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Partially separable t matrix for optical potential
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In a recent article, we have proposed a theory of three-body reactions. The theory is constructed in a
manner in which, even for the breakup process, the numerical calculations need to be performed only in a
finite spacial region, and in which the calculations are performed in a perturbative way, where the zeroth
order term includes all pole terms. The use of the partially separable t matrix plays a central role in this
theory. In the present paper, we extend the partially separable t matrix to the optical potential so that the
theory of three-body reactions may be applicable to nuclear reactions.

NUCLEAR REACTIONS Off-shell t matrix with one nonseparable and one separ-
able term. Optical potential. Many-level formula.

In a recent article, ' we have proposed a method for treat-
ing three-body reactions for a local potential in coordinate
space. The theory has the following advantages for practical
applications: (i) The numerical calculations need to be per-
formed only in a finite spacial region, and the contribution
from large distances is calculated analytically, and (ii) the
calculation is performed in a perturbative way, where the
zeroth order term includes all physically important contribu-
tions.

Our theory is based on the Faddeev equation, in which
the dynamical quantity is given by the kernel Gpt, where Gp
denotes the Green's function in the three-body free space
and t the two-body scattering matrix embedded in the
three-body space. The result of calculations of the Faddeev
equation depends therefore on how we handle this kernel.
In Ref. 1, we use this kernel, expressed as a sum of one
separable and one nonseparable term. ' Each term is regu-
lar at the origin. All physically important poles are involved
in the separable term and not in the nonseparable term.
This property makes the perturbative calculation of the non-
separable contributions feasible. The contribution from
large distances is involved only in the separable term in a
simple manner. As a result, this contribution can be calcu-
lated analytically.

In Ref. 1, we have assumed a real potential for the pur-
pose of clear presentation of the theory. However, for ap-
plications to a wide class of nuclear reactions, we should ex-
tend the expressions in Refs. 2 and 3 to be applicable to an
optical potential. This is done in the present article. We
follow Ref. 3 for notations.

For real potentials V~ and V2, let us define an optical po-
tential H by

H = V)+iV2

We define the Sturm-Liouville function ItI„and the corre-
sponding eigenvalue X„by

tion. We define a function P by

N
(N)p

n 1

(4)

with

(N)~n

Using this function, we define a Green's function g by

g=PGo+li)(jl . (6)

Here P denotes the principal value of Cauchy. We note that
g thus defined is real, regular at the origin, and vanishes at
large distances from the origin. ' By the way, we remark
here that the Green's function used in the Jost solution is
real and vanishes at large distances, but irregular at the ori-
gin. This last property of the Jost's Green's function
prevents it from applying to the Faddeev equation. Our
Green's function g is freed from this difficulty. The usual
Green's function Gp is expressed in terms of g as

Go= g —Ie+ tkj ) (jl
[See Eqs. (15) and (29) in Ref. 3.]

The t matrix for the optical potential W is defined by

(7)

t= H +8'Gpt

Similarly, we define a matrix ~ in terms of the Green's
function g by

(1O)

v. = 8'+ 8gv

If we use Eqs. (7) and (8), we readily see that the t matrix
is expressed in terms of the 7 matrix as

PGp V)g„= X„g„(n= 1, . . . , ~ )

As in Ref. 3, we make use of those Sturm-Liouville -states
whose eigenvalues become unity or very close to unity at
some energies. Let P„(n = 1, . . . , N) denote the Sturm-
Liouville functions belonging to this set, and normalized as

If we make use of Eqs. (8) and (10), we can express Gpt in
terms of a wave matrix 0, , defined by

(j I V)lp„) = —X„(n = I, . . . , X) (3)
Got = (Il, —I) —O, lp+ikj )

Here the notation I j) represents the spherical Bessel func-
x (jlwA,1

I+ (j I
W n, ly+ tkj)

(12)
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Thus the t matrix and G()t are expressed as a sum of one
nonseparable and one separable term. Since 0, is given by

0,= 1+g8'0,

and g vanishes at the origin, each of the terms ( 0,—1) and
the separable term on the right hand side of Eq. (12) van-
ishes at the origin. Also, by the nature of g that vanishes
asymptotically, the nonseparable term vanishes at large dis-
tances from the origin and the function Q, (p+ikj & asymp-
totically behaves as the spherical Hankel function (as shown
in Ref. 3).

In Refs. 2 and 3, all poles on the real momentum axis
were shifted to some points in the complex momentum
plane, and given as the zeros of the denominator of Eqs.
(10) and (12). This was done so that the nonseparable
term may not diverge on the real momentum axis and, at
the same time, the separable term may accommodate physi-
cally important contributions. Since Eqs. (10) and (12) are
expressed, as in Ref. 3, in terms of P and g, this property is
kept also in these equations. This is seen in the following
manner.

We define the wave matrix cv for the real potential V~ by

M= 1+gV&Q) (14)

If we subtract Eq. (14) from Eq. (13), we can express Q, in
terms of co as

0,= co+ giV2Q, ,= "(1+giV Q, )
1 —gV

1 —gi V2cu 1 —

corgi

V2
(15)

It was shown in Ref. 3 [Eq. (41)] that cu does not involve
any singularity on the real momentum axis. Due to this
property, we see from Eq. (15) that Q, is free from the
singularity also on this axis.

In Ref. 3, the equation

I+(j~v,~~j&= +(I—)„)
n-1

(16)

was derived. If we use Eqs. (15) and (16) in the denomina-
tor of Eq. (10) or Eq. (12), it reads

1

N
1 1 ih

I+ (i~IVQ (iaaf+ kJ& = g (I —g„)—k J v, Q, J' + «j I
v IJ&+ j

n- i 1 —V)g
(17)

Clearly, all roots of the equation 1+ (j ~
IVQ, ~Q+ikj &

=0
are complex and not real. These roots are resonances. As
in Ref. 3, the separable term of Eq. (10) or Eq. (12)
represents the many-level formula in one term. The physi-
cal meaning of each term of Eq. (17) may be readily seen if
we assume that V2 is small, and take it into account only to
the first order term

BA.„~E„=k (cuj I V& I
~j ) E-E

n

(20)

and

where AE„and I „denote the energy shift and width,
respectively. These are given by

Eq. (17) —ff (I —).) —k( jl V~I i&
n 1

+ I (k (J I Vi I~J ) + &~J I V2l0& ) (18) + (~jI V21~&&)
BA,„

E-E
n

(21)

Eq. (18)—
QE F. -E (E —E„—AE„+ I'I „), (19)

If only one resonance E„ is important, as in the case of low
energy neutron scattering, we can further approximate the
right hand side of Eq. (18) by using Eq. (49) of Ref. 3, and
obtain

These expressions describe the energy shift and the
broadening of the width of a resonance state due to the
imaginary part of the optical potential.

In conclusion, all properties required in Ref. 3 are satis-
fied by Eqs. (10) and (12) for the optical potential, and the
Faddeev equation is ready for use in a three-body model of
nuclear reactions, if we follow the method of Ref. 1.
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