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Analysis of low energy heavy ion multiparticle transfer reactions
in terms of entrance and exit doorways
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A projection operator method is developed for the analysis of low energy heavy ion multiparticle
transfer reactions. Entrance doorways introduce structure which is transferred sequentially via reac-
tion (or exit) doorways to the reaction channel of interest. The theory treats both gross and inter-
mediate structure, and the coupling from entrance to exit doorways introduces additional spreading
and rather narrow structure in the reaction cross section. Consistent with experiment, energy shifts
of reaction channel resonances relative to each other and to the elastic are present. The theory is

suggested as a means of studying, for example, ' C+' C~ Ne*+a in the range of 10—30 MeV
(c.m. ) where the 02 state of ' C* would play an important role.

NUCLEAR REACTIONS Light ions, projection operator intermediate structure
theory, entrance and reaction doorways, multiparticle transfer.

I. INTRODUCTION

Considerable experimental evidence has accumulated
for the occurrence of intermediate structure (IS) in low en-
ergy heavy ion reactions. This IS has been manifested by
the apparent occurrence in several cases of nuclear molec-
ular formations. Such simple patterns of nuclear motion
at relatively high excitation energies in certain nuclear sys-
tems have not only stimulated additional experimental ef-
forts, but have offered theorists a chance to examine the
nuclear dynamics that leads to identifiable structure in an
otherwise complex array of data.

The collisions found to be most amenable to the excita-
tion of clear molecular states are ' C + ' C and ' C + ' O.
While many reaction products are possible and have been
investigated experimentally, most theoretical analyses have
centered on the elastic and inelastic channels. ' The
theoretical emphasis on these exit channels is understand-
able because of their relative simplicity in comparison to
other reactions. The few attempts at calculating cross sec-
tions other than elastic and inelastic have usually been of
the direct reaction type. An exception is the work of
Adhikari who studied exit doorway states in nuclear reac-
tion. While bearing some similarity to our work, there are
striking differences between our approach and interpreta-
tion and that of Ref. 5. These will be referred to later in
this paper. The major impetus for our work was the
strong need for a theoretical microscopic description of
more complex reactions that not only reproduces the
broad resonances but also yields the underlying observed
IS.

The projection operator method based on the Feshbach
doorway approach has been successful in explaining
' C+ ' C and ' C+' 0 elastic scattering data' as well as
' C+ ' C inelastic scattering to the 2+, 3, and 02+ excit-
ed states of C. ' In this paper we extend this work to
the study of cross sections for more complicated reactions
by employing a model that uses hallway states (one step
more complex than the entrance doorway) as reaction or
exit doorways to the reaction channel of interest. Cosman

et aI. have indicated that the resonances associated with
a particular entrance doorway may be correlated from
channel to channel and to the elastic channel. In our
model the coupling from entrance to exit doorways intro-
duces additional spreading and structure in the reaction
cross section. In addition, energy shifts of reaction chan-
nel resonances relative to each other and to the elastic
channel are present. This would be consistent with experi-
mental observations for ' C+ ' C. Because of the addi-
tional requirement of passing through exit doorways, rath-
er narrow resonances can be obtained. The additional
structure coming from the spreading from exit doorways
to even more complicated states will be averaged over.

In Sec. II the general theory and procedure are
developed in a model independent manner. The work of
Wang and Shakin ' on secondary doorways serves as a
valuable impetus for our efforts. A shape elastic entrance
doorway subspace is introduced along with an exit door-
way subspace in order to account for the gross and inter-
mediate structure. We suggest that the specific experi-
mental measurements of ' C+ ' C~ Ne*+a in the en-
ergy range 10—30 MeV (c.m. ) (e.g., Greenwood et al. '

would be an interesting test case). Special emphasis would
be placed on the 7.68 MeV 02+ level in ' C and exit door-
ways would be taken as loosely bound states of the
( Be+a ) system resulting from the alpha decay of the
aforementioned 02+ state. Detailed numerical calculations
are in progress and will be published at a later date.

II. THEORY

As in our ear1ier work on elastic' and inelastic '

scattering we divide the Hilbert space into two orthogonal
subspaces I P j and I Q ] representing, respectively, the
shape elastic continuum space of the reduced mass and the
rest of the Hilbert space. The projection operators I' and
Q satisfy

P+Q= 1 .

The diagram of Fig. 1 illustrates this decomposition. The
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FICx. 1. Total Hilbert space subdivision into single continuum
state (P) and more complicated space (Q).

subspaces can be further subdivided by introducing the
orthogonal operators p, R, d, and q so that

1
H —~(,p+d)(p+d)+~dq ~qd .E—Hqq

We assume that within our doorway formalism,

Hpg ——Hpg ——Hpq
——0,

H~g ——Hgq ——0
2

and

Hg q
——0.

(5b}

(Sc)

and

p+R =P (2a)

where d& and d2 are the respective operators. The break-
ups equations (2a)—(2c) are illustrated in Fig. 2.

Letting A be the total Hamiltonian and ttj(+ ' the
scatttering wave function, the Schrodinger equation is

Making the usual doorway assumption that A
&q

is zero,
and hence does not contribute to our calculation, we intro-
duce the effective Hamiltonian H via

p R

non resonant, ' resonant
I

space space

doorways I more complex
,
' states

d% d2

entrance:exit
doorways

FIG. 2. Subdivision of the single continuum space [PI, more
complicated space [Q I, and doorway space [d I.

The subdivision into p and R follows the procedure of Lev
and Beres, " ' where R produces the subspace of shape
elastic continuum resonances of the reduced mass projec-
tile and p produces the orthogonal nonresonance subspace.
The operator d produces the subspace that contains the
doorways, i.e., states which involve a nuclear interaction
in addition to an optical potential and are one step more
complex than IR I. The coupling between P and d must
be calculable within the context of whatever model is
chosen to represent the nuclei. The operator q produces
the states more complicated than d. In addition, the door-
way space I d ] is further subdivided into an entrance door-
way space [d1 ] and a reaction or exit doorway space [dq j,
1.e.,

(2c)

Even though Hz& is set equal to zero in the formalP
development of the theory, its possible higher order effects
are not neglected in the calculation of the continuum
widths of the state

I
d1) due to virtual transitions to the

continuum. Using Eqs. (l), (2), and (5) we obtain the cou-
pled equations

(E H}PQ—(+)=H RRp(+',

HRR }R0 HRpptt' +HRd1rflf

(6a)

(6b)

(E Hg, g, )d—1$'+'=Hg, gRQ'+'+Hg g dye'+', (6c)

(F- Hg2g2)d2$—
'+ =Hg~g d, g'+' . (6d)

The wave functions qlt(+' are not explicitly treated and
have been dropped from Eqs. (6). The usefulness of the
coupled equations resulting from the breakup of P [Eq.
(2a)] and the subsequent restriction that only Hz~ can be
nonzero [Eq. (5a)] depends on the nature of the R states in
the energy region being studied.

If the incident energy is within the width of an elastic
continuum resonance, then the reduced mass has a greatly
enhanced probability of being near the origin. Physically
this means that the nuclei will be close for a longer time
than would be the case if a resonant condition were not sa-
tisfied in the elastic channel. The likelihood of nuclear in-
teractions will, consequently, be greatly increased. If, in
addition, there are distinct states involving nuclear excita-
tions which can readily couple to the incident channel,
then the probability of their formation would be' greatly
enhanced provided their angular momenta and parity are
also the same as the resonating partial wave.

This means that the coupling H~ z will play a dominant
1

role in doorway formation. The set of Eqs. (6) proves to
be very helpful since it makes the process more trans-
parent. The set (6} is particularly useful in the energy re-
gion above the Coulomb barrier. The reason for this is
that the shape resonances in this region tend to be broad
(gross) due to their large continuum escape widths. Con-
sequently, just about any energy in this region is close to
or within the width of one of these resonances. Also, the
broadness of these states increases the likelihood that there
will be doorways which can couple to them.

Equation (6d) allows d2l((+) to be determined in terms
of d, q(+' as

Hg g dt's(+'
g q(+)

E—Hg g2 2

Substitution of Eq. (7) into Eq. (6c) gives
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q(+ ) H„,~Ry(+),
Hd(d) Hd(d~ [ 1i(E Hd2d~ ) lHd2d(

and placing Eq. (8) in Eq. (6b) yields

Rq(+) pq(+ )

E —Hgg —Hgg (1&[E Hg—(d) Hd)d, [1i(+ Hd2d, )1Hd, d(3 )Hd)R

The solutions of Fqs. (9) and (6a) for R1((+) and p1t'+' can be obtained by introducing the non-Hermitian one body opti-
cal Hamiltonian h which will be defined as

1
h =HPP+HPd ' E Hg g

—Hg g—[1—/(E Hg g—)]Hg g
(10)

Using H~ ——0 it can be seen from inspection that

hpp ——Hpp

hpR —HpR

hRp ~Rp

(11a)

(11c)

RR RR +~Rd
1

(1 ld)

The use of h allows Eqs. (6a) and (9) to be rewritten as

(~ g )pq(+) g Rq(+)

and

(12a) 1
hd, d, =Hd, d, +~d, d, E

Thus Eqs. (8) and (7) become

(17c)

The formal solutions of this set of coupled equations have
been obtained by Lev and Heres and are'

q(+) H Ry(+)1

E—hd d
1 1

(+ ) (+) 1 -(+)Pf =Q + Gp hp~ —(+) ~RPPE—hRR —hRp Gp

(13a)
and

RP (+) ~~plE—hRR —hRp Gp hp
-(+) .

where Gp is the Green's function operator for the Ham-
iltonian hpp, i.e.,

(&4)

The wave function 1('+' is a solution of the homogeneous
equation

(E h~~ )lt'+'=0 . — (&5)

The solutions for d(1(j(+), Eq. (8), and d2$'+', Eq. (7),
become simplified by defining another non-Hermitian one
body optical Hamiltonian h' as

1
dd + (R+d& )12 E II d2(R+d& )

22

from which it can be seen that

d2d2

where RP(+) is given by Eq. (13b). A complete normal-
ized set of states [Pz 3 in [R 3 are introduced with eigen-
values I E'R

3
which satisfy

where the complex eigenvalues eR are given in terms of
their real and imaginary parts as

Near a resonance the elastic portion of the scattering state
will overlap strongly with a state in IR3. This indicates
that the radial portions of the states [(t)~ 3 should be con-
centrated in the interaction region since this characterizes
a resonance of the scattering state. Thus the part of an 8
state describing the reduced mass should look very much
like a bound state wave function.

The operator R can now be written as

(22)

hd d,
——Hd d

d2d2 d2d2

(17a)

(17b)

Furthermore, the assumption is made that the energy E is
close to the energy ER of an isolated single particle reso-
nance. In that case only one term in Eq. (22) contributes,
and Eq. (13a) can be rewritten as
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hpR I A & &OR I hRp I

0'+'&
-(+ )

(4R I hRR I 4R &
—&((R I hRpGp hpR I PR &

(23)

where the subscript i has been dropped for clarity. The
quantities 6R, I R, I R, and I R are introduced as the sin-
gle particle resonance energy shift, total width, spreading
width, and escape to the continuum, respectively, and are
defined as

E.=««R
I
h.R I &R &,

-(+)

IR=I R+I R

r,'= —21m(y,
I h„ Iy„&,

(24a)

(24b}

(24c)

and

(26)

where again the subscript i has been dropped for clarity.
Up to this point little has been said about the doorways

themselves. As was done for R, Eq. (20), complete ortho-
normal sets of states {pd I and {pa I are introduced with
corresponding eigenvalues {e» I and {ea I, respectively,
which satisfy

I R ———2 1m(QR
I hRpGp h R I QR & . (24e)

It is clear that the definitions of ER and I R are the same
as in Eqs. (20) and (21). Because of hRR [Eq. (11d)], I R
has an energy dependence. The expression for pg(+), Eq.
(23), can now be written as

(+) -(+) Gp hpR I A &&PR I hRp Ir)"+'&

E—ER —L3R+i FR j2

Similarly using Eqs. (24) Rg(+), Eq. (13b), becomes

(~) I A &(t'R
I hRp I

0'+'&

E ER —hR+iI R/2—

the exit channel should be direct and calculable. The con-
tinuum width of each Pa involves virtual transitions to

1

the continuum. By a suitable choice of {d) J and H» R,
these widths can be calculated using an equation similar to
Eq. (24e}.

(3) The spatial extension of (t d, should be similar to that
of a bound state of the compound system. In other words
its usefulness lies in the fact that it helps describe the
scattering state in the interaction region.

The operators d~ and d2 can be written analogously to
Eq. (22) as

d =X I~:,&&4, I (29a)

and

(29b)

The wave functions d)p'+) and d21t'+), Eqs. (18) and
(19), then become, respectively,

I e', & &4, IH. ..I

Re(+)
&

~(+) y ) ) )
(30a)

T=(Xf
I
Hr

I
I/i &

—T)+T2+T3+T4+T5, (31)

I dd2&&kd2 I hd2d, I d) 4"'&
d q(+)

E—~~~

where R g(+' is given by Eq. (26).
Letting H; be the interaction Hamiltonian, the T matrix

can now be written using the expressions for pg(+',
Rf'+', d)P'+, and dzP'+', Eqs. (25), (26), (30a), and
(30b), respectively, to give

(ea —hd d )(()a =0 (27a} where

«'a, ha, a, )Wa, =—0 (27b)

eg ——Eg —iI g, /2 (28a)

where the relationship between h and H is expressed in
Eqs. (17). The complex eigenvalues are given in terms of
their real and imaginary parts as

&~f I
HIGp hpR I

(t'R & (WR I hRp I 0 +
T2— E—ER —AR +i I R /2

&&f I
HI I 0'R &&0'R

I "Rp I

0'+'&
T3— E—ER —DR+i I R/2

(32b)

(32c)

and
'Ha)R I A & &PR I hRp I

0'+
&

T4— E—ER —4R +i I /2

The exact nature of the entrance and exit doorways will
depend on the particular model used to represent the in-
teraction of the nuclei. However, they should satisfy the
following criteria:

(1) The two doorway spaces should involve nuclear exci-
tations and be orthogonal to each other.

(2) The coupling of d1 to the entrance channel and dz to where

E—ER —DR+i I R/2

(32d)

(32e)
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(~f I H1
I Wd, & & 0 d2 I

i ct2d,
(32f)

The five terms in the T matrix have simple physical in-
terpretations. The term T, , Eq. (32a), represents direct
transfer from the nonresonant part of the single particle
continuum wave function to the final state. This term is
expected to be a relatively smooth function of energy and
is illustrated in Fig. 3. In complicated reactions it would
provide the pure DWBA contribution. In this figure and
Figs. 4—6 solid connecting lines refer to direct couplings
in expressions (32) while dotted lines refer to the implicit
couplings appearing in the denominators. The second
term T2, Eq. (32b), describes the situation in which the re-
duced mass enters a single particle resonance (SPR) which
then couples with the many possible continuum levels be-
fore scattering to the final state. This is a higher order
process that is expected to give a very small contribution
to the T matrix. Consequently, its effect will not be con-
sidered.

The term T3, Eq. (32c), is what would be the single par-
ticle resonance scattering term in an elastic scattering pro-
cess. In the first part of the reaction the reduced mass
enters a single particle resonance (SPR) state. It is unlike-
ly to provide the main avenue for advancement to final
states involving multiparticle breakup. The process is il-
lustrated in Fig. 4. The term T~, Eq. (32d), represents the
case in which the single particle resonance state forms,
and subsequently couples to entrance doorways which in
turn couple to the final reaction state. This term is illus-
trated in Fig. 5. The effects of entrance doorways enter
explicitly in the numerator of this term, whereas in T3
they only enter indirectly via the spreading width. Since
T4 is a second order term, it is expected to be small unless
the energy is close to an entrance doorway energy. As was
seen in our earlier studies of' elastic and inelastic scatter-
ing, the widths of these doorway states are smaller than
the SPR widths and, consequently, T4 exhibits sharper
structure than T3. Note also that in the figure the effects
of q enter implicitly via the spreading of the doorways.
However, in the case of complex reactions involving mul-
tiparticle breakup it is not clear how an entrance doorway
state d

&
could lead to the final state.

We expect in our theory that the final term T5, Eqs.
(32e) and (32f), contains the appropriate coupling to the fi-
nal state from the entrance doorway d& via the processes

g, ~ d2 and d2~ f. The reaction is illustrated in Fig. 6.
The IS related to the entrance and exit doorways

~ pg, )
and

~ pz ) is present in the resonance terms in the denom-
2

inator of Eq. (32f). The widths can be calculated as in
Refs. 1—3, and a particle-vibration model, for example,
may be conveniently used to determine the states

~ Pq ).
The effective Hamiltonian H, Eq. (4), could then be taken
to be of the form'

H=( —A'/2m)V'+H, +H, + V+iW+H„, (33)

where, respectively, Hi and Hz represent the internal
Hamiltonian of each separate ion, V+i8'represents an ef-
fective complex potential, and H&q couples the relative
motion to the vibrational degrees of freedom of each ion.
Because H~ is assumed to be zero in Eq. (5), W

represents the absorption due to the coupling of d to q in
the second term of Eq. (4).' However, the loss in flux due
to virtual transitions from [d~ ) to the continuum can be
included in 8'by including the higher order effects of not
setting H~ equal to zero. The approach of Lev and
Heres' provides a simple procedure for obtaining such an
energy dependent local imaginary potential.

In practice, the sets of states [P~ [, Eq. (20), and [Pq I,
Eq. (27a), are constructed from the scattering state solu-
tion at appropriate energies. To see this more clearly con-
sider the procedure for obtaining P„J, an SPR state of the
Jth partial wave. Upon inspecting the set of solutions
[(25) and (26)] it can be seen that PRJ should be nearly
proportional to I'g'+' near a resonance. Letting
represent the Jth partial wave of Pl('+', the following
method can thus be used to produce P~ .

(1) Find the resonance energies of PJ+'. The resonance
energies are conventially obtained by scanning the S ma-
trix or phase shift. A more efficient alternate method
based on the projection operator formalism is given by
Larry and Beres. '

(2) Solve the Schrodinger equation for QJ'+ ' at this ener-

gy
(3) Let P~J be proportional to gz+' out to some cutoff

radius corresponding to the range of the nuclear interac-
tion.

d2
q w- d& 4--- d&

FIG. 3. Direct process, where ~ denotes nuclear interaction.
FIG. 4. Gross structure from virtual resonances, where ~

denotes nuclear interaction and ~—the width and shift.
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q +- d2- d,

FIG. 5. Intermediate structure from double resonance
mechanism, where ~ denotes nuclear interaction and ~—the
width and shift.

FIG. 6. Intermediate structure from single particle reso-
nances leading sequentially to entrance doorways, exit doorways,
and the final state. The notation ~ denotes nuclear reaction and
~—indicates the width and shift.

(4) Normalize P„J.
(5) Evaluate the terms in the denominator of Eqs. (32)

using the set of equations (24).
(6) The matrix elements involving hd d and HI, Eq.

2 I

(32fl, are to be calculated within the model chosen to
describe the reaction of interest.

The differential and total cross sections can be obtained
from the square of the T matrix with the appropriate
kinematic factors.

In the case of ' C + ' C~ Ne*+a& where

~X, &= ~ "N"+ &, (34)

the 7.68 MeV 02+ level in ' O could be the most important
contributor to

~ Pd &. This state is just above the thresh-

old for the alpha decay of ' C into the n+ Ne channel.
In fact, the 02 excitation is equivalent to the alpha parti-
cle model. ' We could thus assume that the reaction
proceeds predominantly through the entrance doorways
consisting of reduced mass single particle resonances cou-
pled to the 02+ states, i.e.,

c+"c(o+)&

The states
~

(t d & may then be taken as

C+( Be+a) & (36)

where one ' C nucleus remains intact and the other ' C
. nucleus has broken apart into loosely bound states of the

( Be+a) system. The transition from the entrance door-
ways

~ Pd & to the exit doorways
~ Pd & can take place as

an alpha decay of the excited ' C(02+) state. This may be
assumed to occur in such a fashion that the emitted alpha
particle does not leave until the Be nucleus is transferred
to the remaining ' C nucleus to form Ne. The emitted
alpha particle would have an energy which is essentially
its share of the total ' C(02+) excitation energy. The state

~

' C+( Be+a) &, Eq. (36), is an alpha cluster configura-
tion whose energy is shared among more degrees of free-
dom than the entrance doorway, and it is the preequilibri-
um component one step more complicated than Pq . The

1

widths I d in the denominator of Eq. (32f) can be estimat-
ed to be at least an order of magnitude less than the
widths I ~, . While these preequilibrium states can proceed

to a compound nucleus, with varying possible decay
modes at each stage, one may assume that there is also the
probability that the states Pd can couple to the reaction

continuum. Thus, the molecular and o: cluster structures
in the case of ' C+ ' C will produce branching ratios to
the different reaction channels. This is a nonstatistical
process and reaction resonances should have a large per-
centage of intermediate structure. The study of
' C+' C~ Ne'+o. represents just one possible reaction
channel. The matrix element (XI

~
III

~ Pd & in Eq. (32fl

may be extracted for a specified angular momentum from
a DWBA code which allows the calculation of multiparti-
cle transfer reaction cross sections taking into account fin-
ite range effects.

Cosman et al. have provided a comparison of
' C+ ' C intermediate structure data in the vicinity of 20
MeV (c.rn. ) for several reaction channels, including a sum
over 22 Ne levels in ' C+ ' C~ Ne*+a observed in
the experiment of Greenwood et al. Our previous calcu-
lation shows structure for ' C+' C~ ' C(O2+)+' C (g.s.)
in the same energy range. The T matrix representing the
sequential development p~ R ~ d ~ in Eqs. (32e) and (32f)
and Fig. 6 is exactly the matrix element used in producing
the inelastic cross section for 02 . This provides an im-
petus for the calculation of the d& ~dz~ f steps as indi-
cated by Eq. (32f) and Fig. 6. It is reasonable that the Oq+

related intermediate structure will be carried through to
the final channel and provide a correlation between the

Ne*+o. cross section and the cross sections for other
' C+ ' C reactions. Extensive calculations are now in pro-
gress and the results will be published at a later time.

Finally we point out that while we agree with Adhikari
that the exit and entrance doorways do not have to be the
same, our exit doorways are related to the entrance chan-
nel, unlike those of Ref. 5. In fact, as is stressed in our
paper, the entrance doorways in our model introduce
structure which is transferred sequentially via the reaction
doorways to the reaction channel of interest. Reference S,
on the other hand, expects intermediate structure to arise
from the coupling of exit channels to exit doorways that
have no inherent relationship to the entrance doorways.

This work was supported in part by the National Sci-
ence Foundation via Grant No. Phy. 80-08010.
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