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We present a new formalism which systematically accounts for nucleon compositeness in nuclear
scattering amplitudes, consistent with quantum chromodynamics and covariance. Reduced gauge-
invariant nuclear amplitudes are defined which have elementary quantum chromodynamic scaling
properties. The procedure is applied to the photodisintegration and electrodisintegration of the
deuteron as a test of nuclear chromodynamics and as a method to isolate contributions of dibaryon

resonances.

NUCLEAR REACTIONS Treatment of nucleon compositeness; general formal-
ism developed. Applied to d(y,p)n, d(e,p)n, E >1 GeV; calculated o(6), back-
ground to dibaryon resonances. Compared o(6) with available data.

I. INTRODUCTION

One of the most basic problems in the analysis of nu-
clear scattering amplitudes is how to consistently take into
account the effects of the quark/gluon composite struc-
ture of nucleons. In nuclear physics the traditional
method of treating nucleon dynamics has been to use an
effective meson-nucleon local Lagrangian field theory.
However, this method is sorely deficient for a number of
reasons: (1) the wrong degrees of freedom are used, (2)
neither the ¢ ~2 power-law falloff of nucleon form factors
nor the ¢ ~! falloff of pion form factors is naturally repro-
duced,! (3) nucleon pair terms are not correctly suppressed
in intermediate states, and (4) a renormalizable {.e., cal-
culable) field theory of massive isovector mesons requires
the full apparatus of non-Abelian gauge theories, includ-
ing a spontaneous symmetry breaking mechanism.
Models for nuclear scattering amplitudes based on the
Born approximation and local meson-nucleon couplings
have the wrong dynamical dependence in virtually every
kinematical variable for composite hadrons. The inclusion
of ad hoc form factors at each meson-nucleon or photon-
nucleon vertex is unsatisfactory since one must understand
the off-shell dependence in each leg while retaining gauge
invariance. None of these traditional methods have any
real predictive power.

In principle all nuclear scattering amplitudes could be
calculated from quantum chromodynamics (QCD) in
terms of the basic quark and gluon degrees of freedom. A
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method for computing large momentum transfer exclusive
scattering amplitudes for hadrons and nuclei, starting with
a Fock state wave function expansion on the light cone
(equal 7=t +z), has been developed.? At large momen-
tum transfer one can readily derive QCD predictions for
the leading fixed angle power-law scaling behavior and
spin structure of hadronic and nuclear scattering matrix
elements. However, the explicit evaluation of the multi-
quark and gluon hard scattering amplitudes needed for
predicting the normalization and angular dependence for a
nuclear process, even at leading order in a;, requires the
consideration of millions of Feynman diagrams. Beyond
leading order, one must include contributions of non-
valence Fock states, wave function and binding correc-
tions, and a rapidly expanding number of radiative correc-
tions and loop diagrams.

In this paper we will discuss a new definition of nuclear
scattering amplitudes which provides a simple method for
identifying the dynamical effects of nucleon substructure,
consistent with QCD and covariance. Although this tech-
nique cannot replace a full QCD calculation, it does pro-
vide a basis for constructing models for “reduced” nuclear
scattering amplitudes consistent with QCD scaling laws
and gauge invariance.

The basic idea for this method was given by Brodsky
and Chertok.> Consider the deuteron form factor as mea-
sured in electron-deuteron elastic scattering. In general, a
form factor F(Q?= —g?) is the probability amplitude that
the target remains intact after absorbing four-momentum
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q. To the extent that we can neglect its binding energy,
the deuteron can be represented as two nucleons, each with
an equal portion of the nuclear momentum. Therefore the
deuteron form factor contains the probability that each
nucleon remains intact after absorbing one-half of the
momentum transfer. We thus define the “reduced” deute-
ron form factor

Fy(Q?
(Q%/4)F,(Q%/4)

which effectively removes the falloff of the measured
form factor due to the internal degrees of freedom of the
nucleons. It is defined separately for each helicity form
factor.

The reduced form factor must still be a decreasing func-
tion of Q2 since it still contains the probability that the
~ scattered nucleons reform into the ground state deuteron.
An important prediction of QCD is that, modulo logarith-
mic factors* that come from the running coupling con-
stant and anomalous dimensions of the hadronic distribu-
tion amplitudes, the large Q2 behavior is

f4(QH)= (1.1)
FP

const
o -
Thus the reduced deuteron form factor and meson form
factors (for helicity A=0 to A’=0) have the identical
(monopole) scaling law. After removing the nucleon form
factors, the nucleons are effectively reduced to pointlike
spin % fermions, so the reduced deuteron and meson form
factors have the same dimensional scaling behavior
f~(1/Q*" !, basically the slowest possible for two-
particle composites. Similarly, if one defines for 4 =3:

Fp (09
f 3He(Q2) = _—"_ez——s’
[Fn(Q%/9)]
then QCD predicts that the reduced *He (and triton) form

factor scales at large Q2 in the same way as a nucleon
form factor:

faQ*)~ (1.2)

A=+ toM =+ (1.3)

i (@D ~Fn(Q%) ~(1/Q%)7 . (1.4)
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FIG. 1. Comparison of deuteron form factor data with the
QCD prediction of Eq. (1.5) of the text. The data are from Ref.
5.

A comparison of data® with the QCD prediction
(14+Q%/m})fa(Q*)~const (1.5)

is shown in Fig. 1. (Here m<2)=0.3 GeV?, as predicted in
Ref. 3, although any value m(2, <1 GeV? is irrevelant for
the comparison.) The results show that QCD works re-
markably well down to scales of order Q2~1 GeV2.

One can compare the definition (1.1) for the reduced
deuteron form factor with the standard “impulse approxi-
mation” form

Fy(QY)=F¥(QY)Fy(Q?),

where Fy(Q?) is the on-shell form factor for the struck
nucleon and FP¥(Q?) is defined to represent the remain-
ing structure of the nucleus. In fact, as discussed in Ref.
3, this approximation is incorrect since the struck nucleon
has at least one leg off shell and the off-shell form factor
has a completely different dynamical dependence than
does the on-shell form factor of QCD.

The idea of “reducing” nuclear form factors leads to a
general treatment of nuclear amplitudes that is discussed
in Sec. II. The method is applied to deuteron disintegra-
tion in Sec. III, where we consider photodisintegration, di-
baryon resonances, and a specific model for the reduced
background amplitude. Section IV contains a summary of
our results and some additional remarks. Details of the
model for the reduced deuteron disintegration amplitudes
are given in the Appendix. As an aside, the specifics of
this model have relevance for the calculation of higher
twist effects in electroproduction.

(1.6)

II. GENERAL TREATMENT
OF REDUCED NUCLEAR AMPLITUDES

We can go beyond the case of nuclear form factors and
define reduced nuclear scattering amplitudes in general. If
we consider a generic process with amplitude .#(s,?) that
involves A4 ingoing and outgoing nucleons and transfers, in
the zero binding limit, momentum g; to nucleon i, then the
reduced amplitude is defined as

-1

A A
m(s,t)=4(s,0) | [T Fn(ti=¢? .1

i=l1

For example, the reduced amplitude for the photodisin-
tegration (or electrodisintegration) of the deuteron would
be written as

M s
Mgy = — i 2.2)
Fo(t,)Fy(1,)
where
th=(pn—+pa)?, (2.3a)
th=(pp—1pa)?, (2.3b)

with p,, p,, and p4q the momenta of the neutron, proton,
and deuteron, respectively.

The nominal fixed-angle scaling behavior of the reduced
amplitude is predicted by dimensional counting rules.®
Modulo logarithms they give
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m~pi~"f , (2.4)

where pZ =1u /s is the transverse momentum and n is the
number of “elementary” fields in the external state (ingo-
ing and outgoing photons, leptons, gluons, quarks, or re-
duced nucleons). Thus for deuteron photodisintegration
the reduced amplitude scales as

m‘)’d—»ﬂp"’pT—lf(ec.m.) ’ (2.5)

the angle 6., being that of the proton direction with
respect to the beam direction of the c.m. frame. This is
the same QCD scaling as that for .# here M is a

meson with constituents ¢; and g,.

We can motivate the definition of the reduced ampli-
tude by returning to the basic definition of hadronic ma-
trix elements in 7-ordered perturbation theory’:

A= [ T1 [dx][d%k, 19" (x s,k )
><T(xf,x,»;klf,kl,-)\l/(xi,kl,-) )

YM—q,3,’

(2.6)

where the W are the equal 7=¢ +z wave functions and T is
the momentum-space quark-gluon scattering amplitude.
A sum over the Fock state amplitudes and quark and
gluon helicities is understood. In the zero nuclear binding
energy limit the nuclear Fock state wave function reduces
to the product of wave functions for collinear nucleons
with the nuclear momentum partitioned among the nu-
cleons in proportion to each nucleon mass. Thus one is
evidently neglecting corrections of order 2myAegg/u?,
where my is the nuclear mass, Aepg the nuclear binding
energy, and u? a hadronic scale parameter, as well as con-
tributions from higher Fock states in the nucleus, e.g., the
hidden-color six-quark configurations.

At this stage of approximation one must compute the
corresponding multinucleon scattering amplitude, e.g., the
amplitude for the elastic electron-deuteron scattering pro-
cess

e+p(5p)+n(5p)—e +p'(+p++q)+n'(+p++q) .
2.7)

If the momentum transfer occurs rapidly compared to the
scale of hadronic binding then one can argue (as in the
Chou-Yang model of elastic scattering®) that the probabil-
ity amplitude for transferring the required momentum ¢;
to each nucleon is proportional to its elastic form factor.
Since Sudakov effects always suppress near on-shell
(long-distance) momentum transfer mechansims from
pinch singularities’ and end point regions of phase
space,'®!! one can argue that large momentum transfer is
always local in QCD. Thus this assumption is justified,
with corrections of order u?/q2 A specific diagram
which explicitly exhibits the factorization intrinsic to the
reduced deuteron form factor is shown in Fig. 2.

As an application of nuclear amplitude reduction, we
consider deuteron disintegration. The reduced amplitude
is defined in (2.2). Both the scaling behavior (2.5) and a
model for the angular dependence are discussed in the next
section.

Some other processes!? that might be profitably treated
with our reduction method are pp—dn*,!® pd—>Hrt,
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FIG. 2. A deuteron form factor diagram that exhibits factori-
zation.

and 7*d—7*d. The reduced amplitudes have the same
QCD scaling behavior as the amplitudes for gg— M,
qqq — B, and mM — M, respectively, where B represents
a baryon. From (2.4) we find the scaling to be

Mo gut ~PT F(L/5) (2.82)
Mg opgg+ ~PT S (2/5) (2.8b)
Modsma ~PT f(2/5) . (2.8¢)

III. A MODEL FOR REDUCED DEUTERON
DISINTEGRATION AMPLITUDES

A. Photodisintegration

The asymptotic scaling law (2.5) is a remarkably simple
form. The scaling holds for the hadron helicity conserv-
ing amplitude with A, +A,=A4, independent of the photon
helicity. ~ Amplitudes with A,4+A,7%A3 should be
suppressed by a power of u?/p7. One could hope that the
simple scaling

PTM ya_np=const (3.1

at fixed 6, will hold for p2>1 GeV? since the scaling
(1.5) (see Fig. 1) begins in this region.* In terms of the dif-
ferential cross section, (2.2) and (2.5) become

do
d‘()'c.m.

1 2~ 2~ 1 2
~——— Ft ) F2 (1))~ fHOpm) . (3.2)
S*Mé PP p%'

yd—np
A comparison of this form with present low energy data'*
is shown in Fig. 3. The form factors were computed from
the usual dipole formula3

const

Fy(t)= ~ .
M (1=5/0.71 Gev?)?

(3.3)

Although the results are encouraging, the available ener-
gies are too low to make a detailed check of the prediction.

We have not yet specified the form of f2; however, it is
easy to construct a model for the reduced amplitude which
is gauge invariant and has the correct helicity and scaling
form. As a prototype for the reduced amplitude we pro-
pose the amplitude for the photodisintegration of a polar-
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ized meson M into its constituent quarks g, and §,. We
will only use the lowest order QCD diagrams for this pro-
cess. An actual calculation of the hard-scattering ampli-
tude for yd—pn includes a coherent sum of such ampli-
tudes with varied charge assignments and additional gluon
lines attached. For the model, the charge assignments, e
for ¢, and —e, for g,, can be varied as parameters. The
quark masses are taken to be zero. A computation of the
squared amplitude summed over final spins (see the Ap-
pendix) then gives'>

[(2e; —1)+cosB, , > |1, transverse

SHOe.m)=N

1—cos?6, .

with the charges normalized by e, —e,=1. This, when
combined with (3.2), provides a one-parameter model for
the asymptotic behavior of deuteron photodisintegration
away from the beam axis. The actual angular distribution
predicted by QCD from the coherent sum over the many
diagrams of the type illustrated in Fig. 2 is undoubtedly
more complicated than that given by the above model.
Nevertheless, Eq. (3.5) should be representative of the scal-
ing and functional dependence predicted by QCD for the
reduced photodisintegration amplitude.
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FIG. 3. Comparison of deuteron photodisintegration data
with the prediction (3.2) of the text. The angle 6., is that of
the proton direction with respect to the beam in the c.m. frame.
The predicted scaling requires f%6, ) to be independent of en-
ergy at any fixed angle. The data are from Ref. 8.

+(1+cos%6, ,, ), longitudinal

28
(ue; +te,)* |1, transverse
fz(ec.m. ):N_l_z' 2 2
tu t"tu o
———, longitudinal,
4s
(3.4)

where N is a normalization constant with dimensions
GeV?/sr and “transverse” indicates an average over the
two possible helicities. In the limit of Vs >>m4 we find

(3.5)

The simple model given in (3.5) makes apparent the
need for data at higher energies. The points plotted in
Fig. 4 were extracted by inspection from the data in Fig. 3
under the assumption that scaling had begun. The error
bars reflect the range of values that would be consistent
with the data. The empirical form sin*, ,, fits the points
fairly well but does not agree with (3.5). In particular,
(3.5) is unbounded at one or both endpoints. Of course the
physical cross section is not unbounded at either end-
points; its rise is curtailed by mass terms dropped in our
approximations. However, the sin‘0,,, behavior of the
data is not compatible with any rise at all. If the yM —qg
model is a good guide, then a sign that experimental ener-
gies are approaching the true scaling limit would be that
the value of f%(0, , ) near the backward or forward direc-
tion has become large relative to the values at wider an-
gles.

B. Dibaryon resonances

An interesting feature of QCD is the possible oc-
currence of resonances in the dibaryon system correspond-
ing to six-quark Fock states which are dominantly hidden
color, i.e., orthogonal to the usual n-p and A-A configura-
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FIG. 4. Values of fX0.. ) extracted by inspection from the
data presented in Fig. 3 with the assumption that scaling has be-
gun in each data set. The solid line represents sin*d. ., which
was chosen empirically to summarize the extracted values.
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tions. Signals for such resonances could appear in photo-
disintegration or electrodisintegration of the deuteron at
fixed §=M? in a specific partial wave in the full ampli-
tude. The virtual photon probe may enhance the signal
since it is sensitive to off-shell configurations in the nu-
clear target. Analyses!® of deuteron photodisintegration
data have suggested the presence of dibaryon resonances
with masses at 2.26 and 2.38 GeV, although definitive re-
sults have been elusive. The isolation of possible dibaryon
contributions from the hard-scattering background is
clearly interesting and important. It would be useful to
have a specific model of the hard-scattering continuum
since this would permit a more precise separation of the
resonance and background contributions. Given the
correct kinematic regime, the reduced amplitude technique
leads directly to just such a model.

As an application of this approach we treat deuteron
electrodisintegration. We have already discussed photodi-
sintegration, but for that process the resonances occur at
energies where the asymptotic form (3.2) does not apply.
In electrodisintegration, however, the kinematics of reso-
nance production are consistent with large transfers of
momentum for the nucleons. The methods of the previous
sections should then be applicable.

We write the full disintegration amplitude as the sum of
a dibaryon resonance amplitude .#py and a background
amplitude #gg:

-//{ed—-vepn=“”DB +.# g - (3.6)

As discussed in Sec. II, the hard-scattering background
amplitude factorizes into a reduced amplitude mpg and
the appropriate nucleon form factors,

M=y Fy(1,)F (1)) . 3.7)

From (2.4) we find that the nominal scaling behavior for
the reduced amplitude is

invariants
s

—2

mgGg ~Pr (3.8)

SF2

22
s(1_o) Tle b7

S Impg |2~ —Fy+{5+2c +c?}

+{(1—c)a—b)[2b +a(l+c)+(a —b)1—c)]—2(a —b)X(1+c)—ab(1—c)?}

where the F; are given in (A14),

a=(E,—PBpPp.)/s'?, (3.12a)
b=(E,—Pp,pe)/s'?, (3.12b)
c=pepe, (3.12¢)

P. is the beam direction, §'; the direction of the outgoing
electron, and (E,,P,) the four-momentum of the proton,
all in the c.m. frame. The invariants used to define the F;
are, in the same limit, given by
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As a model for the reduced electrodisintegration ampli-
tude we suggest the natural extension of the model for
photodisintegration, that is, the electrodisintegration of a
polarized meson into its constituent quarks. This model is
developed in the following subsection and the Appendix.

In general, one would expect the dibaryon resonance
and the continuum hard-scattering contributions to the
electroproduction amplitude to have quite different g2
dependence. On one hand, the resonance contribution, if
it is dominated by soft hadronic physics, would be expect-
ed to have a characteristic vector meson-dominated falloff
in g%

-/”DBOC(I—qZ/m,,Z)_I

independent of pZ. On the other hand, the g2 dependence
of #pg is minimal for |g%| <<p? and p? large, at least
for the contribution from transversely polarized photons.
These characteristics in g2 should be useful in separating
possible resonance from the continuum.

C. Electrodisintegration

To model the reduced background amplitude for deu-
teron electrodisintegration we will assume that it is a
single-photon exchange process. The square of the photon
emission amplitude will be written as E,g and the square
of the absorption amplitude, summed over final spins, as
F®B. Thus we have

1
S |mps|’~ PEE E gF® . (3.9)

final
hadronic
spins

Just as for photodisintegration we choose to model F2# by
the lowest order QCD contributions to the process
¥*M —q,q,, where the photon now has mass g2. The re-
sults of the calculation are given in (A4), (A13), and (A 14).
As an example we treat the case of a longitudinal deute-
ron and unpolarized electrons, for which we easily find

Eop~Tr{p Yol cVp} - (3.10)

Upon substitution of (3.10) and (A4), Eq. (3.9) becomes, in
the limit § <<s,
SF3
2(1—c¢)
s°Fs (3.11)
8(1—c)?’ ’
r
Q%~2s(1—c), (3.13a)
t~—ts(1—c)—s(a—b), (3.13b)
#~s(a—b). (3.13¢)

The expression in (3.11) should describe the background
near a resonance. For a transverse deuteron the back-
ground amplitude is suppressed by additional factors of
(§/5)1/? that come from angular momentum effects.?
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IV. CONCLUSION

The reduced amplitude method discussed in Sec. II is
very general. The principal formulas, Egs. (2.1) and (2.4),
give an accurate estimate of the leading QCD behavior of
hadron helicity-conserving amplitudes. Comparison with
experiment should provide a new test of QCD. These for-
mulas also imply constraints on low energy models since
one expects a synthesis* of QCD and nuclear physics.
Our results suggest the possibility that fully analytic nu-
clear amplitudes can be constructed which at low momen-
tum transfer fit standard electromagnetic and chiral boun-
dary conditions and low energy theorems, while satisfying
the scaling law and anomalous dimension structure
predicted by QCD at high momentum transfer.

An application to deuteron disintegration and a model
for its angular dependence were described in Sec. III. The
prediction for the photodisintegration differential cross
section is contained in (3.2) and (3.5). The general form
for the square of the electrodisintegration amplitude is
given by (3.9), (A4), (A13), and (A14). This latter result
provides a new means for understanding the background
to dibaryon resonances. Equation (3.11) supplies a specific
prediction for this background.

The predictions made for deuteron disintegration apply
to an energy domain that is as yet uncharted by coin-
cidence experiments. With the advent of intermediate-
energy cw electron beams!” this should soon not be the
case. Some other nuclear processes that are of interest in
the context of the reduced amplitude method are men-
tioned at the end of Sec. II. We urge experimentalists to
pursue the acquisition of data at the largest possible ener-
gy and momentum transfer in order to test the scaling

behavior predicted by QCD.
]
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APPENDIX

Consider the process

th_’qqu ’

where the photon may be off shell with mass g% and M is
a polarized meson with constituents ¢g; and g,. Let g be
the photon momentum, p the meson momentum, and p,
and p, the final momenta. We will assume all masses oth-
er than ¢?= —Q? to be zero. The charges of the constitu-
ents are to be denoted by e¢; and —e,. The usual Mandel-
stam invariants are defined as

(A1)

§=(g+p? t=(p—qP, @=(p;—q? (A2)
and related by
§4+14+4+0%=0. (A3)

The square of the amplitude for the process, when
summed over final spins and when, in the case of trans-
verse polarization, summed over the two helicity states of
M, is written as FP. Gauge invariance requires that it be
of the form

F®=[q°qP—q°g°PIF, +[q'p(q°pP+qPp°—q-pg®P)—q*ppPIF,

+1g°p1(q°P? +4Pp5 —q-p18°P)—q*pSpFIF;

+[gp1(q°PP—aPp*)—qp(q°P% —qPp§)+4*p°pR —pPp})IF,

+[g'papi (PP} +pPp§)—(q-p ) pPP—(q-p)ppEIFs ,

where the F; are functions of §, 7, and Q2

To estimate'® the F; we use the lowest order QCD dia-
grams, which are shown in Fig. 5. The Mq g, vertex for a
meson of spin J and helicity A is described by a factor'’

[ ldx1o0x (A5)
with

[dx]=dxdx,8(1 —x;—x,) (A6)
and
Xh= 3 N x 7% 5 0 (x\p,s 10(x,p,s,) (A7)

S],SZ

For the massless case considered here, one can use!®

(A4)
*
)4
X, p
M M e i
X2P 9%
X, p
q,
M e -
X2p 9,
yl

FIG. 5. Lowest order QCD diagrams for y*M —gq,4,, where
M is a bound state of ¢, and 7.



28 REDUCED NUCLEAR AMPLITUDES IN QUANTUM. ..

481

where V's is the c.m. energy of the process for which (A1)

/v, J=0 is a subprocess and Q%?=0, s =§is the photodisintegration
= V3, h—0 (AS) zggg These integrals appear in the following combina-
J=1 )

Tep/V2, h=x1 =|I|%, (Al2a)
where €.=F(1/v2)0,1,+i,0) in a frame with L=I'T*+II*—II* — 0, (A12b)
p=(|P],0,0,]|P|). In writing the final formulas we will Q2=0
assume that the wave function ® obeys the symmetry s )

Li=|I'|*-5|I|*—> 0, (Al12¢)
P=P|; ox, - (A9) %=0
It is useful to define the integrals IL,=1r"-u "97 0. (A124)
=0
_ [dx]®
I= f ~ 2 (A10) In the transverse case we find
5 .9
X2 | X1 —X2
s s F;=0, i#2, (A13a)
and 2
dx]x,® is_ b _ &
1'=f [dx]x, i, (A1) Fy~—1, ~+ | (A13b)
[ 3,\ QZ QZ=0
Xy [ X177 —X2~ —
§ $ and in both the longitudinal and scalar cases we obtain
|
Py e? e 2
F1~——-[ (26 +5— Q%) Q2)— +1,(§+0?) [ =2 } , (Al4a)
s tw i
2 2 2
1 1n2, 02 e_] _9_2— ANA LA e es
QP 1[2(14 ) || STl | -
2 e?
1 2 /\el 2 2
- 350 2u§ +(& —3t—2Q ) +2(t+2Q )—— } ]
ey ey e e e e; |?
+1 [ ——= | |26 —2+20Y) % + 1T+ Q)= | —2L,6(6+02) | -2 | 1, (A14b)
t u t n t @
1 e el e ey |
1 PEEA 1 2 1 2
~—= @+t |~ —— | -850 | =< +—=
+o) |2 lt2 o2 ] t 4
1 92 2
+ 30? (3§‘+21’4‘—Q2)l———2(s+3u Q2) 2 (54263 Q%—il
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