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Shell structure of the A =6 ground states from three-body dynamics
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Three-body (aNN) models of the He and Li ground states are used to investigate their
shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np)
for 6He, and simple, full (0%), and full (4%) for "Li. The full models in both cases are ob-

tained by including the Sl/2, P~/2, and I'3/2 partial waves of the o.'X interaction, whereas the
simple model truncates to only the strongly resonant I'3/2 wave. The He full models distin-
guish between use of the nn or np parameters for the 'Sp XX interaction, while the Li full
models have either a pure S~ NN interaction (0%) or a 'S~- D~ interaction that leads to a
4% d-wave component in the deuteron (4%). These models are used to calculate the proba-
bilities of the orbital components of the wave functions, the configuration-space single-
particle orbital densities, and the configuration-space two-particle wave function amplitudes
in j-j coupling with the nucleon coordinates referred to the alpha particle as the "core" or
"center of force." The results are then compared with those from phenomenological and
realistic-interaction shell models. Major findings of the comparison are the following:
None of the shell models considered have a distribution of orbital probabilities across shells
like that predicted by three-body models; the orbital rms radii from three-body models indi-
cate an ordering of the orbits within shells, i.e., p&/2 outside p3/2 unlike oscillator shell
models with a single oscillator parameter where the p-shell orbitals have the same shape;
and, as expected, three-body orbital densities decay at large radial distances as exponentials
rat&;er than the too compact Gaussian falling off of oscillator shell models.

NUCLEAR STRUCTURE 6He and 6Li, three-body models, shell struc- ~

ture.

I. INTRGDUCTIGN

Three-body models of the 2 = 6 system, that is, al-
pha particle plus two nucleons (aXN), with the
dynamics actually solved as a three-body problem,
provide the first fundamental picture of this system
beyond standard approaches, e.g. , shell models, that
reduce in their effect to two-body dynamics. The
significance of the three-body dynamics is apparent
in our present understanding of elastic deuteron-
alpha scattering, deuteron breakup on alpha parti-
cles, and the continuum states (resonances) of the
3=6 system. ' The powerful content of such a
treatment carries over as well to the structure of the
He (0+) and Li (1+) ground states. The ground-

state three-body binding energies are predicted to
within 0.5 MeV, while the calculated energy differ-
ence between the J =0+ and 1+ states of Li devi-
ates from the experimental value by only a few per-
cent. The associated wave functions permit ex-
amination of other ground-state properties. So far,
the alpha-deuteron structure of Li and the He P

decay have been considered. Specifically, the
Li~a + d momentum distribution, Li~a + at

asymptotic norms, and the percentage alpha-
deuteron component have been calculated and found
to be in agreement with the corresponding experi-
mental quantities. The compositeness of the deute-
ron in the three-body model permits a deeper under-
standing of when "effective" alpha-deuteron models
are valid. On the other hand, the excellent agree-
ment with experiment for the He /3 decay rate
serves as a test of the He- Li wave-function overlap
and indicates that it is well tuned in the three-body
models. Although many other 3=6 properties
remain to be investigated "harge form factors,
quadrupole moment of Li, etc., the results obtained
so far indicate the viability of this approach. Its
strength lies in the origin of the model: The only in-
put is the basic two-body interactions —nucleon-
nucleon and alpha-nucleon. Moreover, the model is
formulated in the center-of-mass system, thus elim-
inating the need for center-of-mass corrections in
calculations as required in shell-model work. 9 For
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Source

TABLE I. Shell model wave-function-component amplitudes as defined in Eqs. (1) and (2).

b
(fm)

DW (Ref. 10)
BAH (Ref. 12)

Saskatoon A
Saskatoon B

Vergados (Ref. 15)'

I(a)
(b)

11(a)
(b)

III(a)
(b)

0.810

0.810
0.810

0.799
0.737
0.743
0.683
0.729
0.672

—0.581

—0.581
—0.581

—0.600
—0.675
—0.629
—0.691
—0.619
—0.674

0.084

0.0839
0.0839

—0.025
—0.015
—0.027
—0.017
—0.027
—0.021

0.80

0.998
0.816

0.978
0.958
0.969
0.957
0.941
0.929

0.60

0.0482
0.577

0.206
0.283
0.205
0.245
0.215
0.254

2.03

1.95

Khe (a) and (b) after the Roman numerals distinguish the two different sets of single-particle energies used as input. The
Roman numerals represent, respectively, I inert core, II core excitation (2p + 3p —lh), and III: core excitation
(2p +3p —1h +4p —2h).

these reasons, it is compelling to use the predictive
capabilities of three-body models to examine the
shell structure of the A =6 ground states.

In the mid-seventies, renewed effort was put forth
in an attempt to unravel the structure of Li within
the context of shell models. The work was rnotivat-
ed by the excellent electromagnetic data that had be-
come available, e.g. , magnetic moment, charge and
magnetic form factors, and the electromagnetic
transition form factors. Also, the p-decay rate of
He is accurately known. Processes involving the

first 0+ state of Li can be related directly to pro-
cesses involving the ground state of He(0+) by as-
suming they are members of the same isospin multi-
plet. This approach has been used to predict the
semileptonic weak rates of He P decay, p capture
on Li, and leptonic production of neutrinos on Li.
It has been extended to the reaction Li(y, ir+) He as
well. In fact, it was a 60% disagreement between
theory and experiment for the latter reaction, while
reasonable agreement existed for electromagnetic
processes and He p decay, that spurred the recent
intere t in the structure of the A =6 wave functions.
Two approaches have been used in an attempt to
delineate their structure: (1) phenomenological
shell-model calculations; and (2) shell-model calcula-
tions with realistic interactions.

The phenomenological wave function approach
was initiated by Donnelly and Walecka (DW). '

They attempted a unified analysis of semileptonic
weak and electromagnetic processes involving the
Li ground state, the Li 0+ state, and the He

ground state, since the conserved-vector-current
theory implies that weak matrix elements coming
from the vector current are identical to those mea-

sured in electron scattering. By concentrating on
the A =6 J T= 1+0 ground state of Li and the 0+1
isomultiplet, DW had at their disposal accurate elas-
tic and inelastic electron scattering data with
momentum transfers up to -2 fm '. DW truncate
the space of the valence particles to the lp shell and
assume a harmonic oscillator basis with a single os-
cillator parameter:

I

1+0)=A
I (ip„,)'1+0)

+&
I

( Ip3/p lpi/z);1+0)

+C
I
(1pi/p) '1 0)

I

o+1& =D
I
(lp3/2)' o+1&+E

I
(Ipi/2)

Therefore, there are six parameters with two nor-
malization constraints. The normalization condi-
tions plus the magnetic and quadrupole moments of
Li eliminate four parameters. The remaining two

parameters, one being the oscillator parameter b (see
Table I), are fixed by fitting the elastic and inelastic
magnetic form factors. The charge form factor is
not used on the basis that it receives contributions
from the core particles, whereas DW take the core
to be inert. DW introduce single-nucleon and
center-of-mass form factors in their analysis. The
accurate wave function amplitudes obtained by DW
are similar to those found in earlier two-particle
shell-model calculations, " with a notable exception:
E is larger than the value obtained in the simple
shell model (see Table I). When the DW wave func-
tions are used to predict the He p decay rate,
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reasonable a,greement with experiment is obtained,
but the calculated p-capture rate lies well below the
large experimental error limit. Moreover, very poor
agreement with the cross sections for the
Li(y, ir +) He reaction is obtained.

In an attempt to reconcile the Li(y, m+) He pre-
dictions, Bergstrom, Auer, and Hicks' (BAH) reex-
amined the phenomenological approach of DW.
They concluded that the weakest link was the M1-
electroexcitation form factor and remeasured it over
sufficient momentum-transfer range to include the
values associated with the photopion and p-capture
processes, and extracted the M1 radiative width.
They used the M 1 width as a constraint on the 0+1
wave function. With newly constructed phenomeno-
logical wave functions based on generalizing the lp-
shell harmonic oscillator forms, BAH conclude that
the Ip harmonic oscillator basis is inadequate. This
conclusion was reaffirmed by Cammarata and Don-
nelly (CD) in their critical review of the entire situa-
tion. Additionally, CD point out that the new
wave functions generated by BAH do not give satis-
factory agreement for the He p decay, p-capture
rate, and the then available Li(y, m+) He
Since then, the threshold pion photoproduction has
been remeasured to a quoted accuracy of 4%.'
Nevertheless, a consistent picture of the electromag-
netic data, He p decay, p capture, and threshold
Li(y, m +) He does not seem to arise from the

phenomenological wave functions.
In light of the results for the phenomenological

wave functions, what is the structure of the 3=6
wave functions obtained from shell-model calcula-
tions with realistic interactions? Do they lead to
reasonable predictions for the properties and pro-
cesses of interest? Recent work in that direction is
that of Vergados. "

Vergados derives shell-model wave functions for
the 3=6 system from two-body-interaction matrix
elements of Kuo and Lee, ' which are a modified
version of the Kuo-Brown matrix elements. ' In ad-
dition, he considers two sets of single-particle ener-
gies as input: (1) the set usually used for nuclei with
the lp shell almost full; (2) a set obtained by fitting
the 2+0 and 3+0 states of Li with the Kuo-Lee ma-
trix elements. The oscillator parameter used was
close to that of DW. Compared to DW, the distinc-
tive aspects of the wave functions are that the 0+1
wave function is very different and the amplitude of
the

~
(Ip, &2);1+0) component is a small negative

value. The 0+1 wave function resembles more one
of the BAH wave functions (called Saskatoon A).
(See Table I where the various wave-function-
component amplitudes have been tabulated. ) The
predicted energy difference between the 1+0 and
0+1 states is considerably less than experiment. The

Li magnetic moment, M1 0+1 to 1+0 radiative
width, and p-capture rate are in reasonable agree-
ment with experiment, but the Li quadrupole mo-
ment is large with the wrong sign, the p-decay ft
value is too small, and the m.-capture rate too large.
When Vergados includes core excitations in his cal-
culations, the predicted energy difference between
the 1+0 and 0+1 states becomes larger, but not large
enough; the sign of the quadrupole moment changes,
but the magnitude is still incorrect; and the p-decay
ft value is still in disagreement with experiment ex-
cept for one case. Clearly, just as for phenomeno-
logical wave functions, a unified description of the
3 =6 properties and processes of interest is not pos-
sib!e with the best available shell-model wave func-
tions obtained from realistic interactions.

The aim of this paper is to investigate the shell
structure of the A =6 ground states as it is predicted
by three-body models. ' As a first step away from
"effective" two-body models of the A =6 system, it
should lead to an assessment of the importance of
three-body dynamics. Do three-body models differ
significantly from typically used shell models? If
so, how? In this work we concentrate on orbital
probabilities and wave function shapes, but in the
future comparisons with shell-model diagonal and
off-diagonal one-body density matrices can be made.
Since three-body models are almost always solved in
the center-of-mass system with Jacobi coordinates,
the shell structure is hidden. Thus, a part of the
present paper is our description of the transforma-
tion from the Jacobi coordinates to the usual shell-
model coordinates with a j-j coupling.

The text is organized as follows. Section II con-
tains the details of the transformation from Jacobi
to shell coordinates. The numerical results for the
orbital probabilities and wave function shapes are
given in Sec. III, followed in Sec. IV by a discussion
and a comparison with the shell models of Table I.
The main body of the paper closes in Sec. V with a
brief summary and listing of conclusions. Two Ap-
pendices give relationships between shell com-
ponents and three-body wave function components,
and a comment about nodes in wave functions,
respectively.

II. TRANS FQRMATIQN
TQ SHELL CQNFICyURATIQN

We begin with the three-body model bound-state
wave functions for Li derived ' from the
Schrodinger equation in momentum space and ex-
pressed in the Jacobi momenta of the three particles
in their center-of-mass system. The Jacobi coordi-
nates for the two nucleons (labeled 1 and 2) and the
alpha particle (labeled 3) are shown in Fig. 1. The
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symbol k,J will be used for the relative momentum
of the ith and jth particle, while p), will represent
the relative momentum of the kth particle with
respect to the center of mass of the other two. Any

(

of the pairs (k12,p3), (k23, p1), or (k31,p2) serve as in-
dependent momentum coordinates in the center of
mass of the system. The He(Q+) and Li(1+)
ground-state wave functions then take the form' 's

+'o)(k», p3)

, (&og()(k)2)G (P3)X (12)
%He +k12 + 8p3

3/2 J+1/2
+ —', 4~ g

J=1/2 I=J—(1/2)
l &1

AI I hl ( k23 )f +1(1/2)( k23 ~ 2 ) X +1(I/2)(p 1 &
1 )] FI (P 1 )

—( —1)'h) (k31)[9'I(I/2)(k3) &1)%)(I/2)(P2, 2)] Fl (P2) I ) ~

+4'(k., p )=
I( L +k12 + —,p3

g( (k12)[[Y( )(k(2) XX( )(12)]( X & (p3)]g G (p3)
l, l '=0, 2

3/2 1+J J+ 1/2 J+ 1/2

+ —' X X X X —['+(—')'+']
J=1/2 J'=

i
1 —J

i
I=J—1/2)'=J —1/2

1 &1

X A( I h) (k23)[%1()/2)(k23, 2) X 9'& (1/2)(p), 1)]M Ft (J))(p()J J [J] - [J'] - [1] J

+( —1)'h((k31)[3 1(1/2)(k31, 1)X9'I (1/2)(p2, 2)]Q F) (JI)(p2) I (4)

where

&I((/2)(k, 2)= g (IP z 2l
~

JM) Y( )(k)g~ )(2) .
PY/

The spectator function 6 (p) gives the l wave momentu-m distribution of the a particle relative to the two-
nucleon center of mass, while F) (J))(p) gives the total-angular-momentum (J') and orbital-angular-momentum
(l ) distributions of a nucleon relative to the center-of-mass of an a Npair interacti-ng in a IJ state. (For the 0
state, the second pair of indices (Jl) on F are suppressed, since J' =J and l ' =l.) Note that these angular expan-
sions, convenient for solving the resultant set of coupled integral equations for the spectator functions,
are not the shell-model angular expansions in either j-j or L S formations.

The two-body interactions used in the three-body Schrodinger equation are taken to be separable potentials
which best fit the two-body data for binding energy, effective range, scattering length, and phase shifts. " In
momentum space, the aN interaction is written as

3/2 J+ 1/2
( k

~

V )v ~

k ') = — g g A(J( —1) h( (k)h( (k')[9 I I ()/(2k ) X 8 I(I/2)(k ')]
J= 1/2 l =J—1/2

l&1

with p =4M/5 where M is the nucleon mass; A) is the interaction strength for partial wave l and total angular
momentum J; J=(2J+1)'/, h((k) are form factors analytically represented by k /[k + (P() ] +'. For the s-
wave NN interaction in He(0+), only the singlet-spin enters:
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(k
~

V„„~k')= — g (k)g (k')[X )(12))&X (12)](

while for Li(1+), only the triplet-spin part enters for s and d waves:

(k
~
V„~ k ') = — 1 y g/'(k)g/'(k')[[&"'(k) XX'"(12)]'"X[&"'(k') XX'"(12)]'"]"',

I, I'=o, 2

with the form factors

gO(k)=, g2(k) =
k'+(P )' [k'+(P ')']'

parameter t is used to control the relative
strength of the d wave in the np S=1 interaction,
while A,o and A,

&
are the singlet and triplet interaction

strengths.
After the spectator functions were found by nu-

merically solving the appropriate integral equations,
they were fit to analytic expressions having ap-
propriate threshold and asymptotic behavior.

The shell-model wave functions which we gen-
erated have as their origin the momentum-space
(Jacobi-variable) forms given by Eqs. (3) and (4).
Once the basic two-body interactions are set, there
are no "free parameters" in the problem. The wave
functions in Eqs. (3) and (4) are obtained by solving
the three-body Schrodinger equation. To transform
Eqs. (3) and (4) into shell-model form, we conform
as closely as possible to the spirit of the shell model
by taking the alpha particle as the "center-of-force"
and "core" of the He and Li nuclei. The four nu-
cleons in the alpha particle fill the ls shell and, with
high probability, remain there as long as available
excitation energies are below the alpha-particle
disassociation energy (-20 MeV).

In shell-model calculations, it is expedient to as-
sume that the center of force is close to the center of

mass of the system. This is a questionable assump-
tion for the He and Li nuclei with an alpha-
particle core. Our wave functions do not require
such an assumption; the wave functions in Eqs. (3)
and (4) are the proper three-body (ctXÃJ center-of-
mass wave functions, so no center-of-mass correc-
tions are required.

In Fig. 2, we show the spatial coordinate vectors
~i and ~2 used to locate the two "valence" nu-
cleons. These coordinates are related to the center-
of-mass coordinate vectors ri and rz and to the
Jacobi coordinates ri2 and p3 (conJugate to ki2 and
p3) by

5~ 1~ 1~
m ) = ~

I' ) + 4
I'2 = —

2
r )p —p 3,

(10)

with the invariant

3

g r' p =riz'ki2+p3'P3

=~] P]+ ~2'P2 ~

The shell waves we have calculated are found by
Fourier transforming the momentum-space wave
functions and expanding into shell angular states
with "j-j"coupling, i.e., into states for which each
of the valence nucleons has definite total angular
momentum. This expansion can be expressed as

FIG. 1. Jacobi three-body spatial (momentum) coordi-
nates.

FIG. 2. Shell, Jacobi, and center-of-mass spatial coor-
dinates.
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[J) [J)l [Jz]
+M ( ~ 1» ~2) g ~L (L~(~1»~2)[+L((1/2)(~1» ) + +L2(1/2)(~2»2)]M

J~Jz

JIJz
The WL L (~1,~2) are the two-body configuration-space amplitudes for finding the valence nucleons in the in-

1 z

dicated angular state relative to the a-particle core.
With the identity

e' " ' ' =4m g ij'l(kr)1[ X ' (k ) && Y(')(r )](
1=0

where jr(kr) is a spherical Bessel function, we can solve for the W's in terms of %M (k,p):

1 2 (Li+L21/2 (47r) d pld p2 .
2) ( 1) JL (pl 1)jL (p2 2)

(2rr)

j ) [Jzl [J]+ [[+L,(1/2)(pl 1)X O'LI(i/2)(p2, 2)] && 0' ( k, p)] (13)

There are two technical difficulties with the numeri-
cal implementation of the above expression. First,
there are literally hundreds of angular recoupling
terms that must be included. Second, the integrals
over pl and p2 involve strongly oscillatory in-
tegrands for pr && l. In the normalization integral
used to check the numerics,

r f f l~ L2i IL»il ld '12d 2

I 2
I.ILz

(14)

there will be an implicit fivefold integration re-
quired. Thus an efficient and accurate numerical
scheme is needed for handling the integrals over
spherical Bessel functions.

The first difficulty is made manageable by the
graphical recoupling method of Danos. ' ' The
second motivated our work with Maximon, where
we developed a powerful method of integrating nu-
merically an integrand containing a spherical Bessel
function by use of product integration.

In Appendix A, we give the results of the angular
reduction of the integrand of Eq. (13) for both
He(0+) and Li(1+). In this work, we include all

shell waves up to I.=2 (higher I. waves have negli-
gible contribution to the normalization integral) by
evaluating the expressions in Appendix A.

After numerical evaluation of Eq. (13), besides
Ji'z

WL, L,(~1,~2), we have calculated the two-particle
JI'z 2probability densities

~

WL L (~1,~2) ~, the single-

particle radial densities

JIJz JIJz
PL, L, (~I)=~1, ~2 d~2I ~L,L, (~1,~2)

I

and the probabilities of the shell orbitals,
Ji'z " Ji'z

PL iL~ O
PL(L2 ( ~1 )d~1

Of course,

JIJzg PLL ——1

J)Jz
I ILz

from Eq. (14). Note that, as we do not assume any
particular shell-core potential, we have no "princi-
pal" or "radial" quantum number. However, since
our expansion is dominated by the s, p, and d angu-
lar shell states just outside the alpha-particle core,
we expect these states to correspond to the 2s, lp,
and ld states in any shell model, with little or no ad-
mixture from higher radial shells. This expectation
is fulfilled by the observation of the correct number
of radial nodes in the calculated waves, i.e., one node
for the s wave and none for the p or d waves.

III. NUMERICAL RESULTS

Several different He and Li three-body wave
functions are used in our examination of the A =6
shell structure as predicted by three-body models.
They differ through the l(lN and aX interactions
used to derive them. In Table II, where certain
properties are hsted for the wave functions con-
sidered, the main division of models is "simple" and
"full." This distinction pertains to the aX interac-
tion, wherein the full models are derived by in-
clusion of all the dominant low energy partial waves
of tile ax% 111teI'actioI1, I.e., SI/2, P 1 /2, and P 3/2,
while the simple model includes only the resonant
P3/2 interaction. For He, the parenthetical nn or
np indicates which set of XX low-energy parameters
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TABLE IE. Wave function models.

Model

Simple

Full

Experiment

Wave
function

'He
Li(0%)
He(nn)
He(np)
Li(0%)

'L](4%)
'Li(4%; t =0)
'He
'Li

Binding
energy
(MeV)

1.043
4.660
0.359
0.542
4.446
4.062
4.062
0.969
4.531

'He P-decay
ft value(s)

(Ref. 7)

834+13

790+ 12'
807+ 12'
779~ 12a

Ref.

'Calculated with the He(np) wave function.

TABLE III. Orbital probabilities ( He) X 100%.

Orbital

(P3/2)'
(P ]/2 )

(d5/2 )

($1/2 )

{d3/2 )

Sum

Simple
model

79.1

1.95
4.58

10.95
1.14

97.7

Full (gn)

86.1

3.55
4.15
3.19
1.12

98.1

Full (np)

85.6
3.83
4.34
3.18
1.21

98.2

were used to der]ve the S]] ]nteract]on
parenthetical percentage attached to the models is
the percentage d-state component in the deuteron
wave function derived from the S] D] inte-raction
used. Finally, the Li model labeled (4%; t=O) is
the same three-body wave function as (4%), but the
terms that contain explicitly the two-nucleon tensor
form factors, g] (k), have been dropped and the
wave function renormalized. Thus, the effect of the
explicit tensor-force terms can be examined. Details
for all of these models, e.g. , interaction parameters,
spectator-function tabulations, etc. , can be found in
Refs. 3, 4, and 7.

The calculated orbital probabilities [Eqs. (16) and
(17)] for He and Li are given in Tables III and IV,
respectively. They are labeled and ordered accord-
ing to standard shell-model j-j coupling, i.e., p shell,
(s-d) shell, etc. By a number of sensitivity tests on
our numerical integrations, we have concluded that
the orbital probability values are stable to within 3
parts in 1000. It is clear from the tables that simple
and full models differ markedly from each other,
and that the bulk of the wave function probability
resides in the p shell with essentially all of the
remainder coming from the (s-d) shell. Clearly, the
sum of the orbital probabilities through the (s-d)

shell is well converged ()95%). The orbital proba-
bilities are obtained by integrating over the single-
particle radial (orbital) densities [Eq. (15)]. Simple
and full model graphs of these densities are given
for He and Li in Figs. 3 and 4, respectively. At
this level, one can clearly distinguish between the
simple and full model orbital probabilities. Numeri-
cally, the single-particle orbital densities are stable
to within 1 part in 100 between 1 and 8 fm, al-
though there is more variance in the d-wave results
for small and large /- due to the small relative size
of these densities in those regions.

Effects in the models for the single-particle radial
densities due to the different NX interactions are
brought out in Figs. 5—13. Figures 5—7 show the
differences between the three He models for the
p3/2, d, /2, and s]/2 orbitals, respectively. Represen-
tative graphs contrasting simple Li (4%) and Li
(4%, t=O) models are given in Figs. 8—11. Specifi-
cally chosen are the p3/2(p3/2), s]/2(d3/2) d3/2(s]/2),
and d5/2(d5/2) orbital densities. Differences between
Li (0%) and Li (4%) are shown for the p3/2(p3/2)

and p ]/2 (p3/2) orbitals in Figs. 12 and 13.
With the above results, we are now ready to dis-

cuss the physics of the models.

IV. DISCUSSION

To understand differences between the simple and
full models, a few comments about the aX interac-
tions are useful. The P3/2 and P]/2 interactions are
both attractive, but unlike the strongly resonant P3/2
wave, the P»2 is nonresonant and less important in
binding together the /I=6 bound states. ' On the
other hand, the S]/2 wave must contain the physics
of the Pauli principle, i.e., the S]/2 interaction must
repel the nucleon from the alpha particle when they
begin to approach each other too closely. In the
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TABLE IV. Orbital probabilities ( Li) X 100%.

Orbital

(P3/2 )

(P 1/2I2 3/2 )

(P1/2)'
(d5/2 )

(s1/2 )

(S1/2d3/2 )

(dg/2d3/2 )

(d3/2)'
Sum

Simple
model

49.2
14.8
0.7
3.9

20.1

0.1

4.8
0.5

94.1

Full (0%)

51.1
30.2

1.5
4.3
5.4
0.0
6.6
0.8

99.9

Full (4%%uo)

44.7
33.8
0.5
3.3
5.5
0.2
7.8
0.3

96.1

Full (4%; t =0)

48.1

32.6
1.2
4.1

5.8
0.2
6.8
0.7

99.5

models under consideration, the S~/2 interaction is
purely repulsive and gives an excellent representa-
tion of the S,/2 phase shift. '" Therefore, the dom-
inant pieces in the aN interaction are the P3/2 wave,

200
pg

'He

IOO

IO p

o

SI
23.1 x IO

I I

4
Pl, (fm}

FIG. 3. He single-particle radial densities [Pl. I, (~)].6 ~ . J~Jz
1 2

Simple model (5) and fu11 (np) model (NP).

which provides the bulk of the attraction, and the
S»2 wave, which counters the P-wave attraction
with repulsion whose origin is the Pauli principle.
So the essence of the difference between the simple
and full models is that the simple model does not
contain the required physics of the Pauli exclusion
principle through the aN interaction. As we shall
see, this is a serious shortcoming of the simple
model.

When we consider the orbital probabilities for He
and Li in Tables III and IV, respectively, we see
that the absence of the S&/2 aN repulsion in the sim-
ple model leads to a (s»2) orbital probability almost
four times that predicted by the full models. The
large (s&/z) probability is obtained at the expense of
the p-shell probability, particularly the (p3/2) for
He and (p~/2p3/2) for Li. Moreover, as we shall

see below when we consider the single-particle radial
densities, this large (s &/z) probability originates
from an s-wave orbital density that has a ls rather
than 2s [for the (s-d) shell] form, in violation of the
filling of shells according to the Pauli principle.
Beyond this striking difference between the simple-
and full-model orbital probabilities, the remaining
differences between the simple and full models are
insignificant.

Besides the simple and full models, there are dif-
ferent NN interactions used within the full models.
At least for the orbital probabilities, whether we use
the nn or np 'So interaction for He is of no signifi-
cance. The tensor force does have an effect in Li.
It redistributes some of the (p3/2) probability into
other orbits. This redistribution of probability is
most likely a consequence of the -0.4 MeV reduc-
tion in binding energy from full (O%%uo) to full (4%).
Its source is the explicit tensor force terms in the
wave function as can be seen from the full (4%',
t=0) column, whereby dropping these terms we
move back towards full (O%%uo).

Globally, the A =6 orbital probabilities reflect the
underlying aN interactions. The dominance of the
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FIG. 7. He single-particle s~/2(s~/q) radial density for
the three models discussed in the text.

FIG. 9. Li single-particle d3/q(d, /3) radial density for
the simple, full (4%), and full (4%, t =0) models.

of orbital probabilities in the p shell that resemble
the full three-body results (Table IV). The critical
aspect seems to be that when the shell models reduce
the (p3/z ) probability to values comparable to
three-body models, the (p I/zp3/2) probability be-
comes —3Q to 5Q% greater than in the full three-
body models. Said differently, the (s-d) shell plays a
larger role in Li for three-body models than it does
in these shell models. ' So, even at this fully in-
tegrated level —orbital probabilities —distinctive
differences between shell models and three-body
models of the /I =6 system stand out.

One step down from the orbital probabilities is the
single-particle orbital densities, Eq. (15). In Figs. 3
and 4, the simple- and full- (np for He and 4% for
Li) model single-particle densities for He and Li,

respectively, are compared for all orbitals through
the (s-d) shell. The differences are vivid. The rela-
tive sizes of the two models for each orbital is re-
flected in the orbital probabilities (Tables III and
IV), while the trend of the full models to peak at a

greater radial distance occurs because their three-
body binding energies are less than for the simple
models (See Table II). One particular feature of note
is the structure of the sI/z(sI/z) [also the sI/z(d3/z)
for Li] orbitals for the two models. The full-model
s I/2 (s»z) densities approach a zero at -2 fm,
whereas the simple-model results are near a max-
imum at this point. The tendency towards a zero
(node) in the single-particle orbital density can be
traced to the fact that the s»z(s I/z) two-body
configuration-space amplitude has a node (See Ap-
pendix B). The absence of this minimum for the
simple model is evidence that the sI/2(sI/2) wave
function has 1s behavior rather than the expected 2s
behavior required by the Pauli principle. On these
grounds, it is clear that the neglect of the SI/z aX
interaction in the simple model is unjustified. Final-
ly, we note that the maxima of the single-particle or-
bital densities order the orbits within shells, i.e., for
He (full model), the maxima occur at —2.4 fm for

l5-
6Li

E
IO-

CV

O

E
2

Al CV-
NIAl—

CL

4 5
gt

1
(fm)

4 5
(fm)

FIG. 8. Li single-particle p3/p(p3/p) radial density for
the simple, full (4~o), and full (4%%uo, t =0) models.

FIG. 10. Li single-particle s~/2(d3/p) radial density for
the simple, full (4%), and full (4%, t =0) models.
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FIG. 11. Li single-particle 13/2(s]/2) radial density for
the simple, full (4%), and full (4%, t =0) models.

FIG. 13. Li single-particle p~/z(p3/2) radial density for
the full (4%) and full (0%) models.

p3/z(p3/z) 3 2 frn for pl/z(pl/z) -3 4 rn

d5/z(d&/z), and —3.7 fm for d3/z(d3/z); the situation
is similar for Li. Ordering of the s&/z(sI/z) orbital
relative to other orbitals requires knowledge of the
rms orbital radii:

The results are given in Table VI. This ordering of
orbitals, or equivalently the different shape of each
single-particle orbital density within a shell, is a dis-
tinctive feature of three-body models and it em-
phasizes the role of the three-body dynamics as gen-
erated by the underlying two-body aX and XN in-
teractions.

Do the single-particle orbital densities display
large differences owing to the different XX interac-
tions'? Figures 5—7 show the single-particle densi-

l5-

IO-
O

4 5
(fm)

FIG. 12. Li single-particle p3/2(p3/2) radial density for
the full (4%) and full (0%) models.

ties for the He p3/z(p3/z) d5/z(ds/z), and sI/z(sI/z)
orbitals. Little difference appears between the full
(nn) and full (np) models. What difference there is
can be attributed to the smaller three-body binding
energy in the full (nn) case (Table II). On the other
hand, the presence of the tensor force in the ÃK in-
teraction has a significant effect on the single-
particle densities for Li as can be seen in Figs.
8—13, especially for the (s-d) shell. In Figs. 8—11,
the simple, full (4%), and full (4%, t=O) models are
comPared for the P3/z(P3/z) d5/z(d5/z) d3/z(s, /z),
and sI/z(d3/z) orbitals. In all cases, the effect of the
explicit tensor-force terms is to reduce the densities
and change their shape. Such aspects can be expect-
ed to be important in computing the Li quadrupole
moment where the smaller components of the wave
function play an important role. This effect of the
tensor force is again seen in Figs. 12 and 13 where
the full (O%) and full (4%) p3/z(p3/z) and pI/z(p3/z)
orbitals are given, respectively.

Again, let us return to comparing the shell model
and three-body models, but now for the single-
particle densities. As representative examples, we
compare the p3/z(p3/z) and p I/z(pI/z) orbitals of He
in Figs. 14 and 15, respectively. The shell model is
that of Donnelly and Walecka (DW). Two main as-
pects should be noted.

(1) The three-body model predicts an exponential-
ly decaying density at large radial distances. Thus,
rather than the compact Gaussian shape of the oscil-
lator shell model, the density has an exponential tail.

(2) The oscillator shell model indicates the same
location for the maxima of the p 3/z (p 3/z) and
p, /z(p, /z) orbitals, whereas the three-body model
predicts that they are ordered. Both of these aspects
can have significant bearing on the calculations of
observable quantities. On the other hand, it can be
argued that these shortcomings of the oscillator
wave functions are overcome by generating single-
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TABLE V. Orbital probabilities (&& 100% ) from phenomenological and realistic-interaction shell models of Table I.

Source
Li He

E2

DW
BAH

Saskatoon A

Saskatoon 8
Vergados

I(a)
(b)

11(a)
(b)

III(a)
(b)

65.6

65.6
65.6

63.8
54.3
55.2
46.6
53.1

45.2

33.7

33.7
33.7

36.0
45.6
39.6
47.7

. 38.3
45.4

0.7

0.7
0.7

0.06
0.02
0.07
0.03
0.07
0.04

100
100

99.9
99.9
94.9
94.3
91.5
90.6

64.0

99.6
66.6

95.6
91.8
93.9
91.6
88.5
86.3

36.0

0.2
33.3

4.2
8.0
4.2
6.0
4.6
6.4

99.8
99.9

99.8
99.8
98.1

97.6
93.1
92.7

particle orbital densities from Woods-Saxon wave
functions. Woods-Saxon wave functions decay ex-
ponentially at large distances and order the orbits
through the spin-orbit interaction. In fact, the
parameters of the Woods-Saxon potential can be
chosen to yield a wave function with the same
separation energy as that implicit in the three-body
single-particle orbital density and the resulting wave
function can be normalized to yield the same orb!tal
probability as the three-body prediction. Will the
single-particle orbital density then resemble closely
that of the three-body prediction? The answer is ap-
parent in Fig. 16, where the He full (nn) model and
a Woods-Saxon lp3/2 single-particle orbital density
are compared. The normalization and separation
energy of the Woods-Saxon model are the same as in
the three-body model. The Woods-Saxon density is
narrower, peaks at a larger radial distance, and in
the region from 0 to —5 fm resembles more the os-
cillator density (See Fig. 14). Clearly, for typical
values of the radius and diffuseness in the Woods-
Saxon potential, the physics of the three-body

models differs not only from the usual oscillator
models, but from the Woods-Saxon effective two-
body models as well.

Simple oscillator shell models and all three-body
models differ in another way: The two-body
configuration-space wave function amplitude

p JiJ2
ML L (~!,~2) does not factor in three-body models.
This amplitude, of course, underlies everything we
discussed above, so it would be most valuable to see
it plotted for two representative cases. We have
chosen- the He (p 3/2) and (s!/2) amplitudes. They
are displayed in Figs. 17—20 as three-dimensional
and contour plots. The (p3/2) amplitude shows a
strong peak at ~!——~2-2 fm, whose origin, we
learned above, is the strongly resonant p3/2 a2V in-
teraction. The smoothness of the curves in the con-
tour plots at large radial distances is a measure of
the accuracy of our results. Poor numerical accura-
cy leads to undulating contours at large distances.
Most importantly, we note the node in the (s»2)

0
(p3n)'
P3n(P! /2)

P ~/2(P3/2)

(P i/2 )'
(dsn)'
d5/2(d3/2 )

d3/2(d5/2 )

(S I/2 )

»/2(d3/2)
d3/2(s 1/2 )

(d3/2 )

3.53
3.62
3.97
4.61
4.66
4.58
4.66
5.04
4.42
3.51
5.67

4.98
5.20

6.37

TABLE VI. Root-mean-square orbital radii (fm).

rbital He(np) Li (4%)
2

toIN—
mlcu—

CL

2 3 4 5 6 7 8 9 IO

(f rn)

FIG. 14. He single-particle p3/2(p3/2) radial density
for the full (np) three-body model and the Donnelly-
Walecka shell model.
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where
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(20)

=1cr( )=1 for &=0; io—.or a=Om, (21)

n transitions. These densities can becontain all nuclear struccture information w ic eh' h determines single nucleon transi ion .
1 dcalculated directly from the s gshell an ular amp itu es

j +j +J+g+)+T'+ 4I

( ', ,)=6+(—1)'P(a, g )Wm~ ~ 14 ~ 1

T' w J'
1

2 Ji J2
s

[& '
( 'i)X& ( i)]

[I
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I ~]Ji

(J) j)j2(J)
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We leave such comparisons for the uture.

V. SUMMARY AND CONCLUSIONS
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In the future, these aspects can be explored at a
deeper level to determine the effect of these differ-
ences in one-body transition densities, the key ele-
ments in all transitions involving a single nucleon.
The present work suggests that the differences will
be significant.

Besides the fact that three-body models of the
A =6 system involve proper three-body dynamics
once the basic aN and NN interactions are specified,
they also have the advantage of being set up and
solved in the center-of-mass system. This is particu-
larly important for light nuclei such as He and Li.
Nevertheless, for one accustomed to dealing with os-
cillator shell models of He and Li, the details of
the present calculation may appear quite involved.
Part of the complication comes about because of the
transformation to the coordinates of the nucleons
relative to the alpha particle from the center-of-mass
Jacobi coordinates. The other part comes from the
three-body dynamics, an ingredient which, in our
opinion, can no longer be ignored in our quest to
better understand the 4 =6 system. Specifically,
along this line, our principal findings are the follow-
1I1g:

(1) The three-body values of the 3 =6 shell-
orbital probabilities echo the nature of the underly-
ing aN interactions. The P3/2 orbital dominates be-
cause of the strongly resonant P3/2 wave of the aN
interaction, whereas the s)/2 orbital is suppressed
due to the Pauli principle manifest through the
repulsive Sl/2 wave of the aN interaction.

(2) None of the oscillator shell models considered,
phenomenological or realistic interaction, have a dis-
tribution of orbital probabilities in the p shell like
that predicted by our three-body models. Allowing
for core excitation in realistic-interaction shell

models tends to move the shell-model results to-
wards the three-body values, but this serves to em-
phasize that an apparent need for core excitation

may actually indicate a need to move from "effec-
tive" two-body dynamics to three-body dynamics.

(3) The location of the maxima of the single-
particle orbital densities from the three-body models
order the orbits within shells, i.e., the maxima of the
(Pl/2) orbital occurs at a distance -0.8 fm beyond
that for the (P3/2) orbital, etc. These shell proper-
ties are further supported by the calculated rms or-
bital radii (Table VI). In oscillator shell models with
a single oscillator parameter, the maxima of the
(P3/2) and (P 1/2) orbitals occur at the same radial
distance, etc.

(4) Three-body models give physically sensible ex-
ponen. ially decaying sir.gle-particle orbital densities
at large radial distances compared to the unrealistic,
compact, Gaussian shape of. oscillator shell models.

These findings lead us to believe that calculation
of the A =6 system low-excitation properties and
processes with three-body models will give a far
more realistic and complete description than that ob-
tained from shell models.
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APPENDIX A

In this appendix, we give the He and Li wave functions expanded into shell angular states and expressed in
terms of the three-body spectator functions and two body form factors defined in Sec. II.

For He(0+),

'4'( )(~1,~2)=g &L(~),~2)[NL((), /2)(~„1))&9'~ (), )(~2,2)](o),
where JL

(Al)

~L(~1~~2) ( 1) 4 ~
O 0 P 1 P1P2 dP2[JL(~1P1 )JL(~2P2)+JL(~2P1 )JL(~lP2)]

J

I

&& 2 +L(P) P2) ~oL(Pi P2)+P)~ i(2J —s)(Pi P2)+ 5P2~ is. (Pi P2)

3 (27+2 —L)+ ~ 2L 1
Pl 3(2J+2—L)(PltP2)+

(3J 2L + —,)—
v2 2L+1

v2
P l~ 3(2/ L)(P1~P2 )+ P2~—3L (P 1 ~P2 )

5
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~ (2j+I —1)(p 1 ~P2 )

ko I ), 0( 2 (pl +72 —2plpzI) )G Hpl +pa +2plpzl)' ]P', (I )

&H. + , (P—i +P»+ ,P)—P24

5AJI ~)((p i'+ —„P2'+ —,P ip2k)'nP j(P2)
dg PL(g')

+ 8 (Pi +P2 )+ 4pip24

(A3)

(A4)

A )(k) =hII(k)/k' .

The 1+ state of Li is described by the following wave function:

1) JIJ2 IJI] 2~ ~1]
+Iir( 1 2) g ~L L ( 1 2)[L (1/2)( 1 1)x +L (1/2)( 2 2)hf

with

(L I +L2)/2 2 2 ~~LL(12) 4 dp idp2p 1 p2 JI )
(Pl ~1 J)L2(P2~ 2)

(A6)

J,J2JJ
+L )L21!'+g~ L)L~II'

JJ'1 I, I =0,2'
X

&~; + —,(Pi +P»+ —.P)P2k
(A7)

where

Ji J2 1
J,J~L)L200 +00'4)L2 Jl J2 1L1 L 1 L2 0 P )L(g)

I j.

12 2

(A8)

1/2 J1 J2

I I 2
1 1

1
2 2

(P i'+P2'»L+ P2L —1)PL+ i+(2L + 3)PI.
2L ~1

Pi +P2 +2P)P26
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2 X 5(L + 1)(I- +2)
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-1/2 Ji
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APPENDIX 8

The purpose of this appendix is to illustrate in a simple manner that if the two-particle wave function am-
plitude, W "' '(~&,~z) in Fig. 19, has a node, then the single-particle orbital density, Poo

"' '(~&) in Fig.
7, will have a minimum for ~~&0.

We set up a simple analytical model using a product of oscillator wave functions. The relative motion of the
two nucleons is taken as ls while the relative motion of the alpha particle with respect to the two-nucleon
center of mass is 2s (Ref. 6):

4(r, p ) =%(7),~2)
' 1/2 3/4

3 2v 2v
2 77 rr

I

exp —v(~& +~z —2~
& ~2)—,( j-& +~2 +2 ~ &. ~2)

I
2 2 . 2X 1 — (j ) +~2 +2~) ~2)

3
(81)

where for the 4 =6 system v-2v'. Clearly, this form leads to an W(j-&, ~2) with nodal behavior like
'(~t, ~2). Then, we calculate analytically

I'( )) )' 1 1=A)d' g%"( ), ,)0'( (, ,), (82)
1/2

2v' (4v+v') v'(4v+ v')
y exp

8v
2 v' +24v 4v' v' —6v 2

v'
, 2+ +

3 (4v+v')2 9 4v+v' 9

where y =Sv~&/(4v+v'). Independent of the relative sizes of v and v', the quantity in the brackets is never
zero for real y. Therefore, the node that was present in Eq. (81) has disappeared in P(~&). Furthermore, Eq.
(83) has two maxima and a minima between 0 and oo for the realistic relationship v-2v', but not for v-v'.
Thus, when v-2v', a graph like Fig. 7 results.

These simple considerations have their origins in a more general theorem that can be proved concerning the
nodal structure of single-particle orbital densities as it relates to the underlying two-particle, wave-function am-
plitudes.
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