
PHYSICAL REVIEW C VOLUME 28, NUMBER 1 JULY 1983

Noninstantaneous approximation to the Bethe-Salpeter equation
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A new relativistic three-dimensional two-body equation is presented. If the negative ener-

gy poles of the two-body propagator are neglected, this equation is exactly equivalent to the
Bethe-Salpeter equation. In the derivation of this equation from the Bethe-Salpeter equa-
tion, retardation effects in the two-body interaction are treated carefully by taking fully into
account contributions of the exchanged-"meson" singularities. The results are presented for
the two cases: (a) the driving term in the Bethe-Salpeter equation is given by the relativistic
one-meson exchange diagram (the ladder approximation) and (b) the driving term also in-

cludes relativistic crossed diagrams. Using these results it is shown that the Bethe-Salpeter
equation in the ladder approximation goes over to the Lippmann-Schwinger equation in the
nonrelativistic limit. But unlike the Blankenbecler-Sugar and Gross equations, the two-body
potential is not the nonrelativistic Yukawa potential. It is given by an infinite sum of terms
corresponding to instantaneous multimeson exchange contributions in the nonrelativistic
two-body interaction. A method is presented which in the low energy limit greatly simpli-
fies the calculation with crossed diagrams. The theory is applied to the problem of two sca-
lar "nucleons" exchanging scalar "mesons, " and comparisons are made with other relativis-
tic equations. Also a simple model calculation is performed to demonstrate the sensitivity
of phenomenological meson masses and meson-nucleon coupling constants to the theoretical
reduction scheme chosen.

NUCLEAR STRUCTURE Three-dimensional reduction of the Bethe- ~

Salpeter equation. Ladder approximation. Crossed diagrams. Nonrela-
tivistic limit. Instantaneous multimeson exchange.

I. INTRGDUCTIION

In nonrelativistic quantum mechanics the problem of two-nucleon scattering is described by the Lippmann-
Schwinger equation
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which is shown schematically in Fig. 1. If the potential Vz&- is generated by the exchange of a single meson
then
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which is the well-known Yukawa potential. In Eqs. (1.1) and (1.2), Q and Q are the initial and final three-
momenta of one of the nucleons, )M is the mass of the exchanged virtual meson, g is meson-nucleon coupling
constant, and m is the nucleon mass. P and E in Eq. (1.1) are the total momentum and kinetic energy of the
two-nucleon system. E can be on or off the mass shell. [The on-shell value of E corresponds to
E=Q /2m+(P —Q) /2m =Q' /2m+(P —Q') /2m. ] For the sake of simplicity we consider the nucleons
and mesons as scalar particles.

For the relativistic generalization of the Lippmann-Schwinger equation we should introduce explicitly in Eq.
(1.1) the energy of each virtual nucleon. We therefore rewrite identically the Lippmann-Schwinger equation
(1.1) in the form
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where Qp' is the energy of a virtual nucleon, Pp is the total energy of the system (Po —&+2m), and therefore
Pp —Qp' is the energy of the second virtual nucleon. The relativistic generalization of the Lippmann-Schwjnger
equation, written in the form (1.3), is now straightforward: We have to replace the nonrelativistic two-nucleon
propagator in Eq. (1.3) by the relativistic invariant propagator

I [Qp Q" —m+—i e][(Pp —Qp') —(P —Q")2—m 2+i e] I

The new element which is introduced because of this replacement is the negative energy nucleon poles in the re-
lativistic two-nucleon propagator, which do not exist in the nonrelativistic Lippmann-Schwinger equation (1.1)
«(1.3). These poles correspond to the virtual nucleon pair production (the pair current effect). [If we neglect
their contribution and perform dQp integration taking into account the positive energy nucleon poles only, we
arrive at a three-dimensional equation which coincides in the nonrelativistic limit with the Lippmann
Schwinger equation (1.1).] For a relativistic generalization of Eq. (1.3) it is also necessary to replace the non-
relativistic Yukawa potential in Eq. (1.2) by the relativistic invariant Yukawa potential:

~)v(Q Q )=
(Qo —Qo )' —(Q —Q')' —V'+ i~

(1.4)

where Q =(Qo, Q) and Q'=(Qo, Q') are the initial and final four-momenta of one of the nucleons. Thus we
obtain the following relativistic equation for the two-nucleon scattering amplitude:

Vx~(Q Q"»~x(P Q" Q ')d'Q"
T~~(P, , ') = V~~(, ')+i

This is the well-known Bethe-Salpeter equation' (in
the ladder approximation) obtained here as a
straightforward generalization of the nonrelativistic
Lippmann- Schwinger equation. It too can be
represented as in Fig. 1, with P, Q, and Q' replaced
by four-momenta P, Q, and Q', respectively.

We ask ourselves the following question: What is
the nonrelativistic limit (U/c &~1) of the Bethe-
Salpeter equation, Eq. (1.5), in the ladder approxi-
mation'? A simple-minded answer would be the
Lippmann-Schwinger equation with the nonrela-
tivistic Yukawa potential, Eqs. (1.1) and (1.2). How-
ever, as the following physical argument shows, this
answer is not correct. The reason is that the interac-
tion described by the relativistic Yukawa potential
Eq. (1.4) is not instantaneous. Because of retarda-
tion, the Bethe-Salpeter equation allows the process-
es where two or more mesons are "in the air" at the
same time. The nonrelativistic interaction, on the
other hand, is instantaneous. In this limit the pro-
cesses where two or more mesons are present in an
intermediate state at the same time do not vanish.
They merely go over to the instantaneous exchanges
of two or more mesons at the same time. Thus in
the nonrelativistic limit the Bethe-Salpeter equation
goes over to the Lippmann-Schwinger equation, but
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FIG. 1. Schematic representation of the Lippmann-
Schwinger equation.

f

with a modified XX potential. This potential con-
tains, together with the usual Yukawa potential cor-
responding to the one-meson exchange, Eq. (1.2),
also terms corresponding to simultaneous exchanges
of two or more mesons.

In order to derive the nonrelativistic limit of the
Bethe-Salpeter equation it is necessary to perform a
three-dimensional reduction of this equation, which
amounts to performing the Qp integration in Eq.
(1.5). In most of the standard approaches found in
the literature and often used in relativistic two-body
calculations, it is done in an approximate way by re-
placing the four-dimensional propagator in the
Bethe-Salpeter equation (1.5) by a three-dimensional
one. The physical condition which is required to be
fulfilled is that the approximate propagator should
generate the same elastic unitarity cut as the exact
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propagator. This condition does not uniquely define
the approximate propagator. Therefore many dif-
ferent approximate three-dimensional equations
have been proposed. However, the above procedure
neglects the singularities of the integrand in Eq.
(1.5) associated with the production of mesons in the
intermediate states. This is an undesirable pro-
cedure since these singularities are intimately con-
nected with the multimeson exchange processes
mentioned earlier. It is thus not surprising that in
the nonrelativistic limit these equations go over to
the Lippmann-Schwinger equation with the nonrela-
tivistic Yukawa potential (1.2). The additional con-
tributions from the instantaneous multimeson ex-
change do not appear. In order to retain these terms
one should use a different procedure for three-
dimensional reduction of the Bethe-Salpeter equa-
tion which takes into account meson production
singularities.

We encountered the problem of three-dimensional
reduction of the Bethe-Salpeter equation in Refs. 6
and 7 where we studied relativistic effects in deute-
ron form factors. Although our main aim there was
to perform a three-dimensional reduction of the
(ladder approximated) Bethe-Salpeter equation in or-
der to obtain a deuteron wave function in a moving
frame, we also had to perform the reduction in the
case of the two-nucleon scattering amplitude, Eqs.
(1.4) and (1.5). This reduction was done without
neglecting the meson production singularities of the
integrand in Eq. (1.5). Singularities associated with
the virtual nucleon pair production being farther
from the physical region were neglected, and calcu-
lations were made assuming scalar nucleons and bo-
sons. The resulting three-dimensional equation was
of the Lippmann-Schwinger type with the effective
potential in the form of an infinite series. Succes-
sive terms of this series contained an increasing
number of intermediate mesons present at the same
time. In the nonrelativistic limit the first term of
this series reduces to the Yukawa potential, Eq.
(1.2), the second term to an instantaneous exchange
of two mesons, and so on, in accordance with the
physical argument given above.

In this paper we concentrate on the detailed
analysis of our approach and compare its predic-
tions with those of the Bethe-Salpeter equation and
other three-dimensional approximations to the
Bethe-Salpeter equation. Since we pay special atten-
tion to the correct treatment of the retardation in
the NN interaction we call our equation a "nonin-
stantaneous approximation" to the Bethe-Salpeter
equation. (Our equation is not fully equivalent to
the Bethe-Salpeter equation, since we disregarded
nucleon pair production singularities in our three-
dimensional reduction. )

T= V+VGT, (2.1)

where G is the relativistic two-body propagator as in
Eq. (1.5) and V is the sum of all connected two-
particle irreducible diagrams. In the ladder approxi-
mation V is given by Eq. (1.4). A commonly used
scheme for three-dimensional reduction of the
Bethe-Salpeter equation consists in replacing G by
g +(G —g), where g is a three-dimensional two-body
propagator generating the same elastic unitarity cut.
This leads to the following two coupled equations:

T=W+WgT,
W = V+ V(G —g) W .

Iterating Eq. (2.3) one obtains

W= V+ V(G —g) V

+ V(G —g) V(G —g) V+

(2.2)

(2.3)

(2 4)

Equations (2.2) and (2.3) as they stand are exactly
equivalent to the Bethe-Salpeter equation (2.1).
However, solving these equations is as complicated
as solving the original Eq. (2.1). Hence what is
often done is to replace W in Eq. (2.2) by V. It is
known that infinitely many different g s exist, all
leading to three-dimensional equations satisfying

In this paper we also generalize our approach to
include any general crossed diagram in the driving
term of the Bethe-Salpeter equation, thus going
beyond the ladder approximation. In the low energy
limit the general result has a simple form. It can
therefore be very useful for practical calculations of
the Bethe-Salpeter equation, and may open a new
way for an approximate treatment of multimeson
exchange contributions in the NN potential.

The plan of the paper is as follows. In Sec. II we
describe our three-dimensional reduction scheme for
the Bethe-Salpeter equation in the ladder approxi-
mation. The numerical results are presented and
discussed in Sec. III. In this section we also describe
a simple model calculation which shows the sensi-
tivity of the phenomenological meson masses and
meson-nucleon coupling constants to the theoretical
reduction scheme chosen. The derivation in Sec. II
is generalized in Sec. IV to incorporate crossed dia-
grams. The corresponding numerical results and
nonrelativistic limit are also presented and discussed
in this section. In the last section we discuss some
of our results in connection with the works of other
authors.

II. THREE-DIMENSIONAL REDUCTION
OF THE BETHE-SALPETER EQUATION

Consider again the Bethe-Salpeter equation for
the two-body scattering amplitude
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where

2E- „(E-„—Pp i e—)—j

Q" Q" 4

(2.5)

(m 2+ QII2) i /2

and Pp is the total energy of the system. In the
center-of-mass frame the on-shell value of Pp is

P =2(m2+Q )'/ =2(m +Q' )'

We can see that this choice of g corresponds to tak-
ing the intermediate nucleons on shell or equally off

relativistic elastic unitarity. [Thus it is desirable to
have a g which makes the series in Eq. (2.4) con-
verge rapidly making O' = V a good approximation.
Unfortunately it is hard to follow this procedure
since the calculation of second and higher order
terms of Eq. (2.4) is difficult. ] Here we consider the
two most widely used choices of g, namely those of
Blankenbecler-Sugar and Gross. ' We will work in
the center of mass frame (P=O in Fig. 1). The
Blankenbecler-Sugar equation corresponds to

Po
mi6 Qp—

2

~i6(gp' Eq—„)
2E-g -Po(E g , Po —i—E)— (2.6)

One can see that this choice corresponds to taking
one of the nucleons on the mass shell (for example,
the nucleon with momentum Q" in Fig. 1).

In order to form three-dimensional equations, one
should use the same procedure also for the external
nucleons. This means that in the case of the
Blankenbecler-Sugar equation the external nucleons
are also on shell or equally off the mass shell:
Qp =Qp =Pp/2. In the Gross equation, on the oth-
er hand, the nucleon which is taken on the mass
shell in the intermediate state is taken on the mass
shell also in the initial and final states: Qo=E&
and Qp Eq, . ——

Applying these pmcedures to the Bethe-Salpeter
equation in the ladder approximation, Eqs. (1.4) and
(1.5), we find in the center-of-mass frame the
Blankenbecler-Sugar equation:

the mass shell; the virtual mass of each of the nu-
cleons is the same:

(P 2/4 Q
it2)1/2

The Gross equation corresponds to a different
choice of g, namely

aviv(Po Q Q')= g —g TKA ~0~

(Q —Q') +p (Q —Q")'+iM2 E g „(Pp'/4 E-„+ie) 32—~' (2.7)

and the Gross equation:

2

Tiviv(Po Q, Q )==
(Q —Q')' —«q —E q. )'+p'

—g' Tm«Po, Q",Q') d'g"
(Q Q")' (E- E, )2+&2 E&„P,(P, /2 E-„+is) 32—~'

9 9" (2.8)

Although these equations are different, in the
nonrelativistic limit they both go over to the usual
Lippmann-Schwinger equation (1.1) with the non-
relativistic Yukawa potential (1.2). This limit corre-
sponds to the following replacements in Eqs. (2.7)
and (2.8):

(2.9)

(Q —Q')'+p'»(Eg —E& )',

where Pp =E +2m, and 2m»E.
However, as shown in Sec. I, a three-dimensional

reduction of the Bethe-Salpeter equation should in
the nonrelativistic limit give rise to terms in the XX
potential which correspond to the multimeson ex-
change processes discussed earlier. These terms are
clearly absent if one uses the Blankenbecler-Sugar or
Gross procedures for three-dimensional reduction of
the Bethe-Salpeter equation. Of course these terms
would be taken into account if one includes higher
order terms in 8 in Eq. (2.4). However, these terms
include four-dimensional integrals, and their treat-
ment is not easy. Moreover, since they involve two-
nucleon (without mesons) intermediate states, they
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FIG. 2. Born series for the Bethe-Salpeter amplitude
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FIG. 3. Relativistic Yukawa potential Vz& ——V++ V

are different from what one usually calls the mul-
timeson exchange contribution to the potential, and
their physical interpretation is not simple.

In Ref. 7 we derived an alternative procedure for
three-dimensional reduction of the Bethe-Salpeter
equation. Unlike the Blankenbecler-Sugar and
Gross methods, this procedure does not involve con-
struction of an approximate three-dimensional prop-
agator g. We rather performed the Qp integration
in Eq. (1.5) without neglecting the boson singulari-
ties of the integrand. The only approximation in
this otherwise exact procedure is that the negative
energy nucleon poles of the propagator were not
taken into account. In the following we will always
work in the center of mass frame (P =0). Thus

[Q" —m +i@][(P—Q") —m +ie]
—:(Q()' Eg „+i@—)(Pp —Q(')' E-„+ie—)

X(Qo'+E g - —i&)(Po —Qo'+E g
—i&)

-=(Qo' E&„+i ~)—(Pp
—Q o' —E

&
„+lE)2E

&
„P'p

(2.10)

In Eq. (2.10) we approximated the product of the
negative energy nucleon propagators

(Qp +E q-)(Po —Qo'+E g )

by 2E
& „Pp, assuming that the main contribution to

the Qp integral comes from the positive energy nu-
cleon poles Qp'=E&„and Qp'=Pp E&„. It is-
straightforward to show that if, in the Bethe-
Salpeter equation (1.5) one neglects the Qp depen-
dence of Vivv and Tax and performs the Qo
tegration in the approximation (2.10), one gets the
Gross equation (2.8). On the other hand, if one
neglects the Qp' dependence of V~& and T~~ but

does not make the approximation (2.10), one gets the
Blankenbecler-Sugar equation (2.7).

Now we perform the three-dimensional reduction
of Eq. (1.5) by treating the boson singularities in the
integrand exactly. We first consider the Bethe-
Salpeter equation in the ladder approximation. In
this way we will obtain the result in Ref. 7, though
in a more straightforward manner. Afterwards, we
will allow any general crossed diagram in the driv-
ing term of the Bethe-Salpeter equation.

The easiest way to carry out Qp integration in the
Bethe-Salpeter equation (1.5) is to expand the right-
hand side of this equation as an infinite Born series,
and then perform the integration in each term
separately. Iterating Eq. (1.5) we obtain the Born
series for the amplitude Tzz, Fig. 2. We also
rewrite the relativistic Yukawa potential as a sum of
two "time-ordered" terms: Vz& ——V++ V, Fig. 3,
where

V+(P, Q, Q') =-
2co- —,(Q() —Q() ~- —,—+i e)

Q —Q' Q Q

and cog g, ——[p +(Q —Q') ]'~ .

Consider now the second Born term VGV in Fig.
2. It can be rewritten as a sum of four terms

T~~ ——V+GV++ V+GV

+V. GV++V GV (2.12)

Making use of the approximation (2.10) for the
two-nucleon propagator, the first contribution
V+GV+ is

V (P, Q, Q') =
—(Qo —Qo —o)- —+ ie)

Q —Q' Q —Q'

(2.1 1)

(8PoE-„cog g „co q „g,) '(2~) dQo'd Q"
V+ 6V+ ——ig

Jo —
O

—E „+EC p
—E „+l6 O

—
O
—C0 „—' +16 O

— 0 —CO „,+lEQ" Q" Q"—Q Q"—Q'

(2.13)

Integrating over the Qp' variable we get, after some algebra,
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Q

II
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The two terms in Eq. (2.14) correspond to the two
time-ordered diagrams of the old-fashioned pertur-
bation theory and can be represented as in Fig. 4.

Expressions for these diagrams can be written im-
mediately using the rules of the old-fashioned per-
turbation theory. According to these rules each
time-ordered diagram corresponds to an integral
over the internal three-momenta, the integrand being
a product of the terms of the type

PO g +i = Q COj+lE
1 J

each term corresponding to a vertical crossing line
as in Fig. 4. Here P0 is the total energy of the two-
body system, and F.; and coj are the energies of the
crossed nucleon and meson lines, respectively; the
energies of the internal particles being taken on
shell. However, in our case, energies of the external
particles can be on or off the mass shell. There is an
additional factor of the type (2E

&
„P0) ' for each

pair of internal nucleons arising due to our approxi-
mation (2.10).' The separation of V into V+ and

gives rise to extra factors of the type
g (2u

&
—,) ' for each meson line [see Eq. (2.11)].

Finally a factor of (2m) is to be included with
each independent internal three-momentum being
integrated over.

The Q0 integration in the remaining three terms
in Eq. (2.12) can be performed similarly, leading to
additional time-ordered diagrams as in Fig. 5. Thus
the "box" diagram in Fig. 2 gives rise to six time-
ordered diagrams. In two out of the six diagrams
there are two mesons present simultaneously in an
intermediate state. These various possibilities arise
essentially because the relativistic interaction is a re-
tarding one.

The higher order terms in the Born series in Fig. 2
can be treated identically. For example, the third

1 1++«Qo —Q0 —~-„-—c0-, -„+ie
Q

II
Q Q

I
Q

II

(2.14)

I

term VGVGV can be rewritten as

where V+ are defined as in Fig. 7. Expressions for
any of the diagrams in Fig. 7 can be written easily
using the rules of the old-fashioned perturbation
theory.

If the external nucleons crossed by vertical lines
are taken on the mass shell, then the sum of all
iterative and noniterative diagrams T~&(P0, Q, Q')
can be written as the solution of the following
Lippmann-Schwinger type of equation:

VGV

Q Q'
I ~ (

~&7 I

P-Q P-Q

I
/

I

/
/

(V++V )G(V++V )G(V++V ) .

The virtual energy integrations can be performed
separately in each of the eight terms V+GV+GV+.
Again the final answer can be written as a sum of
time-ordered diagrams of the old-fashioned pertur-
bation theory. For instance, the term V+GV+GV+
is equal to the sum of five diagrams, shown in Fig.
6.

Considering the complete set of time-ordered dia-
grams generated this way, we can separate them into
iterative and noniterative blocks. We define an ef-
fective potential, V' (P0,Q, Q'), as the sum of all
noniterative diagrams. After regrouping the non-
iterative diagrams, V' can be rewritten as the sum
of two terms

V' (P0, Q, Q') = V+ (P0, Q, Q') + V' (P0, Q, Q'),

Q Q
I

/

/
(

/
/

@05 g0

VGV
P-Q P-Q P-Q P-Q

FIG. 4. Time-ordered diagrams resulting from
V+ 6V+.

I

FICx. 5. Time-ordered diagrams
V+6'V, V G~, and V t"V

resulting from
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V'"(Pp Q Q")T)vtv(Pp Q" Q')
(2.15)

Thus, in the definition of V+, Qp=E
&

and QI) =Pp —E &, and in the definition of V Qp=Pp —E
Q

and

QI) E——&, . Since we are working in the center of mass frame (P=O), we have V+ ——V =( —, )V . The suc-eff eff ' eff

cessive terms in the expansions for V+ = V+ + V+ + V+ + . (F1g. 7) areeff (1)eff (2)eff (3)eff

2
V(1)eff(P Q Q!) g2'~, I o

—E —E —M +i&
Q —O' O Q Q' Q —Q'

(2.16)

( 8PpE p (p p „pgp p ,„. p, ) '(2g() 'd'Q"
V+""(Pp,g, g') =g'

{Po—E- —E „—co- „+ie){PO—E —E ~
—e) —„—m „-., +i e){PO—E „—E,—co, „+i@)Q" Q Q' Q —Q" Q"—Q'

g.17)

2PQE „2POE „, 8~ „~ „„,~ 2~V~' (Pp, Q, Q')!=g'
o —E- —E-„—co- -„+is I'o —E- —E-„,—cu-

Q Q" Q —Q" Q Q"' Q —Q" Q"—Q"'

X Pp E-„Eq—„,—fo-—„g„,+ ( e

+
Pp E~ ——E~ —co~ ~ —cp~ ~ —co~ ~ +(6Q Q' Q —Q" Q"—Q"' Q"' —Q'

X
(P(1 E-„E—-,—co-—„-„,—~p-„, —,+i@)(Pp E-„, E-, —c—o-„,—-,+i E)Q" Q' Q"—Q"' Q"'—Q' Q'" Q' Q"' —Q'

(2.18)

We thus obtain the auxiliary amplitude,
T~//(Pp, Q, Q'), which is the sum of all iterative and
noniterative diagrams with external nucleons crossed
by vertical lines taken on shell. The Bethe-Salpeter
amplitude

T//)v(Pp, Qp, gp, Q, Q')

on the other hand, is also the sum of all iterative and
noniterative diagrams, but now the external nucleons
can be off the mass shell. However, it is clear that

T)v)v(Pp Qp Qo Q Q')

t

T////
——V' + V' GV' + V' GT/vt/. GV' (2.19)

where the Careen's function G is the same as in Eq.
(2.15) and the effective potential

Veff Veff + Veff

The potentials V+ are given by expansions in Fig. 7;
however, unlike Eqs. (2.16)—(2.18), energies of the
external nucleons can be off the mass shell.

Now using Eq. (2.19) we observe that the Bethe-
Salpeter amplitude, T&/v, for on-shell scattering

can be connected with

Tx)v(Pp Q Q')

by the following relation (involving only three-
dimensional integrals):

VG VGV

eff

eff
V

P-Q

Q Q

P-Q
(a)

i
I

(e)
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, Q Q,
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/
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(b)
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/ / /
/

P-Q P-Q PQ

"t:

(h)

, Q, QQ Q

P-Q
(d)

FICx. 6. Time-ordered diagrams resulting from
V+ 6V+ GV+.

FIG. 7. Definition of the effective potential
V' = V+ + V' in the ladder approximation.



390 R. S. BHALERAO AND S. A. GURVITZ

(P0=2E- =2E-„go E——&, go E——&, ) coincides
Q Q' O Q'

with the amplitude T~~ defined by Eq. (2.15).

~on shell ~on shell
XN (2.20)

III. NUMERICAL RESULTS
IN THE LADDER APPROXIMATIQN

Several authors have solved the Bethe-Salpeter
equation for scalar "nucleons" exchanging scalar
"bosons" and have calculated NN S-wave phase
shifts as a function of two-nucleon energy. ' '" We
use here the recent results of Mueller and Gloeck-
le, " who solved the Bethe-Salpeter equation in the
ladder approximation, and then also included the
two-meson-exchange cmssed-box diagram in the
driving term. In this section, however, we restrict
ourselves to the ladder approximation.

Mueller and Gloeckle in their calculations used
many different values of the meson-nucleon con-
stant and the exchanged meson mass. For the sake
of comparison we use the same values in our calcu-
lations. The first set of calculations corresponds to
the exchanged meson mass p =I = 138.13 MeV,
and the following four values of the coupling con-
stant g:

Therefore these amplitudes reproduce the same
phase shift. This result is very important, since in-

stead of solving the Bethe-Salpeter equation, to find
the scattering amplitude, one can solve its three-
dimensional analog. Of course the solution of Eq.
(2.15) would be close to that of the Bethe-Salpeter
equation only if the approximation in Eq. (2.10) is
good. Also the practical utility of our method de-

pends upon how fast the series for V' converges.
Equation (2.15) resembles the Gross equation, Eq.

(2.8). However, the effective potential here is dif-
ferent from the potential in the Gross equation.
Even the first term, Eq. (2.16), of the expansion for
V' differs from the potential in the Gross equation,
Eq. (2.8).

In the nonrelativistic limit the first term of the
expansion for V', Eq. (2.16), goes over to the non-
relativistic Yukawa potential, Eq. (1.2); the second
term does not vanish but goes over to the two-meson
exchange contribution in the NN potential, and so
on. Thus unlike the Blankenbecler-Sugar and Gross
equations, Eq. (2.15) has the desirable feature that in
the nonrelativistic limit it allows for the multimeson
exchange processes. We will return to the discussion
of this limit later, after we generalize our formalism
to include the crossed diagrams. We now present
our numerical results and also compare the solution
of the exact Bethe-Salpeter equation with those of
the various three-dimensional approximations to it.

g, —3.3563 ~ 10 MeV

gb' —l.ox»' MeV',

g, =3.0X10 MeV

gd
——7.0X10 MeV

(3.1)

The parameter g, has also been used by Woloshyn
and Jackson and it corresponds to a potential with
strength of that of the one-pion-exchange part of the
NN potential in the 'So channel. The values g, and

g~ allow two-nucleon bound states.
The second set of calculations corresponds to the

exchange of the fictitious cr meson: @=500 MeV.
The values of the coupling constant are

gb ——4.0~ 10 MeV

g, =8.0X10 MeV

gd =16.0X10 MeV

(3.2)

Here a two-nucleon bound state is possible for g,
and gd. For the nucleon we always use the physical
mass m =938.93 MeV.

For numerical calculations we first performed the
partial-wave projection of the integral equation
(2.15). The Kowalski-Noyes method' was used to
overcome the singularity in the kernel of the integral
equation, thereby putting it in a Fredholm form.
The Gauss-Legendre quadrature and matrix inver-
sion methods were used to calculate the fully on-
shell t matrix and thus the NN scattering phase
shifts.

Results of our calculations are presented in Figs.
8—14, where we also compare our results with those
based on the Bethe-Salpeter, Blankenbecler-Sugar,
and Gross equations. The cmsses represent the
Bethe-Salpeter phase shifts obtained in the ladder
approximation, Eqs. (1.4) and (1.5), and are taken
from Ref. 11. The Blankenbecler-Sugar (Gross) re-
sults, Eq. (2.7) [Eq. (2.8)], are denoted by BBS1
(G 1).

We begin our calculations of S-wave phase shifts
with V' = V"' [Eq. (2.16)], which is the first term
of the expansion for the effective potential [Fig.
7(a)]. Recall that in the c.m. frame V'+ ——V' . The
corresponding results are denoted by P 1 in Figs.
8—14. It is clear that when the coupling constant
corresponds to the one-pion exchange potential in
the 'So nucleon-nucleon channel (Fig. 8), our result
(P1) is in much better agreement with the Bethe-
Salpeter phase shifts than are the Blankenbecler-
Sugar and Gmss results (BBS1, Gl). The same is
true also for a stronger coupling constant; see Fig. 9.
If the coupling constant is increased further, so that
a two-nucleon bound state is possible (Figs. 10 and
11), the agreement of our result (P 1) with the
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Bethe-Salpeter phase shifts is about as good as that
of the Blankenbecler-Sugar results (BBS1), but is
much better than that of the Gross results (Gl).
The same general features are observed also in Figs.
12—14, where we consider a larger exchanged-meson
mass (p =500 MeV). For a relatively weak coupling
constant (Fig. 12), our result (Pl) is better than
BBS1 and Gl. For stronger coupling constants
which allow two-nucleon bound states (Figs. 13 and
14), P 1 is about as good as BBS1 but is better than
G l.

Next we include the second term (of order g ) in
the effective potential so that

Veff V(1)eff~ V(2)eff

0.16—

L

200I 0 50 IOO I 50
E lab (MeV)

FIG. 8. Calculated N% phase shifts in radians versus
laboratory kinetic energy in MeV. Crosses represent
Bethe-Salpeter results in the ladder approximation and
are taken from Ref. 11. Curves are described in the text.
The meson-X coupling constant, the equivalent strength
of the potential, and the mass of the exchanged meson are
given in the upper right-hand corner.

[see Fig. 7(b) and Eq. (2.17)]. This term corresponds
to a two-meson exchange contribution in the effec-
tive potential. A large part of the calculation of
V' ' for the S wave can be done analytically as
described in Appendix A. The results of our calcu-
lations, which include V' ', are denoted by P2 in
Figs. 8—14. First, if we have p=m for relatively
weak coupling constants (Figs. 8 and 9), the in-
clusion of V' ' does not affect the phase shifts
very much. For stronger coupling constants, howev-
er, it makes a significant contribution, thereby im-
proving the agreement of our results (P2) with the
Bethe-Salpeter phase shifts (Figs. 10 and 11). Simi-
lar remarks can be made about Figs. 12—14, where

g~ = I.OxIO~ MeV~

I
'

1

2 30& IO7

I.O

0.9

L 0 7

60

0.6

0.5

2.0

GQ

1.5

I

IO

I

150 200
I . I I

50 IOO

Elab (MeV)
FIG. 9. See the caption to Fig. 8.

1.0—
I

10
I

50 100 1 50
I

200

EIab (MeV )

FIG. 10. See the caption to Fig. 8.
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FIG. 11. See the caption to Fig. 8.
FIG. 13. See the caption to Fig. 8.

l. 7
I

g~= l6.0xl07 Mpv~

I. 5

2
z 50

6Q

07

IG 50
l

IGO l50

b {MeV)
200

P.O—
l

IO 50
l I

IOO l50

(MeV)

l

200 250

FIG. 12. See the caption to Fig. 8. FIG. 14. See the caption to Fig. 8.
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we have p =500 MeV. In Fig. 12, the inclusion of
V' ' in the effective potential brings our results
(P2) to a very good agreement with the Bethe-
Salpeter phase shifts. For stronger coupling con-
stants also, V' ' makes an important contribution,
bringing our results closer to the Bethe-Salpeter
phase shifts (Figs. 13 and 14).

The next term in V' (of order g ), Eq. (2.18),
corresponds to the three-meson exchange contribu-
tion in the effective potential IFigs. 7(c) and (d)].
The calculation of this term, after partial wave pro-
jection, involves a seven-dimensional integral. How-
ever, to a large extent it can be done analytically, as
described in Appendix B. Finally, there remains a
three-dimensional integral, which we evaluate nu-
merically. The results of our calculations with

Veff V(1)eff+ V(2)eff+ V(3)eff

are denoted as P3 in Figs. 8—14. We see that the
influence of V' ' is very small in all figures, indi-
cating a very rapid convergence of our series for V'
even for rather large couplin constants. The con-
vergence of the series for V', in the nonrelativistic
limit, was roughly estimated in Ref. 7. We found
there that the parameter of expansion is of the order
g /(2~) m .

Despite an overall agreement of our results (P3)
with the Bethe-Salpeter S-wave phase shifts, it is
clear from Figs. 8—14 that for a fixed )M as the
strength of the potential increases the agreement be-
comes worse. A possible explanation for the
disagreement is the neglect of the negative energy
nucleon poles in our treatment.

Now considering the potentials in the
Blankenbecler-Sugar and Gross equations [Eqs. (2.7)
and (2.8)] as the first terms of an infinite series, Eq.
(2.4), one can calculate the first correction term
V(G —g)V. Results of such a calculation with a
modified potential W = V+ V(G —g) V are given in
Ref. 11 only for the case of the Blankenbecler-Sugar
equation and the potentials in Eq. (3.1). These re-
sults are denoted by BBS2. We see in Figs. 8 and 9
that the inclusion of this term (which involves a
four-dimensional integral) improves the phase shift

TABLE I. o.X coupling constant and a meson mass
obtained by performing minimum-P fits to the Bethe-
Salpeter results in Fig. 12. g =4.0~ 10" MeV and
p=500 MeV.

TABLE II. Same as Table I but for Fig. 13.
gz 8.0~10 MeV and @=500MeV.

BBS1
G1
P1

. . 2
+init

0.237
3.807
0.221

2= . 2+fi =+min

4.92 X 10
5.06' 10—4

5.57 &&
10-'

Fitted g
MeV

6.62 ~ 10'
6.07 && 10'
8.39 && 10'

Fitted p
MeV

451
587
449

TABLE III. Same as Table I but for Fig. 14.
g =16.0&&10 MeV and @=500MeV.

calculated with the Blankenbecler-Sugar equation
and it almost coincides with our result, P 1, obtained
with V' = V"", Eq. (2.16). However, for larger
coupling constants (Figs. 10 and 11), the inclusion of
the term V(G —g) V does not improve the results at
all. In fact it leads to worsening of the results, as we
see in Fig. 11. This probably indicates poor conver-
gence of the expansion (2.4) at least up to the order
studied, if one uses the Blankenbecler-Sugar choice
of g. Also note that in Figs. 10 and 11 the curves
P2 are in much better agreement with the crosses
than are the curves BBS2.

A very large body of literature exists in which a
theoretical reduction scheme and a phenomenologi-
cal boson-exchange potential are chosen to fit the
empirical NN phase shift data and thus generate a
set of phenomenological meson masses and meson-
nucleon coupling constants. These in turn are used
in extensive nuclear matter and nuclear structure
calculations. It is important to study how sensitive
these coupling constants and meson masses are to
the choice of the reduction scheme. ' So we per-
formed a simple calculation in which the Bethe-
Salpeter results in Figs. 12—14 were treated as ex-
perimental data and the theoretical approaches la-
beled BBS1, Gl, and P 1 were used in turn to fit
these "data" by adjusting the meson-N coupling
constant and the meson mass. Minimum-X fits
were obtained, thereby determining the "mass" of
the fictitious o meson and the crN "coupling con-
stant. " Results are presented in Tables I—III.
Numbers in the first column are the values of X
corresponding to the various curves shown in Figs.
12—14. The second column gives the minimum X
corresponding to the best-fit curves. The next two
columns give the fitted g and p. Since the various

BBS1
Gl
P1

. . 2
+init

0.155
2.097
0.019

2= . 2+fi =+min

1.22X 10-'
1.74X10-4
1.28 ~ 10

Fjtted g
MeV

3.54~ 10'
3.06' 10'
4.22 && 10'

Fitted p
MeV

479
464
508

BBS1
G1
P1

. . 2
+init

0.133

0.522

.2= . 2+fi =+min

3.37 ~ 10-4

3.76 ~ 10-4

Fitted g
MeV

14.3 ~ 10'

19.7 ~ 10'

Fitted p
Mev

487

508
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reduction schemes tested here treat the nucleon and
meson as scalar particles, and since the crosses in
Figs. 12—14 are not the true experimental data, the
fitted g and p obviously have no physical signifi-
cance. However, they serve an important purpose to
demonstrate the sensitivity of the fitted parameters

to the theoretical reduction scheme chosen. If this
sensitivity persists in realistic calculations trying to
fit the actual experimental data, then the
phenomenological coupling constants and meson
masses emerging from these calculations are of lim-
ited applicability.

IV. CROSSED DIAGRAMS AND NONRELATIVISTIC LIMIT
GF THE BETHE-SAI.PETER EQUATIQN

Consider now the more general case where the driving term in the Bethe-Salpeter equation, V», includes
the "crossed-box" diagram (Fig. 15). As before we replace V by V++ V in the expression for the crossed-box
diagram, make the approximation (2.10), and then perform the Q(')' integration separately in each of the four
terms V+GV+. As in Sec. II this leads, after some algebra, to six terms which can be represented schematical-
ly as time-ordered diagrams (Fig. 16). Expressions for these diagrams can also be written using the rules of the
old-fashioned perturbation theory described in Sec. II. Consider, for example, the diagram in Fig. 16(a). As in
the case of Fig. 7, we take the external nucleons crossed by vertical lines on the mass shell (i.e., in the center-
of-mass flame Qp:Pp —E aild Qo =Po —E-, ). The expression for this diagram isg'

( 8Pokf
Q

IICL7
Q Q

&&CO
Q

&&

Q
&) (2P ) d Q

V:"(Po Q Q') =g'
(P —E- —E-„—~- --+i e)(P —E -—E- —

~
-„—co- —„—co-„-,+i e)(Pp —E- - —E-,—co- ~

—,+i e)o —
Q Q

~

Q Q" o — Q" Q+ Q Q" Q Q- — Q" Q
~ o Q- Q Q

~

Q

(4.1)

Similarly, expressions for diagrams in Figs. 16(b) and (c) are

( 8PpE
Q

„co
Q Q- co

Q „Q,) '(277. ) 'd'Q"
~b'(Po Q Q') =g

(P —E —E, „—m- „,+ie)(Pp —E „—E, „—co „—cu „,+i@)(Pp—E „—E-,—co „,+t'e)0 —
Q

—
Q+Q Q- Q- Q o Q- Q+ Q Q- Q Q- Q- Q

~ o Q" Q Q" Q

(4.2)

( 8PpEQ co
Q Q coQ Q ) '(2m) d Q"

V."(Po Q Q') =g'
(P —E- —E-,—„—m „-,+is)(P0 —E- —E-,—co- -„—co-„-,+is)(Po —E-„—E-,—co-„-,+i@)

Q Q+ Q' —Q" Q"- Q' Q O' Q —Q" Q"—Q' o Q" Q Q- Q

(4.3)

It is easy to see that, in the center-of-mass frame,
the diagrams in Figs. 16(d)—(f) are equal to those in
Fig. 16(a)—(c), respectively.

Now we are in a position to extend the definition
of the effective potential given in Fig. 7. A more
general definition that includes time-ordered dia-
grams resulting because of the inclusion of the
crossed-box diagram in V» is given in Fig. 17. We
recall that the effective potential should include all
noniterative diagrams.

The solution of the Bethe-Salpeter equation, T~~,
can again be written in terms of an auxiliary am-
plitude T~~ as in Sec. II, with V' in Eqs. (2. 15)
and (2.19) replaced by V' defined in Fig. 17. Re-
call that V' appearing in Eq. (2.15) has the external
nucleons crossed by vertical lines on the mass shell
(Fig. 7), while V' in Eq. (2.19) has no such restric-
tion. A similar statement holds true in the case of
Fig. 17 also. As before T» coincides with T» in
the on-she11 case.

The results of our calculations of S-wave XX
phase shifts when crossed diagrams are included in
the effective potential are shown in Figs. 18—24.
The same coupling constants and meson masses as
in Sec. III were used [see Eqs. (3.1) and (3.2)]. The
curves P4 correspond to the solution of Eq. (2.15),
when the effective potential includes diagrams in
Figs. 17(a)—(g). The curves P5 include, in addition,
four diagrams of the type of Fig. 17(h) and four dia-
grams of the type of Fig. 17(i). The calculation of
P5 will be explained in detail later. Crosses in Figs.
18—24 represent Bethe-Salpeter results obtained
with V» in Fig. 15 and are taken from Ref. 11.
The curves BBS3 are Blankenbecler-Sugar results,
also taken from Ref. 11, and are based on the poten-
tial

V(2)+ V(2)(G g) V(2)+ V(4)

[see Eq. (2.3)]. Here V' ' refers to Fig. 15(a) and
V' ' to Fig. 15(b), where both nucleons are either on
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shell or equally off shell. Curves labeled Gl and
BBS1 are Gross and Blankenbecler-Sugar results in
the ladder approximation, and are the same as in
Figs. 8—14.

We see from Figs. 18—20 that the agreement of
our results with the Bethe-Salpeter results is good,
even for a rather strong coupling constant in Fig.
20. However, in Fig. 21, where we have a stronger
coupling constant for the same exchanged meson
mass, the agreement is not so good. This is some-
what surprising since for comparable or even
stronger coupling constants in Figs. 22—24, the
disagreement of curves I'5 with the crosses is much
smaller. (Note that scales are different in various
figures. ) Besides the neglect of the negative energy
nucleon poles in the present calculations, this
disagreement could also be due to numerical uncer-
tainties in the solution of the Bethe-Salpeter equa-
tion.

The curves BBS3 in Figs. 18—21 are very close to
the curves BBS1 in Figs. 8—11, respectively. This is
due to cancellation between V' ' and V' '

(6 —g)V' ' terms in the potential W in the limit
)M/m ~0." This cancellation, which occurs in some
models, " improves the convergence of the series
(2.4) if the potential V» includes the crossed dia-
gram (Fig. 15). This may explain why the agree-
ment between the Blankenbecler-Sugar and Bethe-
Salpeter results is good for small coupling constants.
The same cancellation (in the limit (M/m~0) also
occurs in the Gross equation ' and may explain the
good agreement between Gl and the Bethe-Salpeter

I

only in the case of the Blankebecler-Sugar equation
and for coupling constants in Eq. (3.1) only. ]

Consider now the nonrelativistic limit of our
equations in the ladder approximation. We have
shown earlier that in this limit the Blankenbecler-
Sugar and Gross equations go over to the
Lippmann-Schwinger equation with the nonrela-
tivistic Yukawa potential as the driving term. Our
equation (2.15) also goes over to the Lippmann-
Schwinger equation, but with a potential that is dif-
ferent from the nonrelativistic Yukawa potential.
Only the first term in the expansion for V' (Fig. 7)
goes over to the nonrelativistic Yukawa potential.
Thus if

Po —E- —E-, «co-
Q Q' Q —Q'

we obtain from Eq. (2.16) that

V(1)eff V(1)eff V(1)eff
+ 2

Q —Q'

However, the second and higher order terms in the
expansion for V' do not vanish in this limit. For
example, for V' ', Eq. (2.17), we find

phase shifts in Figs. 18 and 19. [Unfortunately,
Mueller and Gloeckle" present their results obtained
with

Pr V(2) + V(2)( G g) V(2) + V(4)

&rzr, rr 2 4I (4m) (2rr) d (2"
2 2/

Q Q-"Q Q( Q Q+ Q Q

For the three-meson exchange contribution, V' ', Eq. (2.182, we find in this limit

rrr rr 4f 2()m) (2rr) d L2 "d I)"'
2)

Q Q" '
Q —Q" Q"—Q"' Q"—Q"' Q"—Q"' Q"' Q' Q"' —Q'

(4.4)

Q
II

Q
III

Q Q
It +CO

Q
lt

Q
Itl +CO

Q
lit

Q
I

(4.5)

Since the nonrelativistic interaction is instantaneous, the two- and three-meson exchange processes in Fig. 7
simply go over to instantaneous exchanges of two or three mesons at the same time. Schematically this may be
represented as in Fig. 25.

Consider now the crossed diagrams in Fig. 17 in the same limit. We find from Eqs. (4.1)—(4.3) that

(4m ) (2~) 'd'Q"
)4 I4

CO~ „CO~„,CO „+67
Q —Q" Q"—Q' Q —Q" Q"—Q'

(4.6)

(4m) (2~) 'd Q"
CO „CO „~, CO~ ~ „+CO~ „

Q —Q" Q"—Q' Q —Q" Q"—Q'
(4.7)
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Comparing Eqs. (4.6) and (4.7) with Eq. (4.4) we
find that in this limit

FIG. 17. Definition of the effective potential
V' = V+ + V' . In the c.m. frame V+ ——V' . (Compare
with Fig. 7.)

(4.8)

In other words the second to fifth diagrams in Fig.
17 are all nearly equal. This makes sense, because if
the interaction is instantaneous and if the potentials
commute, then the order in which the mesons are
absorbed or emitted is not important (see Fig. 26).
Therefore in this limit the total contribution of the
four diagrams of the order g in Fig. 17 is simply
four times the contribution of the stretched-box dia-
gram [Eq. (4.4)], which obviates the need to calcu-
late ".ny of the three time-ordered crossed-box dia-
grams. We thus obtain that up to order g the effec-
tive potential in Eq. (2.15), which includes all
crossed diagrams, can be written as

p = 500 MeV) up to E & 250 MeV. (Only at E:—250
MeV there appear some deviations between these re-
sults in the case where p=500 MeV. ) The reason
that this approximation is so good for rather large
energies [although it was obtained in the strictly
nonrelativistic limit, Eqs. (4.6)—(4.8) and Fig. 26] is
the following. We can see that the restrictions (2.9)
Mld

pO / —+ / —+ &~~—+ —+
Q Q' Q —Q'

l

0.25—
Veff 2 V(1)eff + 8 V(2)eff

+ + (4.9)

where V'+' is given by Eq. (2.16) and V'+' by Eq.
(2.17).

We do not make the approximation (4.9) in our
calculations. However, to check it numerically, we
solved Eq. (2.15) first with

Veff 2( V( I )eff + V(2)eff + Vcr+ Vcr+ Vcr)

and then with the effective potential in Eq. (4.9) and
compared the resulting S-wave phase shifts. Both
results are in excellent agreement, even in the case of
the strongest coupling constants (for p =m and
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z O. l9—
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P-Q PN~Q P-Q'
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FIG. 16. Time-ordered

crossed-box diagram.
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diagrams resulting from the

0.17—

O. le-
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FIG. 18. Calculated %X phase shifts in radians versus

laboratory kinetic energy in Me V. Crosses represent
Bethe-Salpeter results with the driving term Vz~ as in
Fig. 15 and are taken from Ref. 11. Curves are described
in the text. The meson-X coupling constant, the
equivalent strength of the potential, and the mass of the
exchanged meson are given in the upper right-hang
corner.
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could be lifted and the approximation (4.8) can still
remain valid. Indeed in the integrals (2.17) and
(4. 1)—(4.3) one can approximate the energies of vir-
tual nucleons by Po/2, i.e.,

E
Q

I E
Q Q

I

Q
PQ /2

which means that the energy is equally distributed
between the two virtual nucleons (similar to the pro-
cedure of Blankenbecler and Sugar). In this case
also one can see that the relation (4.8) holds.

g2 —5.0xI07 MeV2 g2 =4.0~107 MeV2
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The approximate relation between the box and the
crossed-box diagrams [Eq. (4.8), Fig. 26] is an im-
portant result valid in the low energy region. It pro-
vides us with a new method for a simpler evaluation
of any crossed diagrams in V', and therefore for a
practical treatment of the Bethe-Salpeter equation
with complicated crossed diagrams in the driving
term.

Consider, for example, the three-meson exchange
contribution in V' . Note that in this case we can-
not compare our results with Bethe-Salpeter phase
shifts since we do not know any calculations with
the Bethe-Salpeter equation, where the driving term
is calculated up to order g . Nevertheless, in the
calculations of Mueller and Gloeckle, " the driving
term (Fig. 15) generates some terms of order g in
our potential V' . These terms correspond to dia-
grams (f)—(i) in Fig. 17, and another six diagrams of
type (h) and (i) which are not shown in Fig. 17. We
therefore take into account only these terms and
compare our results with the Bethe-Salpeter phase
shifts.

For evaluation of crossed diagrams of order g we
use the same idea as described above; that is, we first
compare different diagrams in the nonrelativistic
limit. We thus obtain that each crossed diagram of
order g can be approximated by a box diagram.
However, in this case we have two box diagrams as
shown in Figs. 7(c) and (d) [or (g) and (h)]. They
correspond to two different kinds of processes; in

1
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FIG. 24. See the caption to Fig. 18.

Fig. 7(c) we have no more than two mesons in any
intermediate state, while in Fig. 7(d) we have a three
meson intermediate state. The crossed diagrams are
divided accordingly into two classes. In the case
which we are considering there are eight crossed dia-
grams of the type in Figs. 17(h) and (i), out of which
six are of the first class, and two of the second class.
In the nonrelativistic limit, Eq. (4.5), we observe that
a diagram of the second class (where three mesons
are present simultaneously in an intermediate state)
is approximately one-third of a diagram of the first
ciass. We can thus approximate

Veff 2 V( 1 )eff + 8 V(2)eff + 1 6 V~ (3)eff
+ + + (4. 1 1)

20

I

l0
I

50 IOD I 50
(MeV)

200

FICx. 23. See the caption to Pig. 18.

Here V'+" is given by Eq. (2.18), where only the
first term in the square brackets is to be included. It
corresponds to the contribution from the processes
of the first class, where no more than two mesons
appear in any intermediate state. The evaluation of
this term is described in Appendix B.

Results of our calculation with V' given by Eq.
(4.11) are presented in Figs. 18—24 as curves P5.
We see that this part of the three meson-exchange
contribution in the effective potential is important
only when the coupling constants are large.

However, as mentioned above, thc driving tcI ITl,

Fig. 15, of the Bethe-Salpeter equation does not gen-
erate all terms of order g in our effective potential,
V' . In fact, a much larger class of diagrams of or-
der g in V' exists; see for example, the diagrams
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FIG. 2S. Effective potential in Fig. 7 in the nonrela-
tivistic limit. The blobs simply indicate that these dia-
grams are noniterative.

in Fig. 27. These diagrams are generated only if
terms of order g are included in the driving term of
the Bethe-Salpeter equation. Their number can be
found easily by counting all different configurations
obtained by interchanging meson-NN vertices. We
thus find that the number of all diagrams of order
g [including the two box diagrams, Figs. 17(f) and
(g)] which contribute to V+ is 40, where 16 of these
diagrams belong to the first class and have no more
than two mesons in any intermediate state. The
remaining 24 diagrams contain three mesons in an
intermediate state. Using our approximation, which
relates these different diagrams, we find that V'
which includes al/ processes of order g is

Veff 2 V{1)eff + 8 V{2)eff+48 Vi {3)eff (4+ + +

where V'+ ' is the same as in Eq. (4.11).
Results of our calculations with V' given by Eq.

(4.12) are shown in Fig. 28 as curves P6. The upper
three curves correspond to the strongest coupling
constant in Eq. (3.1) with p=m and the lower
three to the strongest coupling constant in Eq. (3.2)
with p=500 MeV. Curves P 1 are the same as in
Figs. 11 and 14, and curves P'4 are based on V' as
in Eq. (4.10). We thus see that the three-meson ex-
change contribution may be quite important. The
calculation of higher order terms in V' can be done
in the same way. We, however, did not go beyond
the three-meson exchange term in the present model
calculations.

Here we described a simple method for evaluation
of crossed diagrams in the effective potential. The
derivation was presented for the particular case of
scalar nucleons and scalar mesons. In this model
the order in which mesons are absorbed or emitted is

FIG. 27. An example of a three-meson exchange dia-
gram (a) with no more than two mesons in any intermedi-
ate state, and (h) with a three-meson intermediate state.

V. DISCUSSION

In this paper we derived a new three-dimensional
approximation to the Bethe-Salpeter equation. The
only approximation involved here is the neglect of
the negative energy poles of the two-nucleon propa-
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not important (Fig. 26). However, in realistic calcu-
lations the interactions have parts which either com-
mute or anticommute with each other. In the form-
er case we will have relations of the type of Eq.
(4.8). In the latter case we will have similar rela-
tions with opposite signs.
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FIG. 26. Near equality of the box and crossed-box dia-
grams in the nonrelativistic limit.
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FIG. 28. Calculated NN phase shifts in radians versus

laboratory kinetic energy in MeV. The curves are
described in the text. The upper three curves correspond
to g =7.0&( 10 MeV and p, =m„. The lower three
curves correspond to g =16.0&10 MeV and p=S00
MeV.
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gator. Except for this point the phase shifts ob-
tained with our equation and the Bethe-Salpeter
equation would be identical. Although our equation
has a simple form, similar to the Lippmann-
Schwinger equation, it clearly displays the retarding
nature of the relativistic interaction which is in-
herent in the Bethe-Salpeter equation. Using our re-
sults we investigated the nonrelativistic limit of the
Bethe-Salpeter equation and found that the (rela-
tivistic) retardation effects do survive. Also in this
limit the influence of the crossed diagrams in the
driving term of the Bethe-Salpeter equation becomes
transparent and it leads to an approximate method
to take the contribution of these diagrams into ac-
count in a simple way. Using our results, which re-
veal important features of the Bethe-Salpeter equa-
tion, we now discuss their implication to works of
other authors.

In a series of papers Tjon and collaborators' ap-
plied their new methods of numerical solution of the
Bethe-Salpeter equation in the ladder approximation
to the analysis of nucleon-nucleon phase shift data.
They found that "the Bethe-Salpeter equation with
one-boson exchange as the driving force is capable
of giving a reasonable description of the nucleon-
nucleon system. "' However, as is clear from the
present work, the use of the ladder approximation in
the Bethe-Salpeter equation misses a major part of
the multinucleon exchange contribution to the XX
interaction. Therefore, the Bethe-Salpeter equation
in the ladder approximation cannot be used for a
systematic analysis of nucleon-nucleon data.
Indeed, we demonstrated that the Bethe-Salpeter
equation in the ladder approximation retains mul-
timeson exchange forces even in the nonrelativistic
limit, so that it differs from the usual Lippmann-
Schwinger equation with the Yukawa potential.
However, if this multimeson exchange contribution
is important, one also needs to include cross dia-
grams in the driving term of the Bethe-Salpeter
equation, since these diagrams generate the major
part of the multimeson exchange contribution in any
given order. For example, we have shown that in
the two-meson exchange potential the contribution
from the crossed diagrams is three times larger than
the contribution from the stretched box diagram. If,
however, the coupling constant is small, so that the
multimeson forces are not important, then there is
no advantage to using the Bethe-Salpeter equation
instead of the Lippmann-Schwinger equation with
the Yukawa potential.

A general question, what is the best relativistic
equation for nuclear physics, has recently been dis-
cussed by Gross. He arrived at a surprising con-
clusion that the Bethe-Salpeter equation is not the
best equation. He argued that it does not satisfy a

reasonable physical requirement, i.e., in the limiting
case when the mass of one nucleon becomes very
large, the Bethe-Salpeter equation does not go over
to a one-body relativistic equation with an instan-
taneous potential (Gross refers to it as the "one-body
limit" ). However, our analysis leads to an exactly
opposite conclusion, namely the Bethe-Salpeter
equation in the ladder approximation (this case was
considered as the most pronounced example by
Gross ) has the one body -limit. This can be easily
seen from Eq. (2.15). The reason for the disagree-
ment with Ref. 9 is as follows. Gross starts with the
infinite ladder sum, which represents the solution of
the Bethe-Salpeter equation in the ladder approxi-
mation. In order to find the three-dimensional po-
tential he considers the energy integration in each of
the ladder diagrams separately. However, his next
step is only an observation that the second and
higher order ladder diagrams after three-
dimensional reduction contain some terms which are
the iteration of the lower order term, and others
which are not. The latter arise from the retarding
terms in the potential (meson production singulari-
ties) and negative energy nucleon poles. Therefore
he draws a conclusion that the infinite ladder sum
cannot be written, even in the large mass limit, as an
iteration of a three-dimensional potential, and thus
the Bethe-Salpeter equation has one-body limit. In
the present work we concentrated precisely on these
"undesirable" terms. Although we considered only
the meson production singularities and did not take
into account negative energy nucleon poles, we
found that the inclusion of these undesirable terms
retains the one-body limit of the Bethe-Salpeter
equation. Indeed, in the large mass limit these terms
would correspond to the instantaneous multimeson
exchange contribution in the effective three-
dimensional potential. We therefore should include
these undesirable terms in the definition of V' . Fi-
nally we obtain that the solution of the Bethe-
Salpeter equation can indeed be represented as an
iteration of V', which is given by an infinite series,
Fig. 7. Thus our conclusion is that the Bethe-
Salpeter equation satisfies the Gross requirement,
and it remains the best justified equation for nuclear
physics.

There is an interesting result about cancellation of
the V(G —g) V terna, Eq. (2.4), in the large nucleon
mass limit, (p/m~0) when one uses the Gross or
Blankenbecler-Sugar choice of g and includes the
crossed-box diagram in the driving term of the
Bethe-Salpeter equation. ' ' " These cancellations
have been shown by Gross9 to occur not only in the

1

scalar case but also in the chiral theory of spin —,

nucleons interacting with isovector pions. This has
been considered as a justification for the one-boson-
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exchange calculations of the NN potential. " How-
ever, in our opinion the underlying physics of these
cancellations is not clear. Indeed, we obtain a simi-
lar, if not a better, agreement with the Bethe-

Salpeter equation including crossed diagrams, Figs.
18—24, when no cancellation between multimeson
exchange terms occurs.

APPENDIX A

The expression for the stretched-box diagram given in Eq. (2.17) after partial wave (L =0) projection has the
form

&4 (~ )
—s (Eo s»o ..o.,s»o. , o. ) 'g" dg"d cos()"dP"s(cos()'

8» 8P» (o E- —»s—- -.... )(f5 s» —-..—-»s-. . - )() E- —
s». -.—-..)..Q" Q —Q" Q —Q" Q"—Q' Q" Q' —Q*'

where (x—:Pp —E
&

p—:Pp —Eg —Eg, 1—:Pp —E &,, and 0' is the angle between Q and Q'. In this appendix
we briefly describe how two out of the four integrations in the above expression can be done analytically leav-
ing only two for numerical work. The above integrand is nonsingular since we work below the pion production
threshold. It is convenient to take the z axis along Q and introduce a redundant integration over (t) (=0 to 2m. ),
the azimuthal angle of Q'. It is clear that one may replace d0- „-d0-, — in the resultingQ" Q Q'Q
expression by d 0 &., g dQ &, &

„. Because of the special nature of the above integrand one may further replace
dQ

& „&dQ &, & „by (2') d coso"d cosg, where g is the angle between Q' and Q". Thus we get

gs(p)2~(E os»o os»co, )'g" dg dz, dzs"
8~ 8Pp (a E-„—co—- —„)(f3 co- -„——cp- „-,)(y E-„—co--, ——„)Q" Q —Q" Q —Q" Q"—Q' Q" Q' —Q"

where z
&

=cos8", zz —=cosg,

( 2+ Q 2ss+ Q
Z 2QQss gs )1s/2

co g „g,——(p +Q" +Q' —2Q'Q" cosf) '

Integration over z& can be done analytically using standard techniques, leaving only two-dimensional integra-
tion to be done numerically.

APPENDIX B

In this appendix we briefly describe how the three-meson exchange diagram in Fig. 7(c) can be put in a nu-
merically tractable form by performing many of the integrals analytically. After partial wave (L =0) projec-
tion, this diagram can be written as [see Eq. (2.18)]

(2») —6

~
(s» o o. s» o., o ..,c» o ... o E& Eo. )'s( g dsg . dc. ,ose'. .

""'
32P ' (~—E-,.—~- -„)(a—E-„.—~- -„ co-„ -„,)(P—p E-„ E-„,——co-„ —-„,)Q" Q —Q" Q"' Q —Q" Q"—Q"' 0 Q" Q"' Q"—Q"'

X
(P E~ ~~ ~„, rp~ ~, )(P E~ „rp~... .)

where a=Pp —E
&

P—:Pp —E &, and 0' is the angle between Q and Q'. The above integrand is nonsingular
since we work below the pion production threshold. It is convenient to take the z axis along Q and introduce a
redundant integration over P' (=0 to 2') the azimuthal angle of Q'. The resulting expression involves eight-
dimensional integration, out of which five can be done analytically leaving only three for numerical integra-
tion. As in Appendix A we replace dQ&, &dQ&„, -dQ&„& by dQ&, &.„dQ&„, &„dQg.. &. The special

7

nature of the above integrand allows a further replacement of this quantity by (2') d cosf&d cosg2d cosO".
Here g~ is the angle between Q" and Q"', and fz is the angle between Q"' and Q'. Thus we get
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(2~)—4 (~ q q ra .
g.

, , g ra. .g. „, gE gE~ ..,.. ) 'Q "dQ g""d'g d"'cosQ, d casg~d cosO

8~ 32'„' (~ —&Z. , —~Z Z
)(a —&Z —~Z g
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d cosO"

X
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Integrations over d cos6I" and d cosg2 can be done analytically, leaving only a three-dimensional integral.
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