magnitude and mechanism of nuclear dissipation mould be
even stronger. For the open triangle corresponding to
radiochemical measurements of nearly symmetric
divisions for the system Fe+ U, asymmetric fission of

U following deep-inelastic collisions could contribute to
the observed yield, making it an upper limit. This corre-
sponds to a lower limit for the additional energy AE. For
the points taken from unpublished material, the solid cir-
cles refer to the formation of Fm through the reac-
tions Ar+ Pb, Ge+ ' Er, Kr+ ' Gd, and " Pd
+ ' Xe, the solid triangles ' refer to the reactions

5 Ti + 208Pb~2581Q4 and 5 Ti + 2098i~2591Q5 and the
open square refers to the reaction 66e+ ' Er~ Fm.

As seen in Fig. 12, all experimental values of 4E taken
together agree much better with the results calculated for
two-body viscosity than with the results calculated for ei-
ther type of one-body dissipation. Also, we note that if
one were to correct the wall-and-window curve, allowing
for the use of a sma11er transition radius r„, the resulting
curve would be displaced to the left, thus enhancing the
apparent disagreement with experiment. However, be-
cause the solid symbols usually lie somewhat above the
open symbols, and because the error bars for the three
solid symbols with the largest values of (Z /A ) „„extend
to + m, these conclusions must be regarded as tentative.

V. SUMMARY AND CONCLUSIONS

On the basis of a macroscopic dynamical model, we
have calculated the dependence upon Z /3 of the addi-
tional energy AE relative to the maximum in the one-
dimensional interaction barrier required for compound-
nucleus formation in symmetric heavy-ion reactions. This
was done by solving numerically the classical equations of
motion for head-on collisions within the three-quadratic-
surface shape parametrization for zero dissipation, ordi-
nary two-body viscosity, one-body wall-formula dissipa-
tion, and one-body wall-and-window dissipation.

Studying first the sensitivity of the calculated results to
various details of the model, we found that for zero dissi-
pation the YPE energy leads to a more compact saddle-
point shape than does the SY energy, thus requiring a
slightly larger AE. Similarly, we found that constraining
the spheroidal ends of the system to be spherical increases
the additional energy hE somewhat for zero dissipation,
but decreases it for two-body viscosity and both types of
one-body dissipation considered. Our most significant
finding was that the calculated values of AE for both
types of one-body dissipation are in general an order of
magnitude larger than those for zero dissipation and ordi-
nary two-body viscosity.

By use of a tentative scaling involving the geometric
mean (Z /A) „„,we compared our results calculated for
symmetric systems with experimental values of AE for
asymmetric systems. The experimental values agree much
better with the results calculated for two-body viscosity
than with the results calculated for either type of one-body
dissipation. However, for the larger values of (Z /2 )m,»,
the current experimental values extracted from evapor-
ation-residue measurements, which represent the only de-
finitive proof of compound-nucleus formation, have error
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bars that extend to + oo.
In conclusion, we seem to be on the brink of determin-

ing the magnitude and mechanism of nuclear dissipation,
but to do this unambiguously we need further evapor-
ation-residue measurements for heavy nearly symmetric
systems and/or calculations performed for asymmetric
systems.
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APPENDIX A: MODEL OF NECK FORMATION

A realistic model for the formation of a neck between
two interacting nuclei near the point of first contact poses
some serious difficulties. Because we are unable to accu-
rately describe the dynamics of the nuclear fluid for the
large distortions and rapid motions occurring when the
neck is first forming in a heavy-ion collision, we use a
simpler approximation near the contact point.

The interaction energy as a function of the separation
between two spherical nuclei interacting via the long-range
Coulomb repulsive force and the short-range nuclear at-
tractive force initially increases as the nuclei are brought
together, due to the dominance of the Coulomb repulsion
at large distances. When they are sufficiently close that
the short-range nuclear attractive force just balances the
Coulomb force, a maximum in the one-dimensional in-
teraction barrier occurs. For the model of the nuclear
force that we use, the maximum in the barrier is situated
outside the point where the equivalent sharp surfaces of
the nuclei touch for systems with combined mass numbers
less than about 300.

If we allow the two nuclei to deform in response to the
forces between them as we bring them together, the
Coulomb forces will tend to make them oblate. When
they are close enough for the nuclear forces to act appreci-
ably, these forces will tend to deform the nuclei so that
they become prolate, eventually forming a neck between
them as they get closer together. The time development of
this process depends very sensitively on the details of the
model used to describe it, so that it is not clear whether
the nuclei would be oblate or prolate when they reach the
point at which the neck forms. For example, the inertia
with respect to deformation of a nucleus far away from
another is nearly the same as for the isolated nucleus.
However, when the nuclei are nearly in contact, the pres-
ence of the second nucleus changes the structure of the
first, leading to a somewhat different inertia.

The location of a diffuse surface like that of a nucleus is
an imprecise concept. For concreteness we define the nu-
clear surface as the surface on which the density of' nu-
clear matter is one-half its average interior value and then
consider the evolution of this surface as two nuclei are
brought together. ' First, consider the case where two
spherical, frozen, diffuse matter distributions are brought
together. Initiall, the half-density surfaces of the nuclei
are spherical. As their density tails begin to overlap ap-

preciably, the surfaces bulge toward each other and even-

tually join the separated shapes into a single-necked shape.
At this touching point, the radius of the neck grows infi-
nitely fast for a finite velocity of approach of the two nu-
clei. However, other than the overall center-of-mass
motion of the two nuclei, no matter has moved during the
entire process just described. In addition to this geometri-
cal neck formation, there is in general a dynamical evolu-
tion of the nuclear shape corresponding to motion of
matter with respect to the centers of mass of the interact-
ing nuclei. Therefore, the formation of the nuclear neck is
a combination of a geometrical process with trivial
dynamical content and a dynamical process involving the
properties of nuclear matter. '

Because of the competing directions of the nuclear and
Coulomb forces of deformation, and because we lack a
convincing model for the inertias for deformations, we
constrain the nuclei to remain spherical in their approach
phase. This constraint is imposed until the radius of the
neck reaches a specified value, which is usually taken to be
3.0 fm. At this point we begin the full dynamical evolu-
tion of the shape, using the equations given in the text.
For the general case with angular momentum, we use an
analytic Coulomb hyperbolic orbit to describe the ap-
proach of the two nuclei from infinite separation to the
point where the Yukawa-plus-exponential nuclear interac-
tion energy has the negligibly small value —0.01 MeV.
From this point on, we integrate numerically the equation
of motion for the separation r between the centers of mass
of the nuclei. The potential energy is the sum of the
Coulomb energy and the Yukawa-plus-exponential nuclear
macroscopic energy, and the inertia with respect to r is
calculated for point masses. We calculate the potential en-
ergy during the geometrical-neck-growth phase for a
three-quadratic-surface shape whose hyperboloidal neck
contains the matter from the region of overlap of the two
spheres. Since we assume that no dynamical deformations
occur during the approach phase, we use only the dissipa-
tive forces of Randrup's approximate proximity window
dissipation model, which takes into account the momen-
tum transfer between the two nuclei when single particles
pass through the window. At the starting point of the full
dynamical evolution, we keep both r and dr/dt continu-
ous.

Our choice of 3.0 fm for the transition neck radius was
motivated partly for computational convenience and part-
ly by the fact that fission-fragment kinetic energies for the
fission of nuclei throughout the Periodic Table are op-
timally reproduced with wall-and-window dissipation
when the transition from the pure wall formula is made at
a neck radius of 3.0 fm. Even with such a relatively
large neck radius at the start of the full shape evolution,
the fractional volume of matter removed from the overlap
region of the two spherical nuclei is only 0.5%% for the

U system.
A transition neck radius of 3.5 fm was used for the

wall-and-window calculations because this type of dissipa-
tion greatly restricts the growth of the neck, which leads
to the formation of a cusp between the end bodies when
the 3.0-fm starting neck radius is used. As seen in Table
I, when the end bodies are constrained to be spherical, in-
creasing the transition neck radius from 3.0 to 3.5 fm de-
creases the calculated additional energy 6E from 36 to 32
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MeV. Also, for zero dissipation in the full three-
quadratic-surface parametrization, increasing the transi-
tion neck radius from 1.0 to 3.0 fm decreases 4E from 3.8
to 0 MeV.

APPENDIX 8: FUNCTIONAL DEPENDENCE
OF SE ON Z'/A —(Z'/A), „,

%'e now consider the behavior of the fusing system near
the threshold for compound-nucleus formation, and the
effects the details of the model have on the results. For a
system of critical size, which will just form a compound
nucleus if the nuclei reach the top of the interaction bar-
rier with no remaining kinetic energy, the potential energy
has three relevant characteristics:

(1) The fission saddle point lies at (ro, oo) and the max-
imum in the interaction barrier at (rb, o-& ), with rp- rb and
CTp) Ob.

(2) The energy at the barrier top is greater than the
saddle-point energy.

(3) The force on the system at the top of the interaction
barrier is in the general direction of the saddle point.

If we neglect dissipative forces and deformations occur-
ring before reaching the top of the interaction barrier, at
the threshold for compound-nucleus formation the criti-
cally sized systems with Z /A =(Z /A), q„will start from
rest at (rb, ob) and subsequently follow a trajectory that
passes through (ro, oo) in time To. A slightly heavier sys-
tem with

Z /3 =(Z /A)g„+4(Z /3)
has its saddle point located at (rp —Arp, o.p —Sap), ~here
Are ——ab(Z /A) and boo Pb(Z /A) to firs—t—order in
b(Z /A), with a and P positive constants. This system, if
started from rest at the top of the new barrier located very
close to (rb, ob ), would follow a trajectory nearly the same
as the previous one, passing outside the new saddle point
and consequently reseparating. In order to just pass
through the saddle point, the system must be given an ini-
tial component of velocity in the —r direction. In the
simplest case, where the velocity at the barrier is purely in
the r direction, the forces in the r direction are negligible,
Ao.p&&op —o.b, and the inertia is nearly diagonal with
respect to the r and o. directions„ the system travels the ad-
ditional distance harp inward during the time Tp when the
initial radial velocity at the barrier top is

In terms of the additional energy that is required, we may
express this relationship to lowest order as

hE =y[b, (Z /A ) ]

a result found empirically by Swiatecki.
In our model, because we prevent the nuclei from de-

forming in the o. direction until they are well inside the in-
teraction barrier, they have (in the absence of infinite dis-
sipative forces) a finite u„at their starting point, even
though they reached the top of the barrier with zero kinet-
ic energy. For example, for the U system the energy of
the tangent-sphere configuration is 1 MeV below that of
the barrier top, and the energy of the shape with a 3.0-fm
neck radius is 6 MeV below that of the barrier top. In this
case, the slightly different critically sized system starts off
at the point (r„a, ), where r, ~rI, and 0, =o.b, with a ve-
locity U

&
directed radially inward and kinetic energy

E& ———,'M, U&, where M„ is the inertia for motion in the r
direction. It reaches the saddle point (r „cr,) in a time T~,
which is again mainly determined by the forces acting in
the o. direction. A slightly heavier system with its saddle
point at (r] —Ar], o.

&

—ho&) needs an initial velocity of
U, +aU, , ~here aU, = —aI, /T„ to reach the saddle
point. Again neglecting dissipation, we find that the addi-
tional kinetic energy required at the barrier top is

hE = ,'M, (ui+—oui) —Ei M„h——ui(u)+ —,oui),
or

DE=5[5(Z /A)]+y'[h(Z /A)]

Therefore, constraining the nuclei to remain spherical un-
til inside the barrier top adds a linear term in the depen-
dence of b,E on b, (Z /A). Whereas this constraint may be
appropriate at energies well above the top of the barrier, it
should be less appropriate for energies near the barrier top
because of the deformations that are expected to occur
during the relatively long time the system spends moving
slowly there.

To conclude, since the functional dependence of hE on
l3,(Z /A) near threshold depends sensitively on the details
of the model used to describe the approach and initial con-
tact stages, the important quantity to consider is not
(Z' /A), i,„but instead the shape of the function in the re-
gion where AE is experimentally distinguishable from
zer o.
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