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Inverse problem for the half-off-shell T matrix
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The inverse scattering problem for the off-shell T matrix is formulated within the framework

of a combined variable-phase —off-shell scattering theory. A simple expression is constructed for
the s-wave half-off-shell Tmatrix. The input information consists of binding energies and

phase shifts at all energies.

NUCLEAR REACTIONS Scattering theory, off-shell generalization of the
variable-phase approach, inverse problem for the T matrix.

In this report we consider the so-called "inverse"
scattering problem' and derive a method to generate
the two-body half-off-shell T matrix using scattering
and bound state information. We believe that our
result will represent the half-off-shell T operator to a
reasonable approximation. This study is expected to
play a role in theories' where interparticle forces are
eliminated in favor of appropriate Tmatrices. Our
treatment of the problem will be based on an off-
energy-shell generalization of the variable-phase ap-
proach (VPA) to potential scattering derived by one
of us. 3

Despite its remarkable success in dealing with the
usual scattering problem, 4 which consists in con-
structing the two-body observables from a given law
of interaction, the traditional or on-shell VPA has
hardly been used to solve the inverse scattering prob-
lem except that Babikov' cited a very instructive ex-
ample in respect of this. In the following we quote
some of the results of the on-shell VPA which will be
useful for our future reference.

Consider the s-wave radial Schrodinger equation
for the central potential v(r):

d2 +k' —v(r) u(k, r) =0
dI"

where the on-shell momentum k = E' . Introducing
the Green's function'

G(r, r') = —sink(r —r'), r' ( r
k

fO f
n(k, r) sin5(k, r) = —= dr'v(r') sinkr'u(k, r')

k "o
(4b)

Here 5(k, r) and a(k, r) stand for the so-called phase
and amplitude functions. The phase function 5(k, r)
satisfies the nonlinear differential equation

5'(k, r) = —k 'v(r) sin [kr +5(k, r)]
with the initial condition

5(k, 0) =0

The phase shift 5(k) for scattering on v(r) is ob-
tained by using the limiting condition

5(k) = lim 5(k, r)
f ~oe

(6)

The function 5(k, s) at a distance s from the origin is
just the phase shift induced by v(r) amputed of all
parts extending beyond s. As opposed to Eq. (5) the
amplitude function a(k, r) satisfies a linear differen-
tial equation with n(k, 0) =1. The function u(k, s)
is related to the modulus of the Jost function pro-
duced by v(r) truncated at s. In terms of n(k, r)
and 5(k, r), the regular solution of the radial
Schrodinger equation is written as

The on-shell VPA is developed by setting
t r

n(k, r) cos5(k, r) =1 +— dr'v(r') coskr'u(k, r')
k~o

(4a)

=0, r'& r

we convert Eq. (1) to a Volterra integral equation
P I'

u (k, r ) = sinkr +— sink ( r —r') v (r') u (k, r') dr'k~0

u(k, r) = n(k, r) sin[kr +5(k, r) ]

Also we note that4

exp —k J dt cot[kt +5(k, t)] = u(ks)/u(k, r)
S

(8)

(3) The interpolating function for the scattering length
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satisfies the equation

a'(r) = v(r) [r —a(r) ] (10)

a (r) = A pr (r +A())

with boundary conditions a (0) =0 and a (~) = Ap,
the scattering length. Babikovs assumes an interest-
ing form for a (r ) given by

Equations (10) and (11) give v(r) =Ap r . Thus in
this pedagogic example the dipole polarization poten-
tial appears to be determined from knowledge of the
interpolating function for the scattering length at all r.

In contrast to the on-shell VPA, the objects of in-
terest of the combined variable-phase —off-shell
scattering theory are the interpolating T matrix func-
tions. 3 The off-shell T matrix function T(p, q, k2;r)
satisfies the equation

T'(p, q, k;r) = u(r) [sinpr — mpT—(k p, k;r) e' '] [sinqr — vrqT—(k, q, k2;r) e'"']
7rpq 2 2 (12)

with boundary conditions T(p, q, k2;0) =0 and T(p, q, k;~) =the Tmatrix. Here pand q are two different off-
shell momenta and, T(k,p, k', r) and T(k, q, k', r) are the half-off-shell Tmatrix functions. The half-off-shell
and on-shell T matrix functions satisfy the equations

T'(k, q, k;r) = v(r) [sinkr — 7rkT—(k, k, k;r)e'"'] [sinqr —
2

7rqT(k, q, k;r)e'"']
77 q

(13)

T'(k, k, k;r) = —
2

u(r) [sinkr —
2

7rkT(k, k, k;r) e'""] (14)

(15)

Note that both T(k, q, k', r) and T(k, k, k', r) satisfy boundary conditions similar to those prescribed for
T(p, q, k;r). We have chosen to work with the normalization

T(k, k, k;r ) = — sin5(k, r )e'~("')

for the on-shell T matrix function. Eliminating v(r) from Eqs. (13) and (14) and making use of (15), the equa-
tion for the half-off-shell T matrix can be integrated to get

T(k q, k;r) = ——e'~("') [k 'cosqr sin[kr +5(k r)] —q 'sinqr cos[kr +5(k r)])

+ e' (""'(k —q ) sin[kr+5(k, r)] exp[ —f(k, r)] sinqr exp[f(k, r)] dr
vr kq

+ C sin[kr +5(k, r) ]e '"""'exp[—f(k, r) l

where C is a constant of integration and

f'( k, r ) = k J cot [ kr + 5( k, r ) ) dr

Here we shall restrict ourselves to off-shell amplitudes for scattering on a potential u(r) =0 for r )R. Since
our aim is to derive equations which make no mention of the potential, it is rather unfortunate that we have to
make this assumption, and we hope that more delicate analysis would show it to be unnecessary. By invoking the
boundary conditions at r =0 and r = R and by comparing the on-shell version of the result thus obtained with the
value in Eq. (15) at r =R, it can be seen that C =0.

We have

T( k q, k2) ei~(k)F(k, q, R ) + ei~{ )(k q ) sin[kR + 5(k ) ]
2 2
7r mkq

t R r R
x lim exp —k cot[kr +5(k, r) l dr sinqr exp k$~0- & s 4 $

cot[kt+5(k, t)l dt dr

where 5(k) =5(k,R) and

F(k, q, R ) = k ' cosqR sin[ kR +5(k) ]

calculated to write

T(k, q, k2) ei~(k)G(k, q, R ) (19)

—q 'sinqR cos[kR +5(k)] . (18)

With the help of Eq. (9), the limit in Eq. (17) can be

and
k2 2 ~R

G(k, q, R) =F(k, q, R) — sinqr u(k, r) dr,
kqn k

(20)
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where n(k) =n(k, A).
In the on-shell limit q k, the second term in Eq. (20) goes to zero, while the first term in conjunction with

Eq. (19) gives the usual on-shell T matrix. Thus one would expect that dominant contribution to T(k, q, k ) will

come from the term F(k, q, R ) when k = q . Equation (3) shows that the function u (k, r) satisfies an inhomo-
geneous Volterra equation. Replacement of Etl. (20) by its first Born term sinkr gives us

G(k, q,R) =F(k, q, A)— I
2kq o.(k) [(k+q) sin[(k —q)A] —(k —q) sin[(k+q)A]}

Since n(k) is related to the modulus of the Jost
function f(k) we can write'

t t

n(k) e '""'= Q 1 — " exp—E. I "" dk'8(k')
E m ' — k —k'

n t

(22)

where E„stands for the bound state energy and is as-

sociated with the simple zeros of f(k) analytically
continued in the upper half of the complex k plane.
Equations (19), (21), and (22) taken together
represent our desired approximate solution of the in-
verse problem for the half-off-shell T matrix.

This work is based in part on a thesis to be submit-
ted by one of the authors (D.K.G.) to the Visva-
Bharati University.

Permanent address: Department of Physics, Bolpur Col-
lege, Bolpur 731204, West Bengal, India.
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